Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular targets for cancer chemoprevention

Key Points

  • Clinical molecularly targeted chemoprevention has surged forward since the late 1990s, with several targeted agents that prevent cancers, intraepithelial neoplasias and/or microbial infections that lead to carcinogenesis. In addition to vaccines against hepatitis B and human papillomavirus (to prevent cancers of the liver and cervix, respectively), molecularly targeted agents are feasible and effective in preventing breast cancer (selective oestrogen receptor modulators), colorectal adenomas (celecoxib) and prostate cancer (finasteride).

  • Completed chemoprevention trials have encountered several difficulties that pose challenges to the design and conduct of future chemoprevention trials, and hinder translation of their findings into clinical practice. These challenges may be overcome by continuing advances in molecularly targeted prevention approaches.

  • Identification of individuals at high risk of developing cancer (based on models integrating clinical, demographic and molecular data) will assist in selecting optimal populations for chemoprevention trials.

  • Validation of molecular markers that could serve as intermediate surrogate end points for cancer could potentially shorten the length of definitive chemoprevention trials.

  • Development of active molecularly targeted agents (alone or in combination) for chemoprevention should be based on preclinical models, regardless of the efficacy of the drugs in advanced disease. On the other hand, positive results in advanced cancer trials should stimulate prompt evaluation of the agent in the preventive setting as well.

  • Identification of molecular markers that will predict drug sensitivity and/or adverse events will help optimize the risk/benefit ratio of molecularly targeted drugs.

  • Molecularly targeted strategies developed in both premalignant and advanced disease will ultimately streamline cancer prevention research.

Abstract

Vaccines targeting infections with hepatitis B virus, a risk factor for hepatocellular cancer, and human papillomavirus, a risk factor for cervical cancer, are considered major clinical cancer chemoprevention successes. Molecularly targeted agents can prevent breast cancer (raloxifene and tamoxifen), colorectal adenomas (celecoxib), and prostate cancer (finasteride). Nevertheless, the broad translation of chemoprevention to the clinic is not yet a reality. Continuing research of molecular targets promises to expand the reach of chemoprevention and to personalize it as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic for the Erlotinib Prevention of Oral Cancer trial.
Figure 2: Regulation of the hypoxia-inducible factor pathway by hypoxic and non-hypoxic mechanisms and its role in inherited cancer syndromes.
Figure 3: Bridging the gap between cancer treatment and prevention.

Similar content being viewed by others

References

  1. Sporn, M. B., Dunlop, N. M., Newton, D. L. & Smith, J. M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 35, 1332–1338 (1976).

    CAS  PubMed  Google Scholar 

  2. O'Shaughnessy, J. A. et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin. Cancer Res. 8, 314–346 (2002).

    PubMed  Google Scholar 

  3. Kelloff, G. J. et al. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer — a plan to move forward. Clin. Cancer Res. 12, 3661–3697 (2006).

    CAS  PubMed  Google Scholar 

  4. Lippman, S. M. & Hong, W. K. Cancer prevention science and practice. Cancer Res. 62, 5119–5125 (2002).

    CAS  PubMed  Google Scholar 

  5. Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355, 885–895 (2006).

    CAS  PubMed  Google Scholar 

  6. Bertagnolli, M. M. et al. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355, 873–884 (2006). One of three placebo-controlled, randomized Phase III studies demonstrating activity of celecoxib in sporadic adenomas, albeit associated with increased incidence of cardiovascular adverse events.

    CAS  PubMed  Google Scholar 

  7. Baron, J. A. et al. A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 131, 1674–1682 (2006).

    CAS  PubMed  Google Scholar 

  8. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998). Details of the randomized controlled trial that led to the approval of the first chemopreventive molecularly targeted agent by the FDA: tamoxifen for breast cancer.

    CAS  PubMed  Google Scholar 

  9. Vogel, V. G. et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295, 2727–2741 (2006).

    CAS  PubMed  Google Scholar 

  10. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003). The first and largest completed trial to date to demonstrate activity of a preventive agent in prostate cancer, albeit with initial concerns for increased incidence of high-grade disease.

    CAS  PubMed  Google Scholar 

  11. Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genet. 40, 616–622 (2008).

    CAS  PubMed  Google Scholar 

  12. Hung, R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    CAS  PubMed  Google Scholar 

  13. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mao, L. et al. Phenotype and genotype of advanced premalignant head and neck lesions after chemopreventive therapy. J. Natl Cancer Inst. 90, 1545–1551 (1998).

    CAS  PubMed  Google Scholar 

  15. Spira, A. et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc. Natl Acad. Sci. USA 101, 10143–10148 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, I. W. et al. Multiple clonal abnormalities in the bronchial epithelium of patients with lung cancer. J. Natl Cancer Inst. 91, 1863–1868 (1999).

    CAS  PubMed  Google Scholar 

  17. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genet. 38, 468–473 (2006).

    CAS  PubMed  Google Scholar 

  18. Gail, M. H. et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl Cancer Inst. 81, 1879–1886 (1989).

    CAS  PubMed  Google Scholar 

  19. Spitz, M. R. et al. An expanded risk prediction model of lung cancer. Cancer Prev. Res. 1, 250–254 (2008).

    Google Scholar 

  20. Spitz, M. R. et al. A risk model for prediction of lung cancer. J. Natl Cancer Inst. 99, 715–726 (2007).

    PubMed  Google Scholar 

  21. Fisher, B. et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353, 1993–2000 (1999).

    CAS  PubMed  Google Scholar 

  22. Rockhill, B., Spiegelman, D., Byrne, C., Hunter, D. J. & Colditz, G. A. Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J. Natl Cancer Inst. 93, 358–366 (2001).

    CAS  PubMed  Google Scholar 

  23. Degnim, A. C. et al. Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J. Clin. Oncol. 25, 2671–2677 (2007).

    PubMed  Google Scholar 

  24. Freedman, A. N. et al. Cancer risk prediction models: a workshop on development, evaluation, and application. J. Natl Cancer Inst. 97, 715–723 (2005).

    PubMed  Google Scholar 

  25. Gauthier, M. L. et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12, 479–491 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Belinsky, S. A. et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 66, 3338–3344 (2006).

    CAS  PubMed  Google Scholar 

  27. Beane, J. et al. A prediction model for lung cancer diagnosis that integrates genomic and clinical features. Cancer Prev. Res. 1, 56–64 (2008).

    Google Scholar 

  28. Galipeau, P. C. et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 4, e67 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. Lee, J. J. et al. Predicting cancer development in oral leukoplakia: ten years of translational research. Clin. Cancer Res. 6, 1702–1710 (2000).

    CAS  PubMed  Google Scholar 

  30. Rosin, M. P. et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin. Cancer Res. 6, 357–362 (2000).

    CAS  PubMed  Google Scholar 

  31. Rosin, M. P. et al. 3p14 and 9p21 loss is a simple tool for predicting second oral malignancy at previously treated oral cancer sites. Cancer Res. 62, 6447–6450 (2002).

    CAS  PubMed  Google Scholar 

  32. Izzo, J. G. et al. Cyclin D1 genotype, response to biochemoprevention, and progression rate to upper aerodigestive tract cancer. J. Natl Cancer Inst. 95, 198–205 (2003).

    CAS  PubMed  Google Scholar 

  33. Chang, M. H. et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N. Engl. J. Med. 336, 1855–1859 (1997).

    CAS  PubMed  Google Scholar 

  34. Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356, 1928–1943 (2007).

    CAS  PubMed  Google Scholar 

  35. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 356, 1915–1927 (2007).

  36. Paavonen, J. et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369, 2161–2170 (2007).

    CAS  PubMed  Google Scholar 

  37. Hildesheim, A. et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298, 743–753 (2007).

    CAS  PubMed  Google Scholar 

  38. Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Blaser, M. J. Understanding microbe-induced cancers. Cancer Prev. Res. 1, 15–20 (2008).

    Google Scholar 

  40. Correa, P. et al. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. J. Natl Cancer Inst. 92, 1881–1888 (2000).

    CAS  PubMed  Google Scholar 

  41. You, W. C. et al. Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions. J. Natl Cancer Inst. 98, 974–983 (2006).

    PubMed  Google Scholar 

  42. Finn, O. J. Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008).

    CAS  PubMed  Google Scholar 

  43. Garcia-Hernandez Mde, L., Gray, A., Hubby, B., Klinger, O. J. & Kast, W. M. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res. 68, 861–869 (2008).

    PubMed  Google Scholar 

  44. Dhodapkar, M. V., Krasovsky, J., Osman, K. & Geller, M. D. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J. Exp. Med. 198, 1753–1757 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Spisek, R. & Dhodapkar, M. V. Immunoprevention of cancer. Hematol. Oncol. Clin. North Am. 20, 735–750 (2006).

    PubMed  Google Scholar 

  46. Hong, W. K. et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N. Engl. J. Med. 315, 1501–1505 (1986).

    CAS  PubMed  Google Scholar 

  47. Hong, W. K. et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 323, 795–801 (1990).

    CAS  PubMed  Google Scholar 

  48. Benner, S. E., Pajak, T. F., Lippman, S. M., Earley, C. & Hong, W. K. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. J. Natl Cancer Inst. 86, 140–141 (1994).

    CAS  PubMed  Google Scholar 

  49. Lippman, S. M. et al. Comparison of low-dose isotretinoin with beta carotene to prevent oral carcinogenesis. N. Engl. J. Med. 328, 15–20 (1993).

    CAS  PubMed  Google Scholar 

  50. Papadimitrakopoulou, V. A. et al. Low-dose isotretinoin versus beta-carotene to prevent oral carcinogenesis: long-term follow-up. J. Natl Cancer Inst. 89, 257–258 (1997).

    CAS  PubMed  Google Scholar 

  51. Xu, X. C. et al. Differential expression of nuclear retinoid receptors in normal, premalignant, and malignant head and neck tissues. Cancer Res. 54, 3580–3587 (1994).

    CAS  PubMed  Google Scholar 

  52. Lotan, R. et al. Suppression of retinoic acid receptor-beta in premalignant oral lesions and its up-regulation by isotretinoin. N. Engl. J. Med. 332, 1405–1410 (1995).

    CAS  PubMed  Google Scholar 

  53. Xu, X. C. et al. Anti-retinoic acid (RA) antibody binding to human premalignant oral lesions, which occurs less frequently than binding to normal tissue, increases after 13-cis-RA treatment in vivo and is related to RA receptor beta expression. Cancer Res. 55, 5507–5511 (1995).

    CAS  PubMed  Google Scholar 

  54. Mao, L. et al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nature Med. 2, 682–685 (1996). The first observation that LOH at specific loci of chromosomes 3p and/or 9p are associated with cancer risk in oral leukoplakia. This is the first molecular-based model to be used for the selection of high-risk patients in a chemoprevention clinical trial (EPOC) with erlotinib.

    CAS  PubMed  Google Scholar 

  55. Hong, W. K., Spitz, M. R. & Lippman, S. M. Cancer chemoprevention in the 21st century: genetics, risk modeling, and molecular targets. J. Clin. Oncol. 18, 9S–18S (2000).

    CAS  PubMed  Google Scholar 

  56. Cuzick, J. et al. First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360, 817–824 (2002).

    CAS  PubMed  Google Scholar 

  57. Powles, T. et al. Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 352, 98–101 (1998).

    CAS  PubMed  Google Scholar 

  58. Powles, T. J., Ashley, S., Tidy, A., Smith, I. E. & Dowsett, M. Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J. Natl Cancer Inst. 99, 283–290 (2007).

    CAS  PubMed  Google Scholar 

  59. Veronesi, U. et al. Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Italian Tamoxifen Prevention Study. Lancet 352, 93–97 (1998).

    CAS  PubMed  Google Scholar 

  60. Cuzick, J. et al. Overview of the main outcomes in breast-cancer prevention trials. Lancet 361, 296–300 (2003).

    CAS  PubMed  Google Scholar 

  61. Cuzick, J. et al. Long-term results of tamoxifen prophylaxis for breast cancer — 96-month follow-up of the randomized IBIS-I trial. J. Natl Cancer Inst. 99, 272–282 (2007).

    CAS  PubMed  Google Scholar 

  62. Port, E. R., Montgomery, L. L., Heerdt, A. S. & Borgen, P. I. Patient reluctance toward tamoxifen use for breast cancer primary prevention. Ann. Surg. Oncol. 8, 580–585 (2001).

    CAS  PubMed  Google Scholar 

  63. Fabian, C. J. & Kimler, B. F. Selective estrogen-receptor modulators for primary prevention of breast cancer. J. Clin. Oncol. 23, 1644–1655 (2005).

    CAS  PubMed  Google Scholar 

  64. Scardino, P. T. The prevention of prostate cancer — the dilemma continues. N. Engl. J. Med. 349, 297–299 (2003).

    PubMed  Google Scholar 

  65. Thompson, I. M. et al. Finasteride decreases the risk of prostatic intraepithelial neoplasia. J. Urol. 178, 107–109; discussion 110 (2007).

    PubMed  Google Scholar 

  66. Lucia, M. S. et al. Pathologic characteristics of cancers detected in the Prostate Cancer Prevention Trial: implications for prostate cancer detection and chemoprevention. Cancer Prev. Res. 1, 167–173 (2008).

    CAS  Google Scholar 

  67. Lucia, M. S. et al. Finasteride and high-grade prostate cancer in the Prostate Cancer Prevention Trial. J. Natl Cancer Inst. 99, 1375–1383 (2007).

    CAS  PubMed  Google Scholar 

  68. Redman, M. W. et al. Finasteride does not increase the risk of high-grade prostate cancer: a bias-adjusted modeling approach. Cancer Prev. Res. 1, 174–181 (2008). Analysis demonstrating that the increased incidence of high-grade prostate cancer in the PCPT was an artefact resulting from facilitated diagnosis due to increased biopsy sensitivity with finasteride.

    CAS  Google Scholar 

  69. Pinsky, P., Parnes, H. & Ford, L. Estimating rates of true high-grade disease in the Prostate Cancer Prevention Trial. Cancer Prev. Res. 1, 182–186 (2008). Analysis demonstrating that the increased incidence of high-grade prostate cancer in the PCPT was a result of higher Gleason misclassification rates in the placebo group than in the finasteride group.

    Google Scholar 

  70. Logothetis, C. J. & Schellhammer, P. F. High-grade prostate cancer and the Prostate Cancer Prevention Trial. Cancer Prev. Res. 1, 151–152 (2008).

    Google Scholar 

  71. Lotan, Y., Cadeddu, J. A., Lee, J. J., Roehrborn, C. G. & Lippman, S. M. Implications of the prostate cancer prevention trial: a decision analysis model of survival outcomes. J. Clin. Oncol. 23, 1911–1920 (2005).

    PubMed  Google Scholar 

  72. Lippman, S. M. & Lee, J. J. Reducing the “risk” of chemoprevention: defining and targeting high risk — 2005 AACR Cancer Research and Prevention Foundation Award Lecture. Cancer Res. 66, 2893–2903 (2006).

    CAS  PubMed  Google Scholar 

  73. Giardiello, F. M. et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328, 1313–1316 (1993).

    CAS  PubMed  Google Scholar 

  74. Benamouzig, R. et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125, 328–336 (2003).

    CAS  PubMed  Google Scholar 

  75. Baron, J. A. et al. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med. 348, 891–899 (2003).

    CAS  PubMed  Google Scholar 

  76. Logan, R. F., Grainge, M. J., Shepherd, V. C., Armitage, N. C. & Muir, K. R. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134, 29–38 (2008).

    CAS  PubMed  Google Scholar 

  77. Sandler, R. S. et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348, 883–890 (2003).

    CAS  PubMed  Google Scholar 

  78. Flossmann, E. & Rothwell, P. M. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369, 1603–1613 (2007).

    CAS  PubMed  Google Scholar 

  79. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000). The first study to definitively demonstrate the efficacy of celecoxib in preventing adenomas in patients with FAP, leading to the drug's approval for this indication in the United States despite there being only 77 patients enrolled in the trial.

    CAS  PubMed  Google Scholar 

  80. Bresalier, R. S. et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352, 1092–1102 (2005). Study indicating increased risk for cardiovascular adverse events with rofecoxib in a clinical trial for adenoma prevention.

    CAS  PubMed  Google Scholar 

  81. Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005). Study indicating increased risk for cardiovascular adverse events with celecoxib in a clinical trial for adenoma prevention.

    CAS  PubMed  Google Scholar 

  82. Bertagnolli, M. M., Zauber, A. G. & Hawk, E. T. The Adenoma Prevention with Celecoxib (APC) trial: five-year efficacy and safety results [abstract]. Proc. 99th Annu. Meet. Am. Assoc. Cancer Res. Abstr. LB-141 (San Diego, California, 2008).

  83. Psaty, B. M. & Potter, J. D. Risks and benefits of celecoxib to prevent recurrent adenomas. N. Engl. J. Med. 355, 950–952 (2006).

    CAS  PubMed  Google Scholar 

  84. Martino, S. et al. The role of selective estrogen receptor modulators in the prevention of breast cancer: comparison of the clinical trials. Oncologist 9, 116–125 (2004).

    CAS  PubMed  Google Scholar 

  85. Solomon, S. D. et al. Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis. Circulation 117, 2104–2113 (2008). Retrospective evaluation of cardiovascular toxicity associated with COX2 inhibitors, providing a risk model for these adverse events and confirming no increased celecoxib-induced cardiovascular toxicity in the low-risk cohort.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).

    CAS  PubMed  Google Scholar 

  87. Markowitz, S. D. Aspirin and colon cancer — targeting prevention? N. Engl. J. Med. 356, 2195–2198 (2007).

    CAS  PubMed  Google Scholar 

  88. Abbruzzese, J. L. & Lippman, S. M. The convergence of cancer prevention and therapy in early-phase clinical drug development. Cancer Cell 6, 321–326 (2004).

    CAS  PubMed  Google Scholar 

  89. Lippman, S. M. & Heymach, J. V. The convergent development of molecular-targeted drugs for cancer treatment and prevention. Clin. Cancer Res. 13, 4035–4041 (2007).

    CAS  PubMed  Google Scholar 

  90. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  91. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999).

    CAS  PubMed  Google Scholar 

  92. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  93. Pore, N. et al. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 66, 3197–3204 (2006).

    CAS  PubMed  Google Scholar 

  94. Bratslavsky, G., Sudarshan, S., Neckers, L. & Linehan, W. M. Pseudohypoxic pathways in renal cell carcinoma. Clin. Cancer Res. 13, 4667–4671 (2007).

    CAS  PubMed  Google Scholar 

  95. Iliopoulos, O. Molecular biology of renal cell cancer and the identification of therapeutic targets. J. Clin. Oncol. 24, 5593–5600 (2006).

    CAS  PubMed  Google Scholar 

  96. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genet. 30, 406–410 (2002).

    CAS  PubMed  Google Scholar 

  97. Brugarolas, J. & Kaelin, W. G. Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6, 7–10 (2004).

    CAS  PubMed  Google Scholar 

  98. Brugarolas, J. B., Vazquez, F., Reddy, A., Sellers, W. R. & Kaelin, W. G. Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    CAS  PubMed  Google Scholar 

  99. Bach, P. B. et al. Variations in lung cancer risk among smokers. J. Natl Cancer Inst. 95, 470–478 (2003).

    PubMed  Google Scholar 

  100. Cho, N. L. et al. Aberrant crypt foci in the Adenoma Prevention with Celecoxib trial. Cancer Prev. Res. 1, 21–31 (2008).

    CAS  Google Scholar 

  101. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    CAS  PubMed  Google Scholar 

  102. Greulich, H. et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2, e313 (2005).

    PubMed  PubMed Central  Google Scholar 

  103. Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9, 485–495 (2006).

    CAS  PubMed  Google Scholar 

  104. Tang, X. et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 65, 7568–7572 (2005).

    CAS  PubMed  Google Scholar 

  105. Ji, H. et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc. Natl Acad. Sci. USA 103, 7817–7822 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bell, D. W. et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nature Genet. 37, 1315–1316 (2005).

    CAS  PubMed  Google Scholar 

  107. Lee, H. Y. et al. Effects of insulin-like growth factor binding protein-3 and farnesyltransferase inhibitor SCH66336 on Akt expression and apoptosis in non-small-cell lung cancer cells. J. Natl Cancer Inst. 96, 1536–1548 (2004).

    CAS  PubMed  Google Scholar 

  108. Tsao, A. S. et al. Increased phospho-AKT (Ser473) expression in bronchial dysplasia: implications for lung cancer prevention studies. Cancer Epidemiol. Biomarkers Prev. 12, 660–664 (2003).

    CAS  PubMed  Google Scholar 

  109. Jin, Q. et al. Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res. 67, 11630–11639 (2007).

    CAS  PubMed  Google Scholar 

  110. Jyonouchi, H., Sun, S., Iijima, K., Wang, M. & Hecht, S. S. Effects of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene on human small airway epithelial cells and the protective effects of myo-inositol. Carcinogenesis 20, 139–145 (1999).

    CAS  PubMed  Google Scholar 

  111. Wislez, M. et al. Inhibition of mammalian target of rapamycin reverses alveolar epithelial neoplasia induced by oncogenic K-ras. Cancer Res. 65, 3226–3235 (2005).

    CAS  PubMed  Google Scholar 

  112. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med. 10, 594–601 (2004).

    CAS  PubMed  Google Scholar 

  113. Strecker, T. et al. Effect of lapatinib on the development of estrogen receptor-negative mammary tumors in mice. J. Natl Cancer Inst. 101, 107–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Herbst, R. S. et al. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J. Clin. Oncol. 25, 4743–4750 (2007).

    CAS  PubMed  Google Scholar 

  115. O'Shaughnessy, J. et al. A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. J. Clin. Oncol. 26 (suppl.), Abstr. 1015 (2008).

    Google Scholar 

  116. Torrance, C. J. et al. Combinatorial chemoprevention of intestinal neoplasia. Nature Med. 6, 1024–1028 (2000).

    CAS  PubMed  Google Scholar 

  117. Sporn, M. B. Combination chemoprevention of cancer. Nature 287, 107–108 (1980).

    CAS  PubMed  Google Scholar 

  118. Gupta, R. A. & DuBois, R. N. Combinations for cancer prevention. Nature Med. 6, 974–975 (2000).

    CAS  PubMed  Google Scholar 

  119. Meyskens, F. L. Jr. et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev. Res. 1, 32–38 (2008). The first successful clinical trial of combination chemoprevention, thus providing proof of principle that this strategy is feasible and effective. This is the most active pharmacological intervention studied to date in patients with adenomas.

    CAS  Google Scholar 

  120. Nigro, N. D., Bull., A. W. & Boyd, M. E. Inhibition of intestinal carcinogenesis in rats: effect of difluoromethylornithine with piroxicam or fish oil. J. Natl Cancer Inst. 77, 1309–1313 (1986).

    CAS  PubMed  Google Scholar 

  121. Rao, C. V. et al. Chemoprevention of colon carcinogenesis by dietary administration of piroxicam, alpha-difluoromethylornithine, 16 alpha-fluoro-5-androsten-17-one, and ellagic acid individually and in combination. Cancer Res. 51, 4528–4534 (1991).

    CAS  PubMed  Google Scholar 

  122. Piazza, G. A. et al. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res. 57, 2909–2915 (1997).

    CAS  PubMed  Google Scholar 

  123. Meyskens, F. L. Jr. et al. Dose de-escalation chemoprevention trial of alpha-difluoromethylornithine in patients with colon polyps. J. Natl Cancer Inst. 86, 1122–1130 (1994).

    PubMed  Google Scholar 

  124. Meyskens, F. L. Jr. et al. Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J. Natl Cancer Inst. 90, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  125. Lippman, S. M. et al. Designing the selenium and vitamin E cancer prevention trial (SELECT). J. Natl Cancer Inst. 97, 94–102 (2005).

    CAS  PubMed  Google Scholar 

  126. Hubner, R. A. et al. Ornithine decarboxylase G316A genotype is prognostic for colorectal adenoma recurrence and predicts efficacy of aspirin chemoprevention. Clin. Cancer Res. 14, 2303–2309 (2008).

    CAS  PubMed  Google Scholar 

  127. Martinez, M. E. et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc. Natl Acad. Sci. USA 100, 7859–7864 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Papadimitrakopoulou, V. et al. Cyclin D1 and cancer development in laryngeal premalignancy patients. Cancer Prev. Res. 2, 14–21 (2009).

    CAS  Google Scholar 

  129. Papadimitrakopoulou, V. et al. Randomized trial of 13-cis retinoic acid compared with retinyl palmitate with or without beta-carotene in oral premalignancy. J. Clin. Oncol. 27, 599–604 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Lippman.

Ethics declarations

Competing interests

John V. Heymach, Edward S. Kim and Scott M. Lippman have served on the advisory board of Genentech and OSI.

Related links

Related links

DATABASES

OMIM

Barrett's oesophagus

breast cancer

colon cancer

FAP

gastric cancer

hereditary leiomyomatosis

Kaposi's sarcoma

lung cancer

prostate cancer

von Hippel–Lindau

Glossary

Carcinogenesis

The process of molecular, physiological and histological changes by which normal cells are transformed into cancerous cells.

Intraepithelial neoplasia

(IEN). Lesions confined to the most superficial layer of an organ cavity and/or surface (that is, the epithelial layer). IENs are frequently precursors to invasive cancer.

Epigenetic alterations

Stable gene expression pattern changes that are transmitted from parent to daughter cells, largely irreversible, and different from genetic expression patterns. Epigenetic phenomena are important in determining cellular physiology and pathology. Examples of epigenetic changes are DNA methylation and acetylation.

Angiogenesis

The growth of new blood vessels.

Cyclooxygenase 2

(COX2). The enzyme that is responsible for the synthesis of prostanoids (that is, prostaglandins, prostacyclin and thromboxane) from the precursor arachidonic acid, and that thus has a major role in inflammation. COX2 is generally upregulated during inflammation, whereas its counterpart, COX1, is constitutively expressed in most normal tissues.

Selective oestrogen receptor modulators

(SERMs). A class of drugs that can function as agonists or antagonists of the oestrogen receptor, depending on the tissue type.

Molecular targets

Molecules involved in the development of intraepithelial neoplasia and/or cancer that can (or potentially can) be targeted by pharmacological agents designed to prevent or treat cancer. Examples include tyrosine kinase receptors (including epidermal growth factor, insulin-like growth factor 1, platelet-derived growth factor), other receptors (for example, oestrogen), enzymes (for example, cyclooxygenase 2 and 5α-reductase) and other proteins (for example, vascular endothelial growth factor).

Personalized cancer prevention

The selection of preventive medicine for a patient who is at high risk of cancer, is most likely to benefit from the selected agent or agent combination, and least likely to experience adverse effects of the intervention.

Single nucleotide polymorphism

Variation of a single nucleotide in the DNA sequence, leading to a difference between paired chromosomes in an individual.

Loss of heterozygosity

(LOH). Loss of the normal function of one allele of a gene, when the other allele is already inactivated. In carcinogenesis, LOH frequently occurs in tumour suppressor genes, leading to an interruption of the function of that gene and an increased risk for cancer development.

Phase III trial

Randomized, controlled clinical study, generally conducted on large groups of patients, designed to definitively evaluate the efficacy of a given therapeutic strategy.

Familial adenomatous polyposis

A rare inherited disease associated with a mutation in the APC gene that is clinically characterized by numerous polyps in the colon. If untreated, transformation of the polyps into colon cancer is inevitable.

Surrogate end point

A measure of the effect of a treatment (for example, an increase in the expression levels of a certain protein) that may correlate with a real clinical end point (for example, cancer development).

Rights and permissions

Reprints and permissions

About this article

Cite this article

William, W., Heymach, J., Kim, E. et al. Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 8, 213–225 (2009). https://doi.org/10.1038/nrd2663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2663

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing