Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Perspectives on NMR in drug discovery: a technique comes of age

Abstract

In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of applications of NMR in drug discovery.

Similar content being viewed by others

References

  1. Pellecchia, M., Sem, D. S. & Wuthrich, K. NMR in drug discovery. Nature Rev. Drug Discov. 1, 211–219 (2002).

    Article  CAS  Google Scholar 

  2. Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angewandte Chemie International Edition 38, 1784–1788 (1999).

    Google Scholar 

  3. Meyer, B. et al. Saturation transfer difference NMR spectroscopy for identifying ligand epitopes and binding specificities. Ernst Schering Res. Found. Workshop, 149–167 (2004).

  4. Hajduk, P. J., Olejniczak, E. T. & Fesik, S. W. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J. Am. Chem. Soc. 119, 12257–12261 (1997).

    Article  CAS  Google Scholar 

  5. Jahnke, W. & Erlanson, D. A. (eds) Fragment-based Approaches in Drug Discovery. (Wiley-VCH, 2006).

    Book  Google Scholar 

  6. Hajduk, P. J. & Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nature Rev. Drug Discov. 6, 211–219 (2007).

    Article  CAS  Google Scholar 

  7. Klages, J., Coles, M. & Kessler, H. in NMR-Based Screening in Exploiting Chemical Diversity for Drug Discovery (eds Bartlett, P. A. & Etzeroth, M.) 263–290 (RSC Publishing, 2006).

    Google Scholar 

  8. Hajduk, P. J. & Burns, D. J. Integration of NMR and high-throughput screening. Comb. Chem. High Throughput Screen. 5, 613–621 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Huth, J. R. et al. ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J. Am. Chem. Soc. 127, 217–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Dalvit, C., Caronni, D., Mongelli, N., Veronesi, M. & Vulpetti, A. NMR-based quality control approach for the identification of false positives and false negatives in high throughput screening. Curr. Drug Discov. Technol. 3, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Pellecchia, M. et al. NMR-based structural characterization of large protein-ligand interactions. J. Biomol. NMR 22, 165–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Pellecchia, M. et al. NMR-based techniques in the hit identification and optimisation processes. Expert Opin. Ther. Targets 8, 597–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mayer, M. & Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Leone, M., Freeze, H. H., Chan, C. S. & Pellecchia, M. The Nuclear Overhauser Effect in the lead identification process. Curr. Drug Discov. Technol. 3, 91–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Luy, B., Frank, A. & Kessler, H. Conformational analysis of drugs by nuclear magnetic resonance spectroscopy in Methods and Principles in Medicinal Chemistry (eds Mannhold, R., Kubinyi, H. & Volkers G.) 207–254 (2008).

    Google Scholar 

  16. Dalvit, C. et al. A general NMR method for rapid, efficient, and reliable biochemical screening. J. Am. Chem. Soc. 125, 14620–14625 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Dalvit, C., Ardini, E., Fogliatto, G. P., Mongelli, N. & Veronesi, M. Reliable high-throughput functional screening with 3-FABS. Drug Disc. Today 9, 595–602 (2004).

    Article  CAS  Google Scholar 

  18. Manzenrieder, F., Frank, A. O. & Kessler, H. Phosphorus NMR spectroscopy as a versatile tool for compound library screening. Angewandte Chemie (International ed.) 47, 2608–2611 (2008).

    Google Scholar 

  19. Becattini, B. & Pellecchia, M. SAR by ILOEs: an NMR-based approach to reverse chemical genetics. Chemistry (Weinheim an der Bergstrasse, Germany) 12, 2658–2662 (2006).

    CAS  Google Scholar 

  20. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Jahnke, W. et al. Second-site NMR screening with a spin-labeled first ligand. J. Am. Chem. Soc. 122, 7394–7395 (2000).

    Article  CAS  Google Scholar 

  22. Becattini, B. et al. Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc. Natl Acad. Sci. USA 103, 12602–12606 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hajduk, P. J., Bures, M., Praestgaard, J. & Fesik, S. W. Privileged molecules for protein binding identified from NMR-based screening. J. Med. Chem. 43, 3443–3447 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Kuntz, I. D., Chen, K., Sharp, K. A. & Kollman, P. A. The maximal affinity of ligands. Proc. Natl Acad. Sci. USA 96, 9997–10002 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Disc. Today 9, 430–431 (2004).

    Article  Google Scholar 

  26. Cele, A. Z. & Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Disc. Today 10, 464–469 (2005).

    Article  Google Scholar 

  27. Hajduk, P. J. Fragment-based drug design: how big is too big? J. Med. Chem. 49, 6972–6976 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hajduk, P. J., Huth, J. R. & Fesik, S. W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 48, 2518–2525 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Szczepankiewicz, B. G. et al. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc. 125, 4087–4096 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Mayer, M. & James, T. L. NMR-based characterization of phenothiazines as a RNA binding scaffold. J. Am. Chem. Soc. 126, 4453–4460 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Koglin, A. et al. Combination of cell-free expression and NMR spectroscopy as a new approach for structural investigation of membrane proteins. Magn. Reson. Chem. 44, S17–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Selenko, P., Serber, Z., Gadea, B., Ruderman, J. & Wagner, G. Quantitative NMR analysis of the protein G. B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc. Natl Acad. Sci. USA 103, 11904–11909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reckel, S., Lohr, F. & Dotsch, V. In-cell NMR spectroscopy. Chembiochem 6, 1601–1606 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bertini, I. et al. Combining in silico tools and NMR data to validate protein-ligand structural models: application to matrix metalloproteinases. J. Med. Chem. 48, 7544–7559 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Bertini, I. et al. Exploring the subtleties of drug-receptor interactions: the case of matrix metalloproteinases. J. Am. Chem. Soc. 129, 2466–2475 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Hajduk, P. J. et al. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J. Am. Chem. Soc. 126, 2390–2398 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, B., Westerhoff, L. M. & Merz, K. M. Jr. A critical assessment of the performance of protein-ligand scoring functions based on NMR chemical shift perturbations. J. Med. Chem. 50, 5128–5134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCoy, M. A. & Wyss, D. F. Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J. Am. Chem. Soc. 124, 11758–11763 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Zech, S. G., Olejniczak, E., Hajduk, P., Mack, J. & McDermott, A. E. Characterization of protein-ligand interactions by high-resolution solid-state NMR spectroscopy. J. Am. Chem. Soc. 126, 13948–13953 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bertini, I. et al. Conformational variability of matrix metalloproteinases: beyond a single 3D structure. Proc. Natl Acad. Sci. USA 102, 5334–5339 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vogtherr, M. et al. NMR characterization of kinase p38 dynamics in free and ligand-bound forms. Angewandte Chemie (International ed 45, 993–997 (2006).

    Article  CAS  Google Scholar 

  42. Fernandez, C. & Wuthrich, K. NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 555, 144–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Hong, M. Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 14, 1731–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Luca, S., Heise, H. & Baldus, M. High-resolution solid-state NMR applied to polypeptides and membrane proteins. Acc. Chem. Res. 36, 858–865 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Sanders, C. R. & Sonnichsen, F. Solution NMR of membrane proteins: practice and challenges. Magn. Reson. Chem. 44, S24–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Luca, S., Heise, H., Lange, A. & Baldus, M. Investigation of ligand-receptor systems by high-resolution solid-state NMR: recent progress and perspectives. Arch. Pharm. (Weinheim) 338, 217–228 (2005).

    Article  CAS  Google Scholar 

  47. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Castellani, F., van Rossum, B. J., Diehl, A., Rehbein, K. & Oschkinat, H. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42, 11476–11483 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Werner, K. et al. Combined solid state and solution NMR studies of alpha, epsilon-15N labeled bovine rhodopsin. J. Biomol. NMR 37, 303–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shimokhina, N., Bronowska, A. & Homans, S. W. Contribution of ligand desolvation to binding thermodynamics in a ligand-protein interaction. Angewandte Chemie (International ed.) 45, 6374–6376 (2006).

    Article  CAS  Google Scholar 

  51. Homans, S. W. Water, water everywhere — except where it matters? Drug Disc. Today 12, 534–539 (2007).

    Article  CAS  Google Scholar 

  52. Valler, M. J. & Green, D. Diversity screening versus focussed screening in drug discovery. Drug Disc. Today 5, 286–293 (2000).

    Article  CAS  Google Scholar 

  53. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lipinski, C. A. Chris Lipinski discusses life and chemistry after the Rule of Five. Drug Disc. Today 8, 12–16 (2003).

    Article  Google Scholar 

  55. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Carr, R. A., Congreve, M., Murray, C. W. & Rees, D. C. Fragment-based lead discovery: leads by design. Drug Disc. Today 10, 987–992 (2005).

    Article  CAS  Google Scholar 

  58. Congreve, M., Carr, R., Murray, C. & Jhoti, H. A 'rule of three' for fragment-based lead discovery? Drug Disc. Today 8, 876–877 (2003).

    Article  Google Scholar 

  59. Erlanson, D. A. & Hansen, S. K. Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly. Curr. Opin. Chem. Biol. 8, 399–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Erlanson, D. A., McDowell, R. S. & O'Brien, T. Fragment-based drug discovery. J. Med. Chem. 47, 3463–3482 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Erlanson, D. A., Wells, J. A. & Braisted, A. C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33, 199–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Gill, A., Cleasby, A. & Jhoti, H. The discovery of novel protein kinase inhibitors by using fragment-based high-throughput x-ray crystallography. Chembiochem 6, 506–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Hartshorn, M. J. et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 48, 403–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Moore, W. R., Jr. Maximizing discovery efficiency with a computationally driven fragment approach. Curr. Opin Drug Discov. Devel. 8, 355–364 (2005).

    CAS  PubMed  Google Scholar 

  65. Rees, D. C., Congreve, M., Murray, C. W. & Carr, R. Fragment-based lead discovery. Nature Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  Google Scholar 

  66. Schade, M. & Oschkinat, H. NMR fragment screening: tackling protein-protein interaction targets. Curr. Opin Drug Discov. Devel. 8, 365–373 (2005).

    CAS  PubMed  Google Scholar 

  67. Villar, H. O., Yan, J. & Hansen, M. R. Using NMR for ligand discovery and optimization. Curr. Opin Chem. Biol. 8, 387–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Zartler, E. R. & Shapiro, M. J. Fragonomics: fragment-based drug discovery. Curr. Opin Chem. Biol. 9, 366–370 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Langer, T. et al. NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Chembiochem 5, 1508–1516 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Allen, K. N., Lavie, A., Petsko, G. A. & Ringe, D. Design, synthesis, and characterization of a potent xylose isomerase inhibitor, D-threonohydroxamic acid, and high-resolution X-ray crystallographic structure of the enzyme-inhibitor complex. Biochemistry 34, 3742–3749 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Rutenber, E. et al. Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design. J. Biol. Chem. 268, 15343–15346 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Rutenber, E. et al. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere. Bioorg. Med. Chem. 4, 1545–1558 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Shoichet, B. K., Stroud, R. M., Santi, D. V., Kuntz, I. D. & Perry, K. M. Structure-based discovery of inhibitors of thymidylate synthase. Science 259, 1445–1450 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Verlinde, C. L. M. J. et al. in Perspectives in Medicinal Chemistry (eds Testa B., Kyburz E., Fuhrer W. & Giger R.) 135–148 (Verlag Helvetica Chimica Acta Basel, 1993).

    Google Scholar 

  76. Bertini, I. et al. Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc. Natl Acad. Sci. USA 101, 6841–6846 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hajduk, P. J. et al. High-throughput nuclear magnetic resonance-based screening. J. Med. Chem. 42, 2315–2317 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Jahnke, W. Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility. J. Biomol. NMR 39, 87–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kessler, H. & Klages, J. in Comprehensive Medicinal Chemistry II, Vol. 3. (eds Triggle, D. J. & Taylor, J.B.) 901–920 (Elsevier, Oxford, 2006).

    Google Scholar 

  80. Klages, J., Coles, M. & Kessler, H. NMR-based Screening, Vol. 12. (RSC Publishing, 2006).

    Google Scholar 

  81. Klages, J., Coles, M. & Kessler, H. NMR-based screening: a powerful tool in fragment-based drug discovery. Analyst 132, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Coles, M., Heller, M. & Kessler, H. NMR-based screening technologies. Drug Disc. Today 8, 803–810 (2003).

    Article  CAS  Google Scholar 

  83. Medek, A., Olejniczak, E. T., Meadows, R. P. & Fesik, S. W. An approach for high-throughput structure determination of proteins by NMR spectroscopy. J. Biomol. NMR 18, 229–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Hajduk, P. J., Meadows, R. P. & Fesik, S. W. NMR-based screening in drug discovery. Q. Rev. Biophys. 32, 211–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Frutos, S. et al. Disruption of the HIV-1 protease dimer with interface peptides: structural studies using NMR spectroscopy combined with [2-(13)C]-Trp selective labeling. Biopolymers 88, 164–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Salvatella, X. et al. A tetraguanidinium ligand binds to the surface of the tetramerization domain of protein P53. Angewandte Chemie (International ed.) 43, 196–198 (2004).

    Google Scholar 

  87. Mayer, M. et al. Synthesis and testing of a focused phenothiazine library for binding to HIV-1 TAR RNA. Chem. Biol. 13, 993–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Mayer, M. & James, T. L. Detecting ligand binding to a small RNA target via saturation transfer difference NMR experiments in D(2)O and H(2)O. J. Am. Chem. Soc. 124, 13376–13377 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Yan, J., Kline, A. D., Mo, H., Shapiro, M. J. & Zartler, E. R. The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J. Magn. Reson. 163, 270–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Dalvit, C. et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M. & Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 21, 349–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Jahnke, W., Rudisser, S. & Zurini, M. Spin label enhanced NMR screening. J. Am. Chem. Soc. 123, 3149–3150 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Vanwetswinkel, S. et al. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem. Biol. 12, 207–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Stebbins, J. L., Jung, D., Leone, M., Zhang, X. K. & Pellecchia, M. A structure-based approach to retinoid X receptor-α inhibition. J. Biol. Chem. 281, 16643–16648 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Fejzo, J. et al. The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem. Biol. 6, 755–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Lepre, C. A. et al. Applications of SHAPES screening in drug discovery. Comb. Chem. High Throughput Screen. 5, 583–590 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Johnson, E. C., Feher, V. A., Peng, J. W., Moore, J. M. & Williamson, J. R. Application of NMR SHAPES screening to an RNA target. J. Am. Chem. Soc. 125, 15724–15725 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Tarrago, T., Kichik, N., Segui, J. & Giralt, E. The natural product berberine is a human prolyl oligopeptidase inhibitor. ChemMedChem 2, 354–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Tarrago, T., Frutos, S., Rodriguez-Mias, R. A. & Giralt, E. Identification by 19F NMR of traditional Chinese medicinal plants possessing prolyl oligopeptidase inhibitory activity. Chembiochem 7, 827–833 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Frutos, S., Tarrago, T. & Giralt, E. A fast and robust 19F NMR-based method for finding new HIV-1 protease inhibitors. Bioorg. Med. Chem. Lett. 16, 2677–2681 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Forino, M. et al. Efficient synthetic inhibitors of anthrax lethal factor. Proc. Natl Acad. Sci. USA 102, 9499–9504 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fattorusso, R., Frutos, S., Sun, X., Sucher, N. J. & Pellecchia, M. Traditional Chinese medicines with caspase-inhibitory activity. Phytomedicine 13, 16–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Fattorusso, R., Jung, D., Crowell, K. J., Forino, M. & Pellecchia, M. Discovery of a novel class of reversible non-peptide caspase inhibitors via a structure-based approach. J. Med. Chem. 48, 1649–1656 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Dalvit, C. Ligand- and substrate-based 19F NMR screening: Principles and applications to drug discovery. Prog. Nuclear Magn. Reson. Spectrosc. 51, 243–271 (2007).

    Article  CAS  Google Scholar 

  105. Dalvit, C., Fagerness, P. E., Hadden, D. T., Sarver, R. W. & Stockman, B. J. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc. 125, 7696–7703 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Dalvit, C., Flocco, M., Veronesi, M. & Stockman, B. J. Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb. Chem. High Throughput Screen. 5, 605–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Taylor, J. D., Gilbert, P. J., Williams, M. A., Pitt, W. R. & Ladbury, J. E. Identification of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational and NMR screening and thermodynamic evaluation. Proteins 67, 981–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Price, S. W. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory. Concepts Magn. Reson. 9, 299–336 (1997).

    Article  CAS  Google Scholar 

  109. Price, S. W. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part II. Experimental aspects. Concepts Magn. Reson. 10, 197–237 (1998).

    Article  CAS  Google Scholar 

  110. Dehner, A. & Kessler, H. Diffusion NMR spectroscopy: folding and aggregation of domains in p53. Chembiochem 6, 1550–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Hajduk, P. J. et al. Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J. Am. Chem. Soc. 119, 5818–5827 (1997).

    Article  CAS  Google Scholar 

  112. Petros, A. M. et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J. Med. Chem. 49, 656–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Vazquez, J. et al. Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors. J. Med. Chem. 50, 2137–2143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Becattini, B. et al. Targeting apoptosis via chemical design: inhibition of bid-induced cell death by small organic molecules. Chem. Biol. 11, 1107–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, J. et al. A fragment-based approach for the discovery of isoform-specific p38alpha inhibitors. ACS Chem. Biol. 2, 329–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Carulla, N. et al. Molecular recycling within amyloid fibrils. Nature 436, 554–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Sanchez-Pedregal, V. M. et al. The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angewandte Chemie (International ed.) 44, 4172–4175 (2005).

    Google Scholar 

Download references

Acknowledgements

This article is based on a document drafted by I. B., C. L. and M. P., during the workshop 'Perspectives of NMR in Drug Discovery' held in Florence April 2007. Financial support by the NMR-Life Coordination Action LSHG-CT-2005-018,758, by Ente CR Firenze and by MCYT-FEDER (Bio2005-00295) is gratefully acknowledged. We thank M. Fragai and C. Lipinski for suggestions and comments. We also thank L. Slivka for careful assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Pellecchia.

Ethics declarations

Competing interests

B.M. is co-inventor of a patent that covers Saturation Transfer Difference (STD) NMR. G. S. owns more than 5% of ZoBio, a fragment-based drug discovery company.

Related links

Related links

FURTHER INFORMATION

Burnham Center for Chemical Genomics

The University of California at San Diego School of Pharmacy

The University of California at San Francisco School of Pharmacy

Burnham Institute for Medical Research, Graduate Programs in Molecular Medicine and Integrated and Applied Biosciences

Molecular Libraries Screening Centers Network initiative

NIAID's Antimicrobial Acquisition and Coordinating Facility

NCI's Developmental Therapeutics Program

Glossary

Druggability

The ability of a target to be modulated by a lead candidate that has the requisite physicochemical and absorption, distribution, metabolism and excretion properties for development as a drug candidate.

Drug-like

Sharing certain characteristics — such as size, shape and solubility in water and organic solvents — with other molecules that act as drugs.

Hit

A compound that satisfies an initial set of criteria (for example, minimum potency and solubility), but which requires elaboration or validation through further detailed analysis of performance or additional iterations to become a lead.

Hot spots

Compact, centralized regions of residues at a protein–protein interface that are crucial for the affinity of the interaction.

Lipinski's “Rule of Five”

This identifies several key properties that should be considered for small molecules that are intended to be orally administered. These properties are: molecular mass <500 Da; number of hydrogen-bond donors <5; number of hydrogen-bond acceptors <10; calculated octanol–water partition coefficient (an indication of the ability of a molecules to cross biological membranes) <5.

Relaxation rate

The terms longitudinal and transverse relaxation rates describe the rates at which nuclear magnetization returns to the equilibrium after perturbation in a non-equilibrium state.

NMR chemical shift

The chemical shift of a particular nucleus is a measure of the dependence of the resonance frequency of the nucleus on its chemical environment.

Nuclear Overhauser effect (NOE)

Change in the intensity of the NMR signal, which is caused by through-space dipole–dipole coupling. Upper distance constraints obtained from 1H–1H NOEs are used to determine the structure of biological macromolecules.

Nuclear spin-relaxation

This term describes several physical processes by which nuclear magnetization that is perturbed in a non-equilibrium state returns to equilibrium. Nuclear spin relaxation rates depend on the overall rotational correlation time of the molecule and on the number and nature of interacting spins.

Paramagnetically labelled

Nuclear spin relaxation rates are enhanced for a given nucleus when it is in close proximity to a molecule containing an electron spin (a paramagnetic molecule). Labelling a reference ligand or a target with a paramagnetic molecule can provide spatial information on the binding of a test ligand.

Pharmacophore

The steric and electronic features of a ligand that are necessary to ensure optimal interactions with a biological target structure and to trigger (or to block) its biological response.

Saturated ligand

NMR relaxation phenomena on the nuclei of a bound ligand result in the attenuation of its NMR signal intensities. When the signal is nearly completely suppressed, the ligand is said to be saturated.

Selective irradiation

Application of radio frequency energy at a particular narrow frequency. This will cause the selective saturation of the resonance lines in the spectrum of nuclei that resonate at that frequency.

Solid-state NMR

NMR measurement of the magnetic properties of nuclei in solid samples rather than of samples in solution. They are characterized by anisotropic and directionally dependent interactions that can be useful to obtain structural information.

Two-dimensional correlation spectra

NMR experiments that exploit nuclear coupling to correlate the chemical shifts of protons with other NMR-active nuclei, most often 13C or 15N.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellecchia, M., Bertini, I., Cowburn, D. et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7, 738–745 (2008). https://doi.org/10.1038/nrd2606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2606

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing