Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aliskiren: the first renin inhibitor for clinical treatment

Key Points

  • The first evidence of the existence of renin was presented by Tigerstedt over 100 years ago. However, the importance of renin and the renin–angiotensin system (RAS) in the pathogenesis of cardiovascular disease was only fully realized in the 1970s.

  • Although the preferred target in the RAS was renin, at the top of the cascade, it was another 20 years before the first inhibitors of renin were available for clinical research.

  • The discovery and development of aliskiren (Tekturna) led to it becoming the first orally active renin inhibitor to be approved for clinical use. It was granted approval for the treatment of hypertension by the US Food and Drug Administration and the European Medicines Agency in 2007.

  • Aliskiren has shown efficacy as a monotherapy. Owing to its long duration of action, aliskiren has been shown to reduce daytime and night-time blood pressure (BP), and its effects last up to 4 weeks after therapy is stopped.

  • Combining aliskiren with other antihypertensive drugs, such as low-and high-dose angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), calcium-channel blockers and diuretics, results in a greater therapeutic efficacy, without adverse drug interactions being observed.

  • Aliskiren has been shown to be safe and efficacious in various patient populations including the elderly, different racial groups, diabetic patients, obese patients and patients with reduced renal and hepatic function.

  • Aliskiren shows potential for end-organ protection on top of standard therapy with ACE inhibitors and ARBs in patients with diabetic kidney disease and in patients with heart failure. When aliskiren is added to standard therapy there is a further positive therapeutic effect on surrogate markers of kidney and heart disease.

  • Renin inhibition opens up new therapeutic potential for more complete blockade of the RAS and further decreases in cardiovascular morbidity and mortality.

Abstract

The first evidence of the existence of renin was presented over 100 years ago. However, the importance of renin and the renin–angiotensin system in the pathogenesis of cardiovascular disease was only fully realized in the 1970s. It was another 20 years before the first inhibitors of renin were available for clinical research. Here, we describe the discovery and development of aliskiren, an orally active renin inhibitor, which became the first drug in its class to receive regulatory approval. In 2007, it was approved for the treatment of hypertension by the US Food and Drug Administration and the European Medicines Agency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aliskiren: from bench to marketplace.
Figure 2: Schematic of the renin–angiotensin system (RAS).
Figure 3: Renin inhibitors.
Figure 4: The synthon approach to produce aliskiren at an acceptable cost-of-goods.
Figure 5: Clinical pharmacology of aliskiren.
Figure 6: Aliskiren as a monotherapy.
Figure 7: Combination of aliskiren with other antihypertensives.
Figure 8: Aliskiren and end-organ protection.

Similar content being viewed by others

References

  1. Tigerstedt, R. & Bergman, P. Niere und Kreislauf. Scand. Arch. Physiol. 8, 223–271 (1898). The original paper reporting the discovery or renin offers an interesting view of scientific experimentation in the late nineteenth century.

    Google Scholar 

  2. Silverman, B. D. Robert Tigerstedt — scientist, educator, social activist, humanitarian. Clin. Cardiol. 25, 399–400 (2002).

    PubMed  Google Scholar 

  3. Goldblatt, H., Lynch, J., Hanzal, R. H. & Summerville, W. W. Studies on experimental hypertension: the production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 59, 347–349 (1934). Goldblatt's ground-breaking work on renal ischaemia and hypertension.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Skeggs, L. T., Marsh, W. H., Kahn, J. R. & Shumway, N. P. The existence of two forms of hypertensin. J. Exp. Med. 99, 275–282 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Skeggs, L. T., Lentz, K. E., Kahn, J. R., Shumway, N. P. & Woods, K. R. The amino acid sequence of hypertensin. II. J. Exp. Med. 104, 193–197 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brunner, H. R. et al. Long-term treatment of hypertension in man by an orally active angiotensin-converting enzyme inhibitor. Clin. Sci. Mol. Med. Suppl. 4, 293S–295S (1978).

    CAS  PubMed  Google Scholar 

  7. Brunner, H. R. et al. Orally active angiotensin-converting enzyme inhibitor (SQ 14,225) as a treatment for essential hypertension. Br. J. Clin. Pharmacol. 7 (Suppl. 2), 205–210 (1979).

    Google Scholar 

  8. Gavras, H., Charocopos, F., Brunner, H. & Gavras, I. Angiotensin converting enzyme inhibition: a new therapeutic modality. Bull. NY Acad. Med. 57, 304–310 (1981).

    CAS  Google Scholar 

  9. Rubin, B., Antonaccio, M. J. & Horovitz, Z. P. Captopril (SQ 14,225) (D-3-mercapto-2-methylpropranoylL-proline): a novel orally active inhibitor of angiotensin-converting enzyme and antihypertensive agent. Prog. Cardiovasc. Dis. 21, 183–194 (1978).

    CAS  PubMed  Google Scholar 

  10. Brunner, H. R. et al. Clinical experience with angiotensin II receptor antagonists. Am. J. Hypertens. 5, 243S–246S (1992).

    CAS  PubMed  Google Scholar 

  11. Christen, Y. et al. Oral administration of DuP 753, a specific angiotensin II receptor antagonist, to normal male volunteers. Inhibition of pressor response to exogenous angiotensin I and II. Circulation 83, 1333–1342 (1991).

    CAS  PubMed  Google Scholar 

  12. Nussberger, J., Wuerzner, G., Jensen, C. & Brunner, H. R. Angiotensin II suppression in humans by the orally active renin inhibitor aliskiren (SPP100): comparison with enalapril. Hypertension 39, E1–E8 (2002). The first study on aliskiren to describe its effects on the RAS in humans.

    CAS  PubMed  Google Scholar 

  13. Nussberger, J. et al. Dose-related effects of ACE inhibition in man: quinapril in patients with moderate congestive heart failure. The Study Group on Neurohormonal Regulation in Congestive Heart Failure: Lausanne, Switzerland; Berlin, Dusseldorf, Munich, Germany. Eur. Heart J. 15 (Suppl. D), 113–122 (1994).

    PubMed  Google Scholar 

  14. Belova, L. A. Angiotensin II-generating enzymes. Biochemistry (Mosc.) 65, 1337–1345 (2000).

    CAS  Google Scholar 

  15. Wolny, A. et al. Functional and biochemical analysis of angiotensin II-forming pathways in the human heart. Circ. Res. 80, 219–227 (1997).

    CAS  PubMed  Google Scholar 

  16. Yamada, M. et al. Mast cell chymase expression and mast cell phenotypes in human rejected kidneys. Kidney Int. 59, 1374–1381 (2001).

    CAS  PubMed  Google Scholar 

  17. van den Meiracker, A. H. et al. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: does it exist and does it affect the antihypertensive response? J. Hypertens. 10, 803–812 (1992).

    CAS  PubMed  Google Scholar 

  18. Hanon, S., Vijayaraman, P., Sonnenblick, E. H. & Le Jemtel, T. H. Persistent formation of angiotensin II despite treatment with maximally recommended doses of angiotensin converting enzyme inhibitors in patients with chronic heart failure. J. Renin Angiotensin Aldosterone Syst. 1, 147–150 (2000).

    CAS  PubMed  Google Scholar 

  19. Reinhardt, L. A., Wilkin, J. K. & Kirkendall, W. M. Lichenoid eruption produced by captopril. Cutis 31, 98–99 (1983).

    CAS  PubMed  Google Scholar 

  20. Suarez, M., Ho, P. W., Johnson, E. S. & Perez, G. Angioneurotic edema, agranulocytosis, and fatal septicemia following captopril therapy. Am. J. Med. 81, 336–338 (1986).

    CAS  PubMed  Google Scholar 

  21. Oparil, S. et al. Efficacy and safety of combined use of aliskiren and valsartan in patients with hypertension: a randomised, double-blind trial. Lancet 370, 221–229 (2007). This study showed that even at the highest recommended doses of both aliskiren and valsartan there is an additive effect on BP control.

    CAS  Google Scholar 

  22. Di, P. P. et al. Does the addition of losartan improve the beneficial effects of ACE inhibitors in patients with anterior myocardial infarction? A pilot study. Heart 81, 606–611 (1999).

    PubMed Central  Google Scholar 

  23. Villamil, A. et al. Renin inhibition with aliskiren provides additive antihypertensive efficacy when used in combination with hydrochlorothiazide. J. Hypertens. 25, 217–226 (2007).

    CAS  Google Scholar 

  24. Alderman, M. H. et al. Association of the renin–sodium profile with the risk of myocardial infarction in patients with hypertension. N. Engl. J. Med. 324, 1098–1104 (1991).

    CAS  PubMed  Google Scholar 

  25. Alderman, M. H. et al. Plasma renin activity: a risk factor for myocardial infarction in hypertensive patients. Am. J. Hypertens. 10, 1–8 (1997).

    CAS  PubMed  Google Scholar 

  26. Sielecki, A. R. et al. Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 Å resolution. Science 243, 1346–1351 (1989).

    CAS  PubMed  Google Scholar 

  27. Hobart, P. M., Fogliano, M., O'Conner, B. A., Schaefer, I. M. & Chirgwin, J. M. Human renin gene: structure and sequence analysis. Proc. Natl Acad. Sci. USA 81, 5026–5030 (1984).

    CAS  PubMed  Google Scholar 

  28. Nguyen, G. et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 109, 1417–1427 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Danser, A. H., Batenberg, W. W. & van Esch, J. H. Prorenin and the (pro)renin receptor — an update. Nephrol. Dial. Transplant. 22, 1288–1292 (2007).

    CAS  Google Scholar 

  30. Ichihara, A. et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J. Clin. Invest. 114, 1128–1135 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Luft, F. C. Renin and its putative receptor remain enigmas. J. Am. Soc. Nephrol. 18, 1989–1992 (2007).

    CAS  PubMed  Google Scholar 

  32. Goschke, R. et al. Novel 2,7-dialkyl-substituted 5(S)-amino-4(S)-hydroxy-8-phenyl-octanecarboxamide transition state peptidomimetics are potent and orally active inhibitors of human renin. J. Med. Chem. 50, 4818–4831 (2007).

    PubMed  Google Scholar 

  33. Maibaum, J. et al. Structural modification of the P2′ position of 2,7-dialkyl-substituted 5(S)-amino-4(S)-hydroxy-8-phenyl-octanecarboxamides: the discovery of aliskiren, a potent non-peptide human renin inhibitor active after once daily dosing in marmosets. J. Med. Chem. 50, 4832–4844 (2007). Description of extended structure–activity relationship exploration of topologically P3-P1-tethered transition-state mimetic renin inhibitors resulting in increased in vivo potency and improved oral bioavailability.

    CAS  PubMed  Google Scholar 

  34. Szelke, M. et al. Potent new inhibitors of human renin. Nature 299, 555–557 (1982).

    CAS  PubMed  Google Scholar 

  35. Delabays, A. et al. Hemodynamic and humoral effects of the new renin inhibitor enalkiren in normal humans. Hypertension 13, 941–947 (1989).

    CAS  PubMed  Google Scholar 

  36. Boger, R. S. et al. Prolonged duration of blood pressure response to enalkiren, the novel dipeptide renin inhibitor, in essential hypertension. Hypertension 15, 835–840 (1990).

    CAS  PubMed  Google Scholar 

  37. Clozel, J. P. & Fischli, W. Discovery of remikiren as the first orally active renin inhibitor. Arzneimittelforschung 43, 260–262 (1993).

    CAS  PubMed  Google Scholar 

  38. Himmelmann, A., Bergbrant, A., Svensson, A., Hansson, L. & Aurell, M. Remikiren (Ro 42-5892) — an orally active renin inhibitor in essential hypertension. Effects on blood pressure and the renin–angiotensin–aldosterone system. Am. J. Hypertens. 9, 517–522 (1996).

    CAS  PubMed  Google Scholar 

  39. Rahuel, J. et al. Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem. Biol. 7, 493–504 (2000). Description of crystal structure analysis of renin–inhibitor complexes and the interaction with the hitherto unrecognized large, distinct, sub-pocket S3sp of the enzyme, which is essential for high binding affinity.

    CAS  Google Scholar 

  40. Wood, J. M. et al. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun. 308, 698–705 (2003). Description of the discovery of aliskiren using a combination of molecular modelling and crystallographic structure analysis.

    CAS  Google Scholar 

  41. Weber, C. et al. Multiple dose pharmacokinetics and concentration effect relationship of the orally active renin inhibitor remikiren (Ro 42-5892) in hypertensive patients. Br. J. Clin. Pharmacol. 36, 547–554 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Davio, S. R., McShane, M. M., Kakuk, T. J., Zaya, R. M. & Cole, S. L. Precipitation of the renin inhibitor ditekiren upon i.v. infusion; in vitro studies and their relationship to in vivo precipitation in the cynomolgus monkey. Pharm. Res. 8, 80–83 (1991).

    CAS  PubMed  Google Scholar 

  43. Shibasaki, M., Usui, T., Inagaki, O., Asano, M. & Takenaka, T. Pharmacokinetics and cardiovascular effects of YM-21095, a novel renin inhibitor, in dogs and monkeys. J. Pharm. Pharmacol. 46, 68–72 (1994).

    CAS  PubMed  Google Scholar 

  44. Wood, J. M., Schnell, C. R., Cumin, F., Menard, J. & Webb, R. L. Aliskiren, a novel, orally effective renin inhibitor, lowers blood pressure in marmosets and spontaneously hypertensive rats. J. Hypertens. 23, 417–426 (2005). A thorough review of the preclinical research on aliskiren.

    CAS  PubMed  Google Scholar 

  45. Wood, J. M. et al. Evaluation of a potent inhibitor of subprimate and primate renins. J. Pharmacol. Exp. Ther. 253, 513–517 (1990).

    CAS  PubMed  Google Scholar 

  46. Ganten, D. et al. Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc. Natl Acad. Sci. USA 89, 7806–7810 (1992).

    CAS  Google Scholar 

  47. Pilz, B. et al. Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46, 569–576 (2005).

    CAS  PubMed  Google Scholar 

  48. Azizi, M. et al. Pharmacologic demonstration of the synergistic effects of a combination of the renin inhibitor aliskiren and the AT1 receptor antagonist valsartan on the angiotensin II-renin feedback interruption. J. Am. Soc. Nephrol. 15, 3126–3133 (2004).

    PubMed  Google Scholar 

  49. Stanton, A., Jensen, C., Mann, J., and O'Brien, E. Blood pressure lowering with SPP100, a novel orally active renin inhibitor. A pilot study. Hypertension 38, 526 (2001).

    Google Scholar 

  50. Stanton, A., Jensen, C., Nussberger, J., and O'Brien, E. Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension 42, 1137–1143 (2003). The first dose-finding study with aliskiren in patients using 24-hour ambulatory BP measurements.

    CAS  PubMed  Google Scholar 

  51. Gradman, A. H. et al. Aliskiren, a novel orally effective renin inhibitor, provides dose-dependent antihypertensive efficacy and placebo-like tolerability in hypertensive patients. Circulation 111, 1012–1018 (2005).

    CAS  Google Scholar 

  52. Chobanian, A. V. et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003).

    CAS  PubMed  Google Scholar 

  53. Williams, B. et al. British Hypertension Society guidelines for hypertension management 2004 (BHS-IV): summary. BMJ 328, 634–640 (2004).

    PubMed  PubMed Central  Google Scholar 

  54. Erdine, S. et al. ESH–ESC guidelines for the management of hypertension. Herz 31, 331–338 (2006).

    PubMed  Google Scholar 

  55. O'Brien, E. et al. Aliskiren reduces blood pressure and suppresses plasma renin activity in combination with a thiazide diuretic, an angiotensin-converting enzyme inhibitor, or an angiotensin receptor blocker. Hypertension 49, 276–284 (2007).

    CAS  PubMed  Google Scholar 

  56. Uresin, Y. et al. Efficacy and safety of the direct renin inhibitor aliskiren and ramipril alone or in combination in patients with diabetes and hypertension. J. Renin Angiotensin Aldosterone Syst. 8, 190–198 (2007).

    CAS  PubMed  Google Scholar 

  57. Drummond, W. et al. Antihypertensive efficacy of the oral direct renin inhibitor aliskiren as add-on therapy in patients not responding to amlodipine monotherapy. J. Clin. Hypertens. 9, 742–750 (2007).

    CAS  Google Scholar 

  58. Bramlage, P. et al. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am. J. Hypertens. 17, 904–910 (2004).

    PubMed  Google Scholar 

  59. Jordan, J., Engeli, S., Boye, S. W., Le, B. S. & Keefe, D. L. Direct renin inhibition with aliskiren in obese patients with arterial hypertension. Hypertension 49, 1047–1055 (2007).

    CAS  PubMed  Google Scholar 

  60. Sekikawa, A. & Hayakawa, T. Prevalence of hypertension, its awareness and control in adult population in Japan. J. Hum. Hypertens. 18, 911–912 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hasegawa, T., Hori, Y., Sakamaki, H. & Suzuki, K. Meta-analysis on the therapeutic state of hypertensive population in Japan: focusing on the impact of new diagnostic criteria of Japanese Guideline for the Management of Hypertension 2000. J. Epidemiol. 12, 112–119 (2002).

    PubMed  Google Scholar 

  62. Hozawa, A. et al. Blood pressure control assessed by home, ambulatory and conventional blood pressure measurements in the Japanese general population: the Ohasama study. Hypertens. Res. 25, 57–63 (2002).

    PubMed  Google Scholar 

  63. Kushiro, T. et al. Aliskiren, a novel oral renin inhibitor, provides dose-dependent efficacy and placebo-like tolerability in Japanese patients with hypertension. Hypertens. Res. 29, 997–1005 (2006).

    CAS  PubMed  Google Scholar 

  64. Vaidyanathan, S., Jermany, J., Yeh, C., Bizot, M. N. & Camisasca, R. Aliskiren, a novel orally effective renin inhibitor, exhibits similar pharmacokinetics and pharmacodynamics in Japanese and Caucasian subjects. Br. J. Clin. Pharmacol. 62, 690–698 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vaidyanathan, S. et al. Pharmacokinetics, safety, and tolerability of the novel oral direct renin inhibitor aliskiren in elderly healthy subjects. J. Clin. Pharmacol. 47, 453–460 (2007).

    CAS  PubMed  Google Scholar 

  66. Weir, M., Bush, C. & Zhang, J. Antihypertensive efficacy and safety of the oral renin inhibitor aliskiren in patients with hypertension: a pooled analysis. Eur. Heart J. 27 (Suppl. 1), 299 (2006).

    Google Scholar 

  67. Waldmeier, F. et al. Absorption, distribution, metabolism, and elimination of the direct renin inhibitor aliskiren in healthy volunteers. Drug Metab. Dispos. 35, 1418–1428 (2007).

    CAS  PubMed  Google Scholar 

  68. Vaidyanathan, S. et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren alone and in combination with irbesartan in renal impairment. Clin. Pharmacokinet. 46, 661–675 (2007).

    CAS  PubMed  Google Scholar 

  69. Vaidyanathan, S. et al. Pharmacokinetics, safety, and tolerability of the oral renin inhibitor aliskiren in patients with hepatic impairment. J. Clin. Pharmacol. 47, 192–200 (2007).

    CAS  PubMed  Google Scholar 

  70. Zhao, C., Vaidyanathan, S., Yeh, C. M., Maboudian, M. & Armin, D. H. Aliskiren exhibits similar pharmacokinetics in healthy volunteers and patients with type 2 diabetes mellitus. Clin. Pharmacokinet. 45, 1125–1134 (2006).

    CAS  PubMed  Google Scholar 

  71. European Medicines Agency (EMEA). Rasilez: European Public Assessment Report. EMEA web site [online], (2007).

  72. Textor, S. C., Bravo, E. L., Fouad, F. M. & Tarazi, R. C. Hyperkalemia in azotemic patients during angiotensin-converting enzyme inhibition and aldosterone reduction with captopril. Am. J. Med. 73, 719–725 (1982).

    CAS  PubMed  Google Scholar 

  73. Kostis, J. B. et al. Adverse effects of enalapril in the Studies of Left Ventricular Dysfunction (SOLVD). SOLVD Investigators. Am. Heart J. 131, 350–355 (1996).

    CAS  PubMed  Google Scholar 

  74. Sealey, J. E. & Laragh, J. H. Aliskiren, the first renin inhibitor for treating hypertension: reactive renin secretion may limit its effectiveness. Am. J. Hypertens. 20, 587–597 (2007).

    CAS  PubMed  Google Scholar 

  75. Pool, J. L. et al. Aliskiren, a novel renin inhibitor, provides long-term suppression of the renin system, when used alone or in combination with hydrochlorothiazide in the treatment of hypertension. Eur. Heart J. 27 (Suppl. 1), 119 (2006).

    Google Scholar 

  76. Weinberger, M. H. et al. Aliskiren-based therapy provides long-term suppression of plasma renin activity that persists after treatment withdrawal in patients with hypertension. J. Am. Coll. Cardiol. 49, 390A (2007).

    Google Scholar 

  77. Keefe, D. L. et al. Blood pressure lowering effects persist following the last dose of long-term therapy with aliskiren: an oral direct renin inhibitor. J. Am. Coll. Cardiol. 49, 372A (2007).

    Google Scholar 

  78. Vaidyanathan, S. Aliskiren, a novel oral renin inhibitor, has no interaction with cytochrome P450 isoenzymes in vitro. Basic Res. Pharmacol. Toxicol. 97, 239–239 (2005).

    Google Scholar 

  79. Zhao, C. et al. Assessment of the pharmacokinetic interaction between the oral direct inhibitor aliskiren and furosemide: a study in healthy volunteers. Clin. Pharmacol. Ther. 81 (Suppl. 1) S110 (2007).

    Google Scholar 

  80. Vaidyanathan, S. et al. Lack of pharmacokinetic interactions of aliskiren, a novel direct renin inhibitor for the treatment of hypertension, with the antihypertensives amlodipine, valsartan, hydrochlorothiazide (HCTZ) and ramipril in healthy volunteers. Int. J. Clin. Pract. 60, 1343–1356 (2006).

    CAS  PubMed  Google Scholar 

  81. Azizi, M. & Menard, J. Combined blockade of the renin–angiotensin system with angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Circulation 109, 2492–2499 (2004).

    PubMed  Google Scholar 

  82. Muller, D. N. & Luft, F. C. Direct renin inhibition with aliskiren in hypertension and target organ damage. Clin. J. Am. Soc. Nephrol. 1, 221–228 (2006).

    PubMed  Google Scholar 

  83. Mervaala, E. et al. Angiotensin-converting enzyme inhibition and AT1 receptor blockade modify the pressure–natriuresis relationship by additive mechanisms in rats with human renin and angiotensinogen genes. J. Am. Soc. Nephrol. 10, 1669–1680 (1999).

    CAS  PubMed  Google Scholar 

  84. Mervaala, E. et al. Blood pressure-independent effects in rats with human renin and angiotensinogen genes. Hypertension 35, 587–594 (2000).

    CAS  PubMed  Google Scholar 

  85. Shagdarsuren, E. et al. Complement activation in angiotensin II-induced organ damage. Circ. Res. 97, 716–724 (2005).

    CAS  PubMed  Google Scholar 

  86. Fisher, N. D. & Hollenberg, N. K. Unprecedented renal response to direct bloackade of the renin–angiotensin system with aliskiren, a novel renin inhibitor. Circulation 116 (Suppl. 2) 556 (2007).

    Google Scholar 

  87. Kjeldsen, S. E. Direct renin inhibition with focus on aliskiren and cardiovascular outcome studies. Eur. Cardiovasc. Dis. 2, 17–19 (2006).

    Google Scholar 

  88. Recio-Mayoral, A. et al. Clinical trials update from the European Society of Cardiology Congress in Vienna, 2007: PROSPECT, EVEREST, ARISE, ALOFT, FINESSE, Prague-8, CARESS in MI and ACUITY. Cardiovasc. Drugs Ther. 21, 1573–7241 (2007).

    Google Scholar 

  89. Recion-Mayoral, A. et al. Clinical trials update from the European Society of Cardiology Congress in Vienna, 2007: PROSPECT, EVEREST, ARISE, ALOFT, FINESSE, Prague-8, CARESS in MI and ACUITY. Cardiovasc. Drugs Ther. 21, 459–465 (2007).

    Google Scholar 

  90. Pitt, B. et al. Neurohormonal effects of a new oral direct renin inhibitor in stable heart failure: the alisikiren observation of heart failure treatment study (ALOFT). Circulation 116 (Suppl. 2), 549 (2007).

    Google Scholar 

  91. Parving, H. H., Lewis, J. B., Lewis, E. J. & Hollenberg, N. K. Aliskiren in the evaluation of proteinuria in diabetes (AVOID). Renal Week October 31–November 5; Abstract SA-PO1051. American Society of Nephrology web site [online], (2007).

    Google Scholar 

  92. Persson, F., Rossing, P., Schjoedt, K. J., Stehouwer, C. D. & Parving, H. H. Time course of the antiproteinuric and antihypertensive effect of direct renin inhibition with aliskiren in patients with type 2 diabetes and albuminuria. Circulation 116 (Suppl.), PS112 (2007).

    Google Scholar 

  93. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    CAS  PubMed  Google Scholar 

  94. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    CAS  PubMed  Google Scholar 

  95. Herold, P., Stutz, S. & Indoloese, A. Production of N-substituted 2,7-dialkyl-4-hydroxy-5-amino-8-aryl octanoylamides. WO0109083 (2001).

  96. Herold, P. & Stutz, S. 2-Alkyl-5-halogen-pent-4-ene carboxylic acids and their production. WO0109079 (2001).

  97. Herold, P. & Stutz, S. Preparation of (R)-2-alkyl-3-phenylpropionic acids. Patent WO0202500 (2002).

  98. Herold, P., Stutz, S. & Spindler, F. Process for the preparation of (R)-2-Alkyl-3-phenyl-1-propanols. WO0202487 (2002).

  99. Herold, P., Stutz, S. & Spindler, F. Process for the preparation of substituted octanoyl amides. WO0202508 (2002).

  100. Stutz, S. & Herold, P. Process for the preparation of substituted carboxylic acid esters by enzymatic hydrolysis. WO02092828 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Jensen.

Ethics declarations

Competing interests

Chris Jensen is a consultant to Speedel Holding Ltd and a shareholder. He is also a former employee of Speedel Experimenta Ltd, Basel, Switzerland.

Peter Herold is employed by Speedel Experimenta Ltd.

Hans Rudolf Brunner is a consultant to Speedel Holding ltd and a shareholder.

Supplementary information

Supplementary information S1 (table)

Change from baseline to endpoint in mean sitting diastolic (DBP) and systolic blood (SBP) pressure in five placebo-controlled studies, ITT population1–5. (PDF 161 kb)

Glossary

Hypertrophy

An increase in ventricular mass, which is typically characterized by an increased cardiac myocyte size in conjunction with cardiac fibrosis.

Fibrosis

The formation of excess connective tissue.

Angioedema

A rapid swelling of the skin, mucosa or submucosal tissues.

Diuretics

Drugs that increase the net renal excretion of solute and water.

Peptidomimetic

Small-molecule chemicals that mimic the effects of short peptides.

Chiral centre

Any atom in a molecule bearing at least four different substituents.

Synthon

A synthon is defined as a structural unit within a molecule that is related to a possible synthetic operation.

Proteinuria

The presence of excess serum proteins in the urine.

Aldosterone

A steroid hormone that acts to reabsorb sodium and increases blood pressure.

Retrosynthetic analysis

A synthesis that is planned in reverse, beginning with the final product.

Cytochrome P450 system

A family of haem proteins responsible for oxidative drug metabolism.

BNP

Brain natiuretic protein is secreted by the heart in response to stretching of the heart muscle cells. It is used as a biochemical measure of heart failure.

Macro-albuminuria

The urinary excretion of >300 mg per day of serum albumin.

Urinary albumin creatinine ratio

A biochemical measure of chronic kidney disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, C., Herold, P. & Brunner, H. Aliskiren: the first renin inhibitor for clinical treatment. Nat Rev Drug Discov 7, 399–410 (2008). https://doi.org/10.1038/nrd2550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2550

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing