Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening

Key Points

  • During the early phase of drug discovery, in silico receptor-based and ligand-based strategies are used to find novel hits. Pseudoreceptor models link the concepts of both strategies for utilization in virtual screening and quantitative structure–activity relationship modelling.

  • Essentially, pseudoreceptor models can provide an entry point for receptor-based approaches for cases in which high-resolution structures of targets are lacking.

  • The methodology of pseudoreceptor model generation involves three fundamental tasks. First, the presumed key interaction sites (anchor points) of the ligand–receptor complex are defined; second, the core pseudoreceptor model is assembled around these hypotheses; and last, model coordinates are optimized to gain more accurate calculated binding energies in validation studies.

  • Molecular alignment of selected known actives represents the foundation of pseudoreceptor generation. Various approaches can be used to ensure that an optimized model is generated, and these include the use of reference compounds for which their binding mode is experimentally supported; use of key interacting groups; and use of ligands with high-affinity.

  • Models can be generated and refined using various methods, and six main categories are discussed: grid-based, isosurface-based, partition-based, atom-based, peptide-based and fragment-based. Various case studies of pseudoreceptor modelling for hit and lead finding are described, including a pseudoreceptor model of sweet-tasting molecules, de novo design of non-steroid oestrogen receptor antagonists and investigation of ligand binding to a cocaine receptor.

  • Although pseudoreceptor models can be very useful, it is important to realize their limitations. Most importantly, they do not represent real macromolecular binding sites, but only a model that is generated from known ligands. Nevertheless, as long as these limitations are kept in mind, they are an important tool in the drug discovery process.

Abstract

Rational drug design is based on explicit or implicit structure–activity relationship models. Typically, receptor-based or ligand-based strategies are pursued, depending on the information available about known ligands and the receptor structure. Pseudoreceptor models combine the advantages of these two strategies and represent a unifying concept for both receptor mapping and ligand matching. They can provide an entry point for structure-based modelling in drug discovery projects that lack a high-resolution structure of the target. Here, we review the field of pseudoreceptor modelling techniques along with recent hit and lead finding applications, and critically discuss prerequisites, advantages and limitations of the various approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aim of pseudoreceptor modelling.
Figure 2: Workflow of pseudoreceptor model generation.
Figure 3: Pseudoreceptor construction routes.
Figure 4: Pseudoreceptor optimization with a genetic algorithm.
Figure 5: Shape complementarity of ligands and their receptor binding pockets.
Figure 6: Two case studies comparing ligand binding to a pseudoreceptor and their true biological receptor.
Figure 7: Differing ligand alignments.

Similar content being viewed by others

References

  1. Schneider, G. & Baringhaus, K. H. Molecular Design: Concepts and Applications. 1–277 (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  2. Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11, 580–594 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Congreve, M., Murray, C. W., Blundell, T. L. Structural biology and drug discovery. Drug Discov. Today 10, 895–907 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Carr, R. A., Congreve, M., Murray, C. W. & Rees, D. C. Fragment-based lead discovery: leads by design. Drug Discov. Today 10, 987–992 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bleicher, K. H., Bohm, H. J., Muller, K. & Alanine, A. I. Hit and lead generation: beyond high-throughput screening. Nature Rev. Drug Discov. 2, 369–378 (2003).

    Article  CAS  Google Scholar 

  6. Alber, J. S. et al. An integrated approach to fragment-based lead generation: philosophy, strategy and case studies from AstraZeneca's drug discovery programmes. Curr. Top. Med. Chem. 7, 1600–1629 (2007).

    Article  Google Scholar 

  7. Koehn, F. E. High impact technologies for natural products screening. Prog. Drug Res. 65, 175, 177–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Schneider, G., Neidhart, W., Giller, T. & Schmid, G. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew. Chemie Int. Ed. 38, 2894–2896 (1999).

    Article  CAS  Google Scholar 

  9. Schneider, G., Schneider, P. & Renner, S. Scaffold-hopping: how far can you jump? QSAR Comb. Sci. 25, 1162–1171 (2006).

    Article  CAS  Google Scholar 

  10. Brown, N. & Jacoby, E. On scaffolds and hopping in medicinal chemistry. Mini Rev. Med. Chem. 6, 1217–1229 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, H. Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. Drug Discov. Today 12, 149–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Carley, D. W. Drug repurposing: identify, develop and commercialize new uses for existing or abandoned drugs. Part I. IDrugs 8, 306–309 (2005). A comprehensive description of the repurposing principle.

    PubMed  Google Scholar 

  13. Carley, D. W. Drug repurposing: identify, develop and commercialize new uses for existing or abandoned drugs. Part II. IDrugs 8, 310–313 (2005).

    PubMed  Google Scholar 

  14. Bisson, W. H. et al. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc. Natl Acad. Sci. USA 104, 11927–11932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohan, V., Gibbs, A. C., Cummings, M. D., Jaeger, E. P. & DesJarlais, R. L. Docking: successes and challenges. Curr. Pharm. Des. 11, 323–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Rester, U. Dock around the clock — current status of small molecule docking and scoring. QSAR Comb. Sci. 25, 605–615 (2006).

    Article  CAS  Google Scholar 

  17. Kato, Y., Itai, A. & Iitaka, Y. A novel method for superimposing molecules and receptor mapping. Tetrahedron 43, 5229–5236 (1987).

    Article  CAS  Google Scholar 

  18. Kato, Y., Inoue, A., Yamada, M., Tomioka, N. & Itai, A. Automatic superposition of drug molecules based on their common receptor site. J. Comput. Aided Mol. Des. 6, 475–486 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein, F. C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Berman, H. M. et al. The Protein Data Bank. Nucl. Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scapin, G. Structural biology and drug discovery. Curr. Pharm. Des. 12, 2087–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lacapere, J. J., Pebay-Peyroula, E., Neumann, J. M. & Etchebest, C. Determining membrane protein structures: still a challenge! Trends Biochem. Sci. 32, 259–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Granseth, E., Seppala, S., Rapp, M., Daley, D. O. & Von Heijne, G. Membrane protein structural biology — how far can the bugs take us? Mol. Membr. Biol. 24, 329–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Orry, A. J., Abagyan, R. A. & Cavasotto, C. N. Structure-based development of target-specific compound libraries. Drug Discov. Today 11, 261–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Costanzi, S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the β2-adrenergic receptor. J. Med. Chem. 51, 2907–2914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tropsha, A. & Golbraikh, A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des. 13, 3494–3504 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Lill, M. A. Multi-dimensional QSAR in drug discovery. Drug Discov. Today 12, 1013–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Cramer, R. D., Patterson, D. E. & Bunce, J. D. Comparative molecuar field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Baroni, M. et al. Generating Optimal Linear PLS Estimations (GOLPE): an advanced chemometric tool for handling 3D-QSAR problems. Quant. Struct. Act. Relat. 12, 9–20 (1993).

    Article  CAS  Google Scholar 

  30. Klebe, G., Abraham, U. & Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological potency. J. Med. Chem. 37, 4130–4146 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Kubinyi, H., Hamprecht, F. A. & Mietzner, T. Three-dimensional quantitative similarity–activity relationships (3D QsiAR) from SEAL similarity matrices. J. Med. Chem. 41, 2553–2564 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Momany, F., Pitha, R., Klimkovsky, V. J. & Venkatachalam, C. M. in Expert Systems and Applications in Chemistry (eds Hohne, B. A. & Pierce, T. H.) 82–91 (American Chemical Society, Washington DC, 1989).

    Book  Google Scholar 

  33. Holtje, H. D. & Anzali, S. Molecular modelling studies on the digitalis binding site of the Na+/K+-ATPase. Pharmazie 47, 691–697 (1992).

    CAS  PubMed  Google Scholar 

  34. Davis, A. M., Gensmantel, N. P., Johansson, E. & Marriott, D. P. The use of the GRID proram in the 3-D QSAR analysis of a series of calcium-channel agonists. J. Med. Chem. 37, 963–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Snyder, J. P., Rao, S. N., Koehler, K. F. & Vedani, A. in 3D QSAR in Drug Design: Theory, Methods and Applications (ed. Kubinyi, H.) 336–354 (Leiden/Escom, Dordrecht, 1993).

    Google Scholar 

  36. Schleifer, K. J. in Pharmacophores and Pharmacophore Searches (eds Langer, T. & Hoffmann, R. D.) 117–130 (Wiley-VCH, Weinheim, 2006). A succinct overview of peptide-based pseudoreceptor applications.

    Book  Google Scholar 

  37. Gurrath, M., Muller, G. & Holtje, H. D. in 3D QSAR in Drug Design: Recent Advances (eds Kubinyi, H., Folkers, G. & Martin, Y. C.) 135–157 (Kluwers/Escom, Dordrecht, 1998).

    Google Scholar 

  38. Vedani, A., Zbinden, P. & Snyder, J. P. Pseudo-receptor modeling: a new concept for the three-dimensional construction of receptor binding sites. J. Recept Res. 13, 163–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Vedani, A., Zbinden, P., Snyder, J. P. & Greenidge, P. A. Pseudoreceptor modeling: the construction of three-dimensional receptor surrogates. J. Am. Chem. Soc. 117, 4987–4994 (1995).

    Article  CAS  Google Scholar 

  40. Zbinden, P., Dobler, M., Folkers, G. & Vedani, A. PrGen: pseudoreceptor modeling using receptor-mediated ligand alignment and pharmacophore equilibration. Quant. Struct. Act. Relat. 17, 122–130 (1998).

    Article  CAS  Google Scholar 

  41. Galvez-Ruano, E., Iriepa-Canalda, I., Morreale, A. & Lipkowitz, K. B. A computational model of the nicotinic acetylcholine binding site. J. Comput. Aided Mol. Des. 13, 57–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Frecer, V., Ho, B. & Ding, J. L. Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action. Eur. J. Biochem. 267, 837–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Botta, M., Corelli, F., Manetti, F. & Tafi, A. Molecular modeling as a powerful technique for understanding small-large molecules interactions. Farmaco 57, 153–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, K. H. Outliers in SAR and QSAR: is unusual binding mode a possible source of outliers? J. Comput. Aided Mol. Des. 21, 63–86 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. Kim, K. H. Outliers in SAR and QSAR: 2. Is a flexible binding site a possible source of outliers? J. Comput. Aided Mol. Des. 21, 421–435 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Evers, A., Hessler, G., Matter, H. & Klabunde, T. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J. Med. Chem. 48, 5448–5465 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. & Dunn, D. A. in Computer-Assisted Drug Design (eds Olson, E. C. & Christoferson, R. E.) 205–226 (American Chemical Society, Washington DC, 1979). Pioneering work that represents the basic principles of modern modelling software packages.

    Book  Google Scholar 

  48. Marshall, G. R. in 3D QSAR in Drug Design: Theory Methods and Applications (ed. Kubinyi, H) 80–116 (Leiden/Escom, Dordrecht, 1993).

    Google Scholar 

  49. Pei, J. et al. Improving the quality of 3D-QSAR by using flexible-ligand receptor models. J. Chem. Inf. Model 45, 1920–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Crippen, G. M. Validation of EGSITE2, a mixed integer program for deducing objective site models from experimental data. J. Med. Chem. 40, 3161–3172 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Walters, D. E. & Hinds, R. M. Genetically evolved receptor models: a computational approach to construction of receptor models. J. Med. Chem. 37, 2527–2536 (1994). Presentation of the first atom-based pseudoreceptor algorithm, including a genetic optimization algorithm.

    Article  CAS  PubMed  Google Scholar 

  52. Chen, H., Zhou, J. & Xie, G. PARM: a genetic evolved algorithm to predict bioactivity. J. Chem. Inf. Comput. Sci. 38, 243–250 (1998).

    Article  CAS  Google Scholar 

  53. Pei, J. & Zhou, J. Flexible atom receptor model. Acta Chim. Sin. 60, 973–979 (2002).

    CAS  Google Scholar 

  54. Vedani, A. & Zbinden, P. Quasi-atomistic receptor modeling. A bridge between 3D QSAR and receptor fitting. Pharm. Acta Helv. 73, 11–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Lill, M. A., Vedani, A. & Dobler, M. Raptor: combining dual-shell representation, induced-fit simulation, and hydrophobicity scoring in receptor modeling: application toward the simulation of structurally diverse ligand sets. J. Med. Chem. 47, 6174–6186 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Andrews, P. R. et al. Morpheus: a conformation–activity relationships and receptor modeling package. J. Mol. Graph. 7, 138–145 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Doweyko, A. M. The hypothetical active site lattice. An approach to modeling active sites from data on inhibitor molecules. J. Med. Chem. 31, 1396–1406 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Delibasis, K. S., Matsopoulos, G. K., Mouravliansky, N. A. & Nikita, K. S. A novel and efficient implementation of the marching cubes algorithm. Comput. Med. Imaging Graph. 25, 343–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Wyvill, G., McPheeters, C. & Wyvill, B. Data structures for soft objects. Vis. Comp. 2, 227–234 (1986).

    Article  Google Scholar 

  60. Hahn, M. Receptor surface models. 1. Definition and construction. J. Med. Chem. 38, 2080–2090 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Hahn, M. & Rogers, D. Receptor surface models. 2. Application to quantitative structure–activity relationship studies. J. Med. Chem. 38, 2091–2102 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Hahn, M. & Rogers, D. in 3D QSAR in Drug Design: Recent Advances (eds Kubinyi, H., Folkers, G. & Martin, Y. C.) 117–133 (Kluwer/Escom, Dordrecht, 1998).

    Google Scholar 

  63. Heiden, W., Schlenkrich, M. & Brickmann, J. Triangulation algorithms for the representation of molecular surface properties. J. Comput. Aided Mol. Des. 4, 225–269 (1990).

    Article  Google Scholar 

  64. Fischer, E. Einfluss der configuration auf die wirkung der enzyme. Ber. Deutsch Chem. Ges. 27, 2985–2993 (1894) (in German).

    Article  CAS  Google Scholar 

  65. Proschak, E., Rupp, M., Derksen, S. & Schneider, G. Shapelets: possibilities and limitations of shape-based virtual screening. J. Comput. Chem. 29, 108–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Kirchmair, J. et al. Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. J. Chem. Inf. Model. 47, 2182–2196 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Crippen, G. M. Voronoi binding site models. NIDA Res. Monogr. 112, 7–20 (1991).

    CAS  PubMed  Google Scholar 

  68. Bradley, M., Richardson, W. & Crippen, G. M. Deducing molecular similarity using Voronoi binding sites. J. Chem. Inf. Comput. Sci. 33, 750–755 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Todorov, N. P. & Dean, P. M. Evaluation of a method for controlling molecular scaffolds diversity in de novo ligand design. J. Comput. Aided Mol. Des. 11, 175–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Todorov, N. P. & Dean, P. M. A branch-and-bound method for optimal atom-type assignment in de novo ligand design. J. Comput. Aided Mol. Des. 12, 335–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Chae, C. H., Yoo, S. E. & Shin, W. Novel receptor surface approach for 3D-QSAR: The weighted probe interaction energy method. J. Chem. Inf. Comput. Sci. 44, 1774–1787 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Ponder, J. W. & Richards, F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791 (1987).

    Article  CAS  PubMed  Google Scholar 

  73. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  CAS  Google Scholar 

  74. Mills, J. E. J. & Dean, P. M. Three-dimensional hydrogen-bond geometry and probability information from crystal survey. J. Comput. Aided Mol. Des. 10, 607–622 (1996). An all-embracing crystal survey of hydrogen-bond geometries in protein–ligand complexes.

    Article  PubMed  Google Scholar 

  75. Mills, J. E., Perkins, T. D. J. & Dean, P. M. An automated method for predicting the positions of hydrogen-bonding atoms in binding sites. J. Comput. Aided Mol. Des. 11, 229–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Mills, J. E., de Esch, I. J., Perkins, T. D. & Dean, P. M. SLATE: a method for the superposition of flexible ligands. J. Comput. Aided Mol. Des. 15, 81–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. De Esch, I. J. et al. Development of a pharmacophore model for histamine H3 receptor antagonists, using the newly developed molecular modeling program SLATE. J. Med. Chem. 44, 1666–1674 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Bohm, H. J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 6, 61–78 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Bohm, H. J. LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J. Comput. Aided Mol. Des. 6, 593–606 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Schneider, G. & Fechner, U. Computer-based de novo design of drug-like molecules. Nature Rev. Drug Discov. 4, 649–663 (2005).

    Article  CAS  Google Scholar 

  81. McMartin, C. & Bohacek, R. J. QXP: powerful, rapid computer algorithms for structure-based design. J. Comput. Aided Mol. Des. 11, 333–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, W. & Gilson, M. K. Concept: de novo design of synthetic receptors for targeted ligands. J. Chem. Inf. Model. 47, 425–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Hay, B. P. & Firman, T. K. Hostdesigner: a program for the de novo structure-based design of molecular receptors with binding sites that complement metal ion guests. Inorg. Chem. 41, 5502–5512 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Norel, R., Wolfson, H. J. & Nussinov, R. Small molecule recognition: solid angles surface representation and molecular shape complementarity. Comb. Chem. High Throughput Screen. 2, 223–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Zauhar, R. J., Moyna, G., Tian, L., Li, Z. & Welsh, W. J. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem. 46, 5674–5690 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Blier, P. & Montigny, C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 15, 220–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Broekkamp, C. L., Leysen, D., Peeters, B. W. & Pinder, R. M. Prospects for improved antidepressants. J. Med. Chem. 38, 4615–4633 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Guccione, S., Doveyko, A. M., Chen, H., Barretta, G. U. & Balzano, F. 3D-QSAR using 'multiconformer' alignment: the use of HASL in the analysis of 5-HT1A thienopyrimidinone ligands. J. Comput. Aided Mol. Des. 14, 647–657 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Golbraikh, A. & Tropsha, A. Beware of q2! J. Mol. Graph. Model 20, 269–276 (2002). Fundamental work indicating obstacles in model-validation studies.

    Article  CAS  PubMed  Google Scholar 

  90. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Abraham, W. M. et al. Alpha 4-integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J. Clin. Invest. 93, 776–787 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sagara, H. et al. A monoclonal antibody against very late activation antigen-4 inhibits eosinophil accumulation and late asthmatic response in guinea pig model of asthma. Int. Arch. Allergy Immunol. 112, 287–294 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, X. D., Karin, N., Tisch, R., Steinman, L. & McDevitt, H. O. Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc. Natl Acad. Sci. USA 90, 10494–10498 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burkly, L. C., Jakubowski, A. & Hattori, M. Protection against adoptive transfer of autoimmune diabetes mediated through very late antigen-4 integrin. Diabetes 43, 529–534 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Lin, K. C. & Castro, A. C. Very late antigen 4 (VLA4) antagonists as antiinflamatory agensts. Curr. Opin. Chem. Biol. 2, 453–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Macchiarulo, A. et al. Insights into phenylalanine derivatives recognition of VLA-4 integrin: from a pharmacophoric study to 3D-QSAR and molecular docking analyses. J. Chem. Inf. Comput. Sci. 44, 1829–1839 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Carrol, F. L., Lewin, A. H., Boja, J. W. & Kuhar, M. J. Cocaine receptor: Biochemical characterization and structure–activity relationships of cocaine analogues at the dopamine transporter. J. Med. Chem. 35, 969–981 (1992).

    Article  Google Scholar 

  98. Srivastava, S. & Crippen, G. M. Analysis of cocaine receptor site ligand binding by three-dimensional Voronoi site modeling approach. J. Med. Chem. 36, 3572–3579 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Lloyd, D. G., Buenemann, C. L., Todorov, N. P., Manallack, D. T. & Dean, P. M. Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J. Med. Chem. 47, 493–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Vedani, A., Briem, H., Dobler, M., Dollinger, K. & McMasters, D. R. Multiple conformation and protonationstate representation in 4D-QSAR: the neurokinin-1 receptor system. J. Med. Chem. 43, 4416–4427 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Vedani, A., McMasters, D. R. & Dobler, M. Multiconformational ligand represenation in 4D-QSAR: reducing the bias associated with ligand aligment. Quant. Struct. Act. Relat. 19, 149–161 (2000).

    Article  CAS  Google Scholar 

  102. Vedani, A. & Dobler, M. 5D-QSAR: the key for simulating induced fit? J. Med. Chem. 45, 2139–2149 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Vedani, A. & Dobler, M. Multidimensional QSAR: moving from three- to five dimensional concepts. Quant. Struct. Act. Relat. 21, 382–390 (2002).

    Article  CAS  Google Scholar 

  104. Vedani, A. et al. Novel ligands for the chemokine receptor-3 (CCR3): a receptor-modeling study based on 5D-QSAR. J. Med. Chem. 48, 1515–1527 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Vedani, A., Dobler, M. & Lill, M. A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J. Med. Chem. 48, 3700–3703 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, H. et al. Inhibitory mode of 1,5-diarylpyrazole derivatives against cyclooxygenase-2 cyclooxygenase-1: molecular docking and 3D-QSAR analyses. J. Med. Chem. 45, 4816–4827 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Jansen, J. M. et al. Molecular design using the minireceptor concept. J. Chem. Inf. Comput. Sci. 37, 812–818 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Bassoli, A., Drew, M. G., Merlini, L. & Morini, G. General pseudoreceptor model for sweet compounds: a semiquantitative prediction of binding affinity for sweet-tasting molecules. J. Med. Chem. 45, 4402–4409 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Temussi, P. The history of sweet taste: not exactly a piece of cake. J. Mol. Recognit. 19, 188–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Temussi, P. The sweet taste receptor: a single receptor with multiple sites and modes of interaction. Adv. Food Nutr. Res. 53, 199–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Bohacek, R., Boosalis, M. S., McMartin, C., Faller, D. V. & Perrine, S. P. Identification of novel small-molecule inducers of fetal hemoglobin using pharmacophore and 'PSEUDO' receptor models. Chem. Biol. Drug Des. 67, 318–328 (2006). Pioneering prospective approach of the pseudoreceptor concept for finding hits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Khedkar, S. A., Malde, A. K., Coutinho, E. C. & Srivastava, S. Pharmacophore modeling in drug discovery and development: an overview. Med. Chem. 3, 187–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Wolber, G., Seidel, T., Bendix, F. & Langer, T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today 13, 23–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Golbraikh, A. et al. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des. 17, 241–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Baumann, K. & Stiefl, N. Validation tools for variable subset regression. J. Comput. Aided Mol. Des. 18, 549–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701 (2007).

    Article  CAS  Google Scholar 

  117. Selinsky, B. S., Gupta, K., Sharkey, C. T. & Loll, P. J. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 40, 5172–5180 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Katz, B. A. Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH. J. Mol. Biol. 274, 776–800 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Sierra, M. L. et al. Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPAR agonists. 1. Discovery of a novel series of potent HDLc raising agents. J. Med. Chem. 50, 685–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cowan-Jacob, S. W. et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr. 63, 80–93 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N. Todoroff is thanked for technical support. This work was supported by the Beilstein Institute for the Advancement of Chemical Sciences (Beilstein Institut zur Förderung der Chemischen Wissenschaften), Frankfurt am Main, Germany.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

RSCB Protein Data Bank

1eqg

1eqh

2hyy

2p54

2rtf

FURTHER INFORMATION

Laboratory of Gisbert Schneider

Glossary

Fragment-based lead discovery

The identification of bioactive substances by assembling small-molecule fragments. Often, the fragments themselves are building blocks of known drugs.

Molecular similarity searching

These are techniques for searching compound databases with the aim of retrieving molecules that have a similar chemical structure to a query compound. Typically, similarity is expressed on the basis of molecular descriptors; for example substructure fingerprints or pharmacophoric features.

Pharmacophore

The spatial arrangement of atoms or groups in a molecule known or predicted to be responsible for specific biological activity.

Scaffold-hopping

The identification of isofunctional but structurally different chemotypes.

Repurposing

The use of known leads and approved drugs for new indications. This includes the development of known drugs to preferably interact with so-called off-targets.

Quantitative structure–activity relationship

(QSAR). Mathematical relationships that link chemical structure and pharmacological activity in a quantitative manner for a series of compounds. Methods that can be used in QSAR include various regression and pattern-recognition techniques.

Atomistic

A molecular design concept or molecular representation that considers single atoms.

Energy minimization

The optimization of molecule conformation towards idealized geometries by help of an energy function.

Bounded functions

Mathematical functions with a range that has an upper bound and a lower bound.

Voronoi patches

A set of polygons (polytopes) that ascertain an optimal tessellation (tiling) of the encapsulated space.

Rotamer library

A collection of residue conformations, each representing an optimum according to an energy function.

Monte Carlo conformational search

A technique for random sampling of molecular conformations, which is often combined with the Metropolis criterion for whether or not to accept a conformation.

Leave-one-out cross-validation

A statistical method to evaluate the performance of prediction tools. A single observation from the original sample is used for validation, and all remaining observations are used as training data. This is repeated such that each observation in the sample is used once in the validation step.

Y-scrambling

A statistical test of prediction tools, in which models are fitted for randomly reordered property/activity values and compared with the model obtained for the actual property/activity values.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanrikulu, Y., Schneider, G. Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening. Nat Rev Drug Discov 7, 667–677 (2008). https://doi.org/10.1038/nrd2615

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing