Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drug development from marine natural products

Key Points

  • The large-scale collection, screening and discovery of novel marine natural products has propelled new chemical entities into the clinic for the treatment of pain, cancer and other disease states.

  • What is the status of discovery of 'drugs from the sea' and what hope do they offer for the alleviation of human suffering? The first two new drugs derived from marine organisms have now been approved — one for cancer and the other for chronic pain.

  • Other natural-product-inspired drugs, such as the anticancer compound eribulin mesylate, are in the pipeline.

  • We present the history and current stage of development for a selection of marine natural products, and examine the obstacles in their development into drugs.

  • We also discuss how new technologies in analytical sciences and 'genomic mining' are accelerating the pace of discovery.

Abstract

Drug discovery from marine natural products has enjoyed a renaissance in the past few years. Ziconotide (Prialt; Elan Pharmaceuticals), a peptide originally discovered in a tropical cone snail, was the first marine-derived compound to be approved in the United States in December 2004 for the treatment of pain. Then, in October 2007, trabectedin (Yondelis; PharmaMar) became the first marine anticancer drug to be approved in the European Union. Here, we review the history of drug discovery from marine natural products, and by describing selected examples, we examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials. Providing an outlook into the future, we also examine the advances that may further expand the promise of drugs from the sea.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ω-conotoxin MVIIA.
Figure 2: Marine invertebrates producing anticancer and analgesic drugs.
Figure 3: Tunicate-derived anticancer drugs.
Figure 4: Molecular-dynamics model showing the alkylation of DNA by ET-743 at N2 of guanine in the minor groove.
Figure 5: Marine-derived antimitotic compounds (part 1).
Figure 6: Marine-derived antimitotic compounds (part 2).
Figure 7: Kahalalide F and bryostatins.

References

  1. Freudenthal, H. D. Transactions of the Drugs from the Sea Symposium, University of Rhode Island, 27–29 August 1967 1–297 (Marine Technology Society, Washington, DC, 1968).

    Google Scholar 

  2. Newman D. J. & Cragg G. M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216–1238 (2004).

    CAS  PubMed  Article  Google Scholar 

  3. Newman D. J. & Cragg G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

    CAS  PubMed  Article  Google Scholar 

  4. Newman, D. J. & Cragg, G. M. in Marine Anticancer Compounds in the Era of Targeted therapies 1st edn (ed. Chapner, B.) (Permanyer Publications, Barcelona, 2008).

    Google Scholar 

  5. Bergmann, W. & Feeney R. J. Contributions to the study of marine products. XXXII. The nucleosides of sponges. I. J. Org. Chem. 16, 981–987 (1951).

    CAS  Article  Google Scholar 

  6. Bergmann, W. & Burke, D. C. Contributions to the study of marine products. XL. The nucleosides of sponges. IV. Spongosine. J. Org. Chem. 22, 226–228 (1956).

    Article  Google Scholar 

  7. Bergmann, W. & Stempien, M. F. Contributions to the study of marine products. XLIII. The nucleosides of sponges. V. The synthesis of spongosine. J. Org. Chem. 22, 1575–1557 (1957).

    CAS  Article  Google Scholar 

  8. Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nature Rev. Drug Discovery 4, 206–220 (2004). This important, prescient review from scientists in a large pharmaceutical drug discovery programme presents the technical and logistical challenges for natural products discovery.

    Article  CAS  Google Scholar 

  9. Jarvis, L. M. Liquid gold mine. Chem. Engin. News 85, 22–28 (2007).

    Google Scholar 

  10. Mendola, D. in Drugs from the Sea (ed. Fusetani, N.) 120–133 (Karger, Basel, 2000).

    Book  Google Scholar 

  11. Olivera, B. M. et al. Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338–1343 (1985).

    CAS  PubMed  Article  Google Scholar 

  12. Terlau, H. & Olivera, B. M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41–68 (2004).

    CAS  PubMed  Article  Google Scholar 

  13. Olivera, B. M., Miljanich, G. P., Ramachandran, J. & Adams, M. E. Calcium-channel diversity and neurotransmitter release — the ω-conotoxins and ω-agatoxins. Ann. Rev. Biochem. 63, 823–867 (1994).

    CAS  PubMed  Article  Google Scholar 

  14. Chung, D., Gaur, S., Bell, J. R., Ramachandran, J. & Nadasdi, L. Determination of disulfide bridge pattern in ω-conopeptides. Int. J. Pept. Protein Res. 46, 320–325 (1995).

    CAS  PubMed  Article  Google Scholar 

  15. Price-Carter, M., Hull, M. S. & Goldenberg, D. P. Roles of individual disulfide bonds in the stability and folding of an ω-conotoxin. Biochemistry 37, 9851–9861 (1998).

    CAS  PubMed  Article  Google Scholar 

  16. Olivera, B. M. et al. Neuronal calcium-channel antagonists — discrimination between calcium-channel subtypes using ω-conotoxin from Conus magus venom. Biochemistry 26, 2086–2090 (1987).

    CAS  PubMed  Article  Google Scholar 

  17. Yeager, R. E., Yoshikami, D., Rivier, J., Cruz, L. J. & Miljanich, G. P. Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist ω Conus toxin. J. Neurosci. 7, 2390–2396 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Atkinson, R. A., Kieffer, B., Dejaegere, A., Sirockin, F. & Lefevre, J. F. Structural and dynamic characterization of ω -conotoxin MVIIA: the binding loop exhibits slow conformational exchange. Biochemistry 39, 3908–3919 (2000).

    CAS  PubMed  Article  Google Scholar 

  19. Kim, J. I., Takahashi, M., Ohtake, A., Wakamiya, A. & Sato, K. Tyr13 Is essential for the activity of ω -conotoxin MVIIA and GVIA, specific N-type calcium channel blockers. Biochem. Biophys. Res. Commun. 206, 449–454 (1995).

    CAS  PubMed  Article  Google Scholar 

  20. Gohil, K., Bell, J. R., Ramachandran, J. & Miljanich, G. P. Neuroanatomical distribution of receptors for a novel voltage-sensitive calcium-channel antagonist, SNX-230 (ω -conopeptide MVIIC). Brain Res. 653, 258–266 (1994).

    CAS  PubMed  Article  Google Scholar 

  21. Bowersox, S. S. et al. Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J. Pharmacol. Exp. Ther. 279, 1243–1249 (1996).

    CAS  PubMed  Google Scholar 

  22. Kristipati, R. et al. Characterization of the binding of ω -conopeptides to different classes of non-L-type neuronal calcium channels. Mol. Cell. Neurosci. 5, 219–228 (1994).

    CAS  PubMed  Article  Google Scholar 

  23. Jones, R. M. et al. Composition and therapeutic utility of conotoxins from genus Conus. Patent status 1996–2000 Exp. Opin. Ther. Patents 11, 603–623 (2001).

    CAS  Article  Google Scholar 

  24. Bowersox, S. S. & Luther, R. Pharmacotherapeutic potential of ω-conotoxin MVIIA (SNX-111), an N-type neuronal calcium channel blocker found in the venom of Conus magus. Toxicon 36, 1651–1658 (1998).

    CAS  PubMed  Article  Google Scholar 

  25. Wang, Y. X., Pettus, M., Gao, D., Phillips, C. & Scott Bowersox, S. Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain. Pain 84, 151–158 (2000).

    CAS  PubMed  Article  Google Scholar 

  26. Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    CAS  PubMed  Article  Google Scholar 

  27. Garber, K. Peptide leads new class of chronic pain drugs. Nature Biotech. 23, 399 (2005).

    CAS  Article  Google Scholar 

  28. Heading, C. E. Conus toxins: targets and properties. IDrugs 7, 1011–1016 (2004).

    CAS  PubMed  Google Scholar 

  29. Sigel, M. M. et al. in Food–Drugs from the Sea: Proceedings (ed. Youngken, H. W. Jr) 281–294 (Marine Technology Society, Washington, DC, 1969).

    Google Scholar 

  30. Rinehart, K. L. et al. Ecteinascidin-729, Ecteinascidin-743, Ecteinascidin-745, Ecteinascidin-759a, Ecteinascidin-759b, and Ecteinascidin-770 — potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org. Chem. 55, 4512–4515 (1990).

    CAS  Article  Google Scholar 

  31. Wright, A. E. et al. Antitumor tetrahyrodisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J. Org. Chem. 55, 4508–4512 (1990).

    CAS  Article  Google Scholar 

  32. Sakai, R., Rinehart, K. L., Guan, Y. & Wang, A. H. Additional antitumor ecteinascidins from a Caribbean tunicate: crystal structures and activities in vivo. Proc. Nat. Acad. Sci. USA 89, 11456–11460 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Corey, E. J., Gin, D. Y. & Kania, R. S. Enantioselective total synthesis of ecteinascidin 743. J. Am. Chem. Soc. 118, 9202–9203 (1996).

    CAS  Article  Google Scholar 

  34. Martinez, E. J. & Corey, E. J. A new, more efficient, and effective process for the synthesis of a key pentacyclic intermediate for production of ecteinascidin and phthalascidin antitumor agents. Org. Lett. 2, 993–996 (2000).

    CAS  PubMed  Article  Google Scholar 

  35. Cuevas, C. et al. Synthesis of ecteinascidin ET-743 and Phthalascidin Pt-650 from cyanosafracin B. Org. Lett. 2, 2545–2548 (2000).

    CAS  PubMed  Article  Google Scholar 

  36. Aune, G. J., Furuta, T. & Pommier, Y. Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action. Anticancer Drugs 13, 545–555 (2002).

    CAS  PubMed  Article  Google Scholar 

  37. Pommier, Y. et al. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. Biochemistry 35, 13303–13309 (1996).

    CAS  PubMed  Article  Google Scholar 

  38. Zewail-Foote, M. & Hurley, L. H. Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J. Med. Chem. 42, 2493–2497 (1999).

    CAS  PubMed  Article  Google Scholar 

  39. Zewail-Foote, M. et al. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem. Biol. 8, 1033–1049 (2001).

    CAS  PubMed  Article  Google Scholar 

  40. Takebayashi, Y. et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nature Med. 7, 961–966 (2001). An excellent technical paper describing the excision repair inhibition mechanism that is unique to ET-743.

    CAS  PubMed  Article  Google Scholar 

  41. Di Leo, P. et al. Final results of a phase II trial of 3-HR infusion trabectedin in patients with recurrent sarcomas. Ann. Oncol. 17, 167–167 (2006).

    Article  Google Scholar 

  42. Paz-Ares, L. et al. Phase II study of trabectedin in pretreated patients with advanced colorectal cancer. Clin. Colorectal Cancer 6, 522–528 (2007).

    CAS  PubMed  Article  Google Scholar 

  43. Zelek, L. et al. A phase II study of Yondelis® (trabectedin, ET-743) as a 24-h continuous intravenous infusion in pretreated advanced breast cancer Br. J. Cancer 94, 1610–1614 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Sessa, C. et al. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails. J. Clin. Oncol. 23, 1867–1874 (2005).

    CAS  PubMed  Article  Google Scholar 

  45. Yovine, A. et al. Phase II study of ecteinascidin-743 in advanced pretreated soft tissue sarcoma patients. J. Clin. Oncol. 22, 890–899 (2004).

    CAS  PubMed  Article  Google Scholar 

  46. Jimeno, J. et al. Therapeutic impact of ET-743 (Yondelis; trabectidin), a new marine-derived compound, in sarcoma. Curr. Op. Orthopaed. 14, 419–428 (2003).

    Article  Google Scholar 

  47. Jimeno, J. et al. Progress in the clinical development of new marine-derived anticancer compounds. Anticancer Drugs 15, 321–329 (2004).

    CAS  Article  PubMed  Google Scholar 

  48. Ryan, D. P. et al. A phase II and pharmacokinetic study of ecteinascidin 743 in patients with gastrointestinal stromal tumors. Oncologist 7, 531–538 (2002).

    CAS  PubMed  Article  Google Scholar 

  49. Blay, J. Y. et al. A phase II study of ET-743/trabectedin ('Yondelis') for patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer 40, 1327–1331 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. Meco, D. et al. Effective combination of ET-743 and doxorubicin in sarcoma: preclinical studies. Cancer Chemother. Pharmacol. 52, 131–138 (2003).

    CAS  PubMed  Article  Google Scholar 

  51. Takahashi, N., Li, W. W., Banerjee, D., Scotto, K. W. & Bertino, J. R. Sequence-dependent enhancement of cytotoxicity produced by ecteinascidin 743 (ET-743) with doxorubicin or paclitaxel in soft tissue sarcoma cells. Clin. Canc. Res. 7, 3251–3257 (2001).

    CAS  Google Scholar 

  52. Riccardi, A. et al. Combination of trabectedin and irinotecan is highly effective in a human rhabdomyosarcoma xenograft. Anticancer Drugs 16, 811–815 (2005).

    CAS  PubMed  Article  Google Scholar 

  53. Brandon, E. F. A. et al. In-vitro cytotoxicity of ET-743 (Trabectedin, Yondelis), a marine anti-cancer drug, in the Hep G2 cell line: influence of cytochrome P450 and phase II inhibition, and cytochrome P450 induction. Anticancer Drugs 16, 935–943 (2005).

    CAS  PubMed  Article  Google Scholar 

  54. Donald, S. et al. Comparison of four modulators of drug metabolism as protectants against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the female rat and in hepatocytes in vitro. Cancer Chemother. Pharmacol. 53, 305–312 (2004).

    CAS  PubMed  Article  Google Scholar 

  55. Donald, S. et al. Complete protection by high-dose dexamethasone against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the rat. Cancer Res. 63, 5902–5908 (2003).

    CAS  PubMed  Google Scholar 

  56. Beumer, J. H., Schellens, J. H. & Beijnen, J. H. Hepatotoxicity and metabolism of trabectedin: a literature review. Pharmacol. Res. 51, 391–398 (2005).

    CAS  PubMed  Article  Google Scholar 

  57. Chun, H. G. et al. Didemnin B. The first marine compound entering clinical trials as an antineoplastic agent. Invest. New Drugs 4, 279–284 (1986).

    CAS  PubMed  Article  Google Scholar 

  58. Vera, M. D. & Joullie, M. M. Natural products as probes of cell biology: 20 years of didemnin research. Med. Res. Rev. 22, 102–145 (2002).

    CAS  PubMed  Article  Google Scholar 

  59. Rinehart, K. Antitumor Compounds from Tunicates. Med. Res. Rev. 1, 1–27 (2003).

    Google Scholar 

  60. Rinehart, K. L. Jr., Gloer, J. B., Cook, J. C., Mizsak, S. A. & Scahill, T. A. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Carribean tunicate. J. Am. Chem. Soc. 103, 1857–1859 (1981).

    CAS  Article  Google Scholar 

  61. Rinehart, K. L. Jr et al. Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate. Science 212, 933–935 (1981).

    CAS  PubMed  Article  Google Scholar 

  62. Rinehart, K. L. Jr et al. Total synthesis of didemnins A, B, and C. J. Am. Chem. Soc. 109, 6856–6848 (1987).

    Google Scholar 

  63. McKee, T. C., Ireland, C. M., Lindquist, N. & Fenical, W. The complete spectral assignment of didemnin B and nordidemnin B. Tetrahedron Lett. 30, 3053–3056 (1989).

    CAS  Article  Google Scholar 

  64. Gloer, J. B. Structures of the Didemnins. Thesis, Univ. Illinois (1983).

    Google Scholar 

  65. Hossain, M. B. et al. Crystal and molecular structure of didemnin B, an antiviral and cytotoxic depsipeptide. Proc. Natl Acad. Sci. USA 85, 4118–4122 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Meng, L., Sin, N. & Crews, C. M. The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase. Biochemistry 37, 10488–10492 (1998).

    CAS  PubMed  Article  Google Scholar 

  67. Crews, C. M., Lane, W. S. & Schreiber, S. L. Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis. Proc. Natl Acad. Sci. USA 93, 4316–4319 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Li, L. H. et al. Mechanism of action of didemnin B, a depsipeptide from the sea. Cancer Lett. 23, 279–288 (1984).

    CAS  PubMed  Article  Google Scholar 

  69. SirDeshpande, B. V. & Toogood, P. L. Mechanism of protein synthesis inhibition by didemnin B in vitro. Biochemistry 34, 9177–9184 (1995).

    CAS  PubMed  Article  Google Scholar 

  70. Ahuja, D. et al. Inhibition of protein synthesis by didemnin B: how EF-1a mediates inhibition of translocation. Biochemistry 39, 4339–4346 (2000).

    CAS  PubMed  Article  Google Scholar 

  71. Marco, E., Martin-Santamaria, S., Cuevas, C. & Gago, F. Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products. J. Med. Chem. 47, 4439–4452 (2004).

    CAS  PubMed  Article  Google Scholar 

  72. Crews, C. M., Collins, J. L., Lane, W. S., Snapper, M. L. & Schreiber, S. L. GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 α. J. Biol. Chem. 269, 15411–15414 (1994). Illustrates the 'chemical biological' approach to the identification of protein targets of natural product drugs, and the importance of discriminating high- and low-affinity binding partners (see also reference 67)

    CAS  PubMed  Article  Google Scholar 

  73. Beidler, D. R., Ahuja, D., Wicha, M. S. & Toogood, P. L. Inhibition of protein synthesis by didemnin B is not sufficient to induce apoptosis in human mammary carcinoma (MCF7) cells. Biochem. Pharmacol. 58, 1067–1074 (1999).

    CAS  PubMed  Article  Google Scholar 

  74. Erba, E. et al. Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine. Br. J. Cancer 86, 1510–1517 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Johnson, K. L., Vaillant, F. & Lawen, A. Protein tyrosine kinase inhibitors prevent didemnin B-induced apoptosis in HL-60 cells. FEBS Lett. 383, 1–5 (1996).

    CAS  PubMed  Article  Google Scholar 

  76. Johnson, K. L. & Lawen, A. Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells: evidence for the possible involvement of FK506-binding protein 25. Immunol. Cell Biol. 77, 242–248 (1999).

    CAS  PubMed  Article  Google Scholar 

  77. Weed, S. D. & Stringfellow, D. A. Didemnins A and B. Effectiveness against cutaneous herpes simplex virus in mice. Antiviral Res. 3, 269–274 (1983).

    CAS  PubMed  Article  Google Scholar 

  78. Urdiales, J. L., Morata, P., Nunez De Castro, I. & Sanchez-Jimenez, F. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett. 102, 31–37 (1996).

    CAS  PubMed  Article  Google Scholar 

  79. Dorr, F. A., Kuhn, J. G., Phillips, J. & von Hoff, D. D. Phase I clinical and pharmacokinetic investigation of didemnin B, a cyclic depsipeptide. Eur. J. Cancer Clin. Oncol. 24, 1699–1706 (1988).

    CAS  PubMed  Article  Google Scholar 

  80. Scheithauer, W., Moyer, M. P., Clark, G. M. & Von Hoff, D. D. Application of a new preclinical drug screening system for cancer of the large bowel. Cancer Chemother. Pharmacol. 21, 31–34 (1988).

    CAS  PubMed  Article  Google Scholar 

  81. Grubb, D. R., Wolvetang, E. J. & Lawen, A. Didemnin B induces cell death by apoptosis: the fastest induction of apoptosis ever described. Biochem. Biophys. Res. Commun. 215, 1130–1136 (1995).

    CAS  PubMed  Article  Google Scholar 

  82. Geldof, A. A., Mastbergen, S. C., Henrar, R. E. & Faircloth, G. T. Cytotoxicity and neurocytotoxicity of new marine anticancer agents evaluated using in vitro assays. Cancer Chemother. Pharmacol. 44, 312–318 (1999).

    CAS  PubMed  Article  Google Scholar 

  83. Stewart, J. A., Low, J. B., Roberts, J. D. & Blow, A. A phase I clinical trial of didemnin B. Cancer 68, 2550–2554 (1991).

    CAS  PubMed  Article  Google Scholar 

  84. Maroun, J. A., Stewart, D., Verma, S. & Eisenhauer, E. Phase I clinical study of didemnin B. Invest. New Drugs 16, 51–56 (1998).

    CAS  PubMed  Article  Google Scholar 

  85. Shin, D. M. et al. Phase I/II clinical trial of didemnin B in non-small-cell lung cancer: neuromuscular toxicity is dose-limiting. Cancer Chemother. Pharmacol. 29, 145–149 (1991).

    CAS  PubMed  Article  Google Scholar 

  86. Benvenuto, J. A. et al. Phase II clinical and pharmacological study of didemnin B in patients with metastatic breast cancer. Invest. New Drugs 10, 113–117 (1992).

    CAS  PubMed  Article  Google Scholar 

  87. Shin, D. M. et al. Phase II clinical trial of didemnin B in previously treated small cell lung cancer. Invest. New Drugs 12, 243–249 (1994).

    CAS  PubMed  Article  Google Scholar 

  88. Goss, G. et al. Didemnin B in favorable histology non-Hodgkin's lymphoma: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. Invest. New Drugs 13, 257–260 (1995).

    CAS  PubMed  Article  Google Scholar 

  89. Kucuk, O. et al. Phase II trail of didemnin B in previously treated non-Hodgkin's lymphoma: an Eastern Cooperative Oncology Group (ECOG) Study. Am. J. Clin. Oncol. 23, 273–277 (2000).

    CAS  PubMed  Article  Google Scholar 

  90. Hochster, H., Oratz, R., Ettinger, D. S. & Borden, E. A phase II study of Didemnin B (NSC 325319) in advanced malignant melanoma: an Eastern Cooperative Oncology Group study (PB687). Invest. New Drugs 16, 259–263 (1999).

    CAS  Article  Google Scholar 

  91. Mittelman, A. et al. Phase II clinical trial of didemnin B in patients with recurrent or refractory anaplastic astrocytoma or glioblastoma multiforme (NSC 325319). Invest. New Drugs 17, 179–182 (1999).

    CAS  PubMed  Article  Google Scholar 

  92. Taylor, S. A. et al. Phase II study of didemnin B in central nervous system tumors: a Southwest Oncology Group study. Invest. New Drugs 16, 331–332 (1999).

    CAS  Article  Google Scholar 

  93. Nuijen, B. et al. Pharmaceutical development of anticancer agents from marine sources. Anticancer Drugs 11, 793–811 (2000).

    CAS  PubMed  Article  Google Scholar 

  94. Rinehart, K. L. & Lithgow-Bertelloni, A. M. Dehydrodidemnin B. WO9104985 (A1) (1991).

  95. Garcia-Fernandez, L. F. et al. Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C. Oncogene 21, 7533–7544 (2002).

    CAS  Article  PubMed  Google Scholar 

  96. Gajate, C., An, F. & Mollinedo, F. Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism. Clin. Cancer Res. 9, 1535–1545 (2003).

    CAS  PubMed  Google Scholar 

  97. Grubb, D. R., Ly, J. D., Vaillant, F., Johnson, K. L. & Lawen, A. Mitochondrial cytochrome c release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis. Oncogene 20, 4085–4094 (2001).

    CAS  PubMed  Article  Google Scholar 

  98. Cuadrado, A. et al. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J. Biol. Chem. 278, 241–250 (2003).

    CAS  PubMed  Article  Google Scholar 

  99. Cuadrado, A., Gonzalez, L., Suarez, Y., Martinez, T. & Munoz, A. JNK activation is critical for Aplidin-induced apoptosis. Oncogene 23, 4673–4680 (2004).

    CAS  Article  PubMed  Google Scholar 

  100. Broggini, M. et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF–VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia 17, 52–59 (2003).

    CAS  PubMed  Article  Google Scholar 

  101. Biscardi, M. et al. VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann. Oncol. 16, 1667–1674 (2005).

    CAS  PubMed  Article  Google Scholar 

  102. Losada, A., Lopez-Oliva, J. M., Sanchez-Puelles, J. M. & Garcia-Fernandez, L. F. Establishment and characterisation of a human carcinoma cell line with acquired resistance to Aplidin. Br. J. Cancer 91, 1405–1413 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Erba, E. et al. Effect of aplidine in acute lymphoblastic leukaemia cells. Br. J. Cancer 89, 763–773 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Albella, B. et al. In vitro toxicity of ET-743 and aplidine, two marine-derived antineoplastics, on human bone marrow haematopoietic progenitors. comparison with the clinical results. Eur. J. Cancer 38, 1395–1404 (2002).

    CAS  PubMed  Article  Google Scholar 

  105. Baker, M. A., Grubb, D. R. & Lawen, A. Didemnin B induces apoptosis in proliferating but not resting peripheral blood mononuclear cells. Apoptosis 7, 407–412 (2002).

    CAS  PubMed  Article  Google Scholar 

  106. Bresters, D. et al. In vitro cytotoxicity of aplidin and crossresistance with other cytotoxic drugs in childhood leukemic and normal bone marrow and blood samples: a rational basis for clinical development. Leukemia 17, 1338–1343 (2003).

    CAS  Article  PubMed  Google Scholar 

  107. Gomez, S. G., Bueren, J. A., Faircloth, G. T., Jimeno, J. & Albella, B. In vitro toxicity of three new antitumoral drugs (trabectedin, aplidin, and kahalalide F) on hematopoietic progenitors and stem cells. Exp. Hematol. 31, 1104–1111 (2003).

    CAS  PubMed  Article  Google Scholar 

  108. Taraboletti, G. et al. Antiangiogenic activity of aplidine, a new agent of marine origin. Br. J. Cancer 90, 2418–2424 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Perez, M., Sadqi, M., Munoz, V. & Avila, J. Inhibition by Aplidine of the aggregation of the prion peptide PrP 106–126 into β-sheet fibrils. Biochem. Biophys. Acta 1639, 133–139 (2003).

    CAS  PubMed  Google Scholar 

  110. Talpir, R., Benayahu, Y., Kashman, Y., Pannell, L. & Schleyer, M. Hemiasterlin and geodiamolide TA: two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett. 35, 4453–4456 (1994).

    CAS  Article  Google Scholar 

  111. Coleman, J. E., de Silva, E. D., Kong, F., Andersen, R. J. & Allen, T. M. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 51, 10653–10662 (1995).

    CAS  Article  Google Scholar 

  112. Coleman, J. E., Patrick, B. O., Andersen, R. J. & Rettig, S. J. Hemiasterlin methyl ester. Acta Cryst. Sec. C C52, 1525–1527 (1996).

    CAS  Article  Google Scholar 

  113. Gamble, W. R. et al. Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorg. Med. Chem. 7, 1611–1615 (1999).

    CAS  PubMed  Article  Google Scholar 

  114. Anderson, H. J., Coleman, J. E., Andersen, R. J. & Roberge, M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother. Pharmacol. 39, 223–226 (1997).

    CAS  PubMed  Article  Google Scholar 

  115. Bai, R., Durso, N. A., Sackett, D. L. & Hamel, E. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 38, 14302–14310 (1999).

    CAS  PubMed  Article  Google Scholar 

  116. Nieman, J. A. et al. Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. J. Nat. Prod. 66, 183–199 (2003).

    CAS  PubMed  Article  Google Scholar 

  117. Zask, A. et al. Synthesis and biological activity of analogues of the antimicrotubule agent N,β,β-trimethyl-L-phenylalanyl-N1-[(1S,2E)-3-carboxy-1-isopropylbut-2-enyl]-N1,3-dimethyl-L-valinamide(HTI-286). J. Med. Chem. 47, 4774–4786 (2004).

    CAS  PubMed  Article  Google Scholar 

  118. Zask, A. et al. D-piece modifications of the hemiasterlin analog HTI-286 produce potent tubulin inhibitors. Bioorg. Med. Chem. Lett. 14, 4353–4358 (2004).

    CAS  PubMed  Article  Google Scholar 

  119. Yamashita, A. et al. Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment. Bioorg. Med. Chem. Lett. 14, 5317–5322 (2004).

    CAS  PubMed  Article  Google Scholar 

  120. Niu, C. et al. Tubulin inhibitors. Synthesis and biological activity of HTI-286 analogs with B-segment heterosubstituents. Bioorg. Med. Chem. Lett. 14, 4329–4332 (2004).

    CAS  PubMed  Article  Google Scholar 

  121. Lo, M. C. et al. Probing the interaction of HTI-286 with tubulin using a stilbene analogue. J. Am. Chem. Soc. 126, 9898–9899 (2004).

    CAS  PubMed  Article  Google Scholar 

  122. Krishnamurthy, G. et al. Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubules. Biochemistry 42, 13484–13495 (2003).

    CAS  PubMed  Article  Google Scholar 

  123. Mitra, A. & Sept, D. Localization of the antimitotic peptide and depsipeptide binding site on β-tubulin. Biochemistry 43, 13955–13962 (2004).

    CAS  PubMed  Article  Google Scholar 

  124. Nunes, M. et al. Two photoaffinity analogues of the tripeptide, hemiasterlin, exclusively label α-tubulin. Biochemistry 44, 6844–6857 (2005).

    CAS  PubMed  Article  Google Scholar 

  125. Poruchynsky, M. S. et al. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analogue, HTI-286, have mutations in α- or β-tubulin and increased microtubule stability. Biochemistry 43, 13944–13954 (2004).

    CAS  PubMed  Article  Google Scholar 

  126. Loganzo, F. et al. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin. Mol. Cancer Ther. 3, 1319–1327 (2004).

    CAS  Google Scholar 

  127. Loganzo, F. et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. 63, 1838–1845 (2003).

    CAS  PubMed  Google Scholar 

  128. Ratain M. J. et al. Phase 1 and pharmacological study of HTI-286, a novel antimicrotubule agent: correlation of neutropenia with time above a threshold serum concentration. Proc. Am. Soc. Clin. Oncol. 22, 516 (2003).

    Google Scholar 

  129. Hadaschik, B. A. et al. Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlin Int. J. Cancer: 122, 2368–2376 (2008).

    CAS  PubMed  Article  Google Scholar 

  130. Kalesse, M. The chemistry and biology of discodermolide. ChemBiochem 1, 171–175 (2000).

    CAS  PubMed  Article  Google Scholar 

  131. De Souza, M. V. (+)-discodermolide: a marine natural product against cancer. Scientific World Journal 4, 415–436 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. Longley, R. E., Caddigan, D., Harmody, D., Gunasekera, M. & Gunasekera, S. P. Discodermolide — a new, marine-derived immunosuppressive compound. I. In vitro studies. Transplantation 52, 650–656 (1991).

    CAS  PubMed  Article  Google Scholar 

  133. Longley, R. E., Caddigan, D., Harmody, D., Gunasekera, M. & Gunasekera, S. P. Discodermolide — a new, marine-derived immunosuppressive compound. II. In vivo studies. Transplantation 52, 656–661 (1991).

    CAS  PubMed  Article  Google Scholar 

  134. Longley, R. E., Gunasekera, S. P., Faherty, D., McLane, J. & Dumont, F. Immunosuppression by discodermolide. Ann. NY Acad. Sci. 696, 94–107 (1993).

    CAS  PubMed  Article  Google Scholar 

  135. Gunasekera, S. P., Gunasekera, M., Longley, R. E. & Schulte, G. K. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J. Org. Chem. 55, 4912–4915 (1990).

    CAS  Article  Google Scholar 

  136. Gunasekera, S. P., Gunasekera, M., Longley, R. E. & Schulte, G. K. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta [Erratum to document cited in CA113(9):75187b]. J. Org. Chem. 56, 1346 (1991).

    CAS  Article  Google Scholar 

  137. Nerenberg, J. B., Hung, D. T., Somers, P. K. & Schreiber, S. L. Total synthesis of the immunosuppressive agent (−)-discodermolide. J. Am. Chem. Soc. 115, 12621–12622 (1993).

    CAS  Article  Google Scholar 

  138. Hung, D. T., Nerenberg, J. B. & Schreiber, S. L. Distinct binding and cellular properties of synthetic (+)- and (−)-discodermolides. Chem. Biol. 1, 67–71 (1994). A good example of enantioselective bioactivity of natural and unnatural antipodes of marine-derived drugs.

    CAS  PubMed  Article  Google Scholar 

  139. Harried, S. S., Lee, C. P., Yang, G., Lee, T. I. & Myles, D. C. Total synthesis of the potent microtubule-stabilizing agent (+)-discodermolide. J. Org. Chem. 68, 6646–6660 (2003).

    CAS  PubMed  Article  Google Scholar 

  140. Paterson, I. & Lyothier, I. Total synthesis of (+)-discodermolide: an improved endgame exploiting a Still-Gennari-type olefination with a C1-C8 β-ketophosphonate fragment. Org. Lett. 6, 4933–4936 (2004).

    CAS  PubMed  Article  Google Scholar 

  141. Paterson, I. et al. A second-generation total synthesis of (+)-discodermolide: the development of a practical route using solely substrate-based stereocontrol. J. Org. Chem. 70, 150–160 (2005).

    CAS  PubMed  Article  Google Scholar 

  142. Smith, A. B. 3rd, Kaufman, M. D., Beauchamp, T. J., LaMarche, M. J. & Arimoto, H. Gram-scale synthesis of (+)-discodermolide. Org. Lett. 1, 1823–1826 (1999).

    CAS  PubMed  Article  Google Scholar 

  143. Smith, A. B. 3rd et al. Evolution of a gram-scale synthesis of (+)-discodermolide. J. Am. Chem. Soc. 122, 8654–8664 (2000).

    CAS  Article  Google Scholar 

  144. Smith, A. B. 3rd, Freeze, B. S., Brouard, I. & Hirose, T. A practical improvement, enhancing the large-scale synthesis of (+)-discodermolide: a third-generation approach. Org. Lett. 5, 4405–4408 (2003).

    CAS  PubMed  Article  Google Scholar 

  145. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: synthetic strategy and preparation of a common precursor. Org. Proc. Res. Dev. 8, 92–100 (2004).

    CAS  Article  Google Scholar 

  146. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 2: synthesis of fragments C1–6 and C9–14 Org. Proc. Res. Dev. 8, 101–106 (2004).

    CAS  Article  Google Scholar 

  147. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 3: synthesis of fragment C15–21 Org. Proc. Res. Dev. 8, 107–112 (2004). References 145–147 describe the challenge for production, met by a tour de force multi-step, total synthesis, of a complex, rare marine-derived drug. The synthesis of 65 g of discodermolide shows what is possible when the target is highly desirable.

    CAS  Article  Google Scholar 

  148. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 4: preparation of fragment C7–24 Org. Proc. Res. Dev. 8, 113–121 (2004).

    CAS  Article  Google Scholar 

  149. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5: linkage of fragments C1–6 and C7–24 and finale. Org. Proc. Res. Dev. 8, 122–130 (2004).

    CAS  Article  Google Scholar 

  150. Hung, D. T., Chen, J. & Schreiber, S. L. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chem. Biol. 3, 287–293 (1996).

    CAS  PubMed  Article  Google Scholar 

  151. ter Haar, E. et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243–250 (1996).

    CAS  PubMed  Article  Google Scholar 

  152. Kowalski, R. J. et al. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol. Pharmacol. 52, 613–622 (1997).

    CAS  PubMed  Article  Google Scholar 

  153. Martello, L. A. et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin. Cancer Res. 6, 1978–1987 (2000).

    CAS  PubMed  Google Scholar 

  154. Giannakakou, P. & Fojo, T. Discodermolide: just another microtubule-stabilizing agent? No! A lesson in synergy. Clin. Cancer Res. 6, 1613–1615 (2000).

    CAS  PubMed  Google Scholar 

  155. Honore, S. et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res. 64, 4957–4964 (2004).

    CAS  PubMed  Article  Google Scholar 

  156. Chen, J. G. & Horwitz, S. B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res. 62, 1935–1938 (2002).

    CAS  PubMed  Google Scholar 

  157. Broker, L. E. et al. Late activation of apoptotic pathways plays a negligible role in mediating the cytotoxic effects of discodermolide and epothilone B in non-small cell lung cancer cells. Cancer Res. 62, 4081–4088 (2002).

    CAS  PubMed  Google Scholar 

  158. Honore, S. et al. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol. Cancer Ther. 2, 1303–1311 (2003).

    CAS  PubMed  Google Scholar 

  159. Kar, S., Florence, G. J., Paterson, I. & Amos, L. A. Discodermolide interferes with the binding of tau protein to microtubules. FEBS Lett. 539, 34–36 (2003).

    CAS  PubMed  Article  Google Scholar 

  160. Escuin, D., Kline, E. R. & Giannakakou, P. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function. Cancer Res. 65, 9021–9028 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. Klein, L. E., Freeze, B. S., Smith, A. B. & Horwitz, S. B. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle 4, 501–507 (2005).

    CAS  PubMed  Article  Google Scholar 

  162. Smith, A. B. 3rd et al. Discodermolide analogues as the chemical component of combination bacteriolytic therapy. Bioorg. Med. Chem. Lett. 15, 3623–3626 (2005).

    CAS  PubMed  Article  Google Scholar 

  163. Mita, A. et al. A phase I pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. J. Clin. Oncol. 22, 2025 (2004).

    Article  Google Scholar 

  164. Schwartz, R. E. et al. Pharmaceuticals from cultured algae. J. Ind. Microbiol. 5, 113–124 (1990).

    CAS  Article  Google Scholar 

  165. Trimurtulu, G. et al. Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green-alga Nostoc sp strain Gsv-224. J. Am. Chem. Soc. 116, 4729–4737 (1994).

    CAS  Article  Google Scholar 

  166. Kobayashi, M. et al. Arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Tetrahedron Lett. 35, 7969–7972 (1994).

    CAS  Article  Google Scholar 

  167. Barrow, R. A. et al. Total synthesis of cryptophycins — revision of the structures of cryptophycin-A and cryptophycin-C. J. Am. Chem. Soc. 117, 2479–2490 (1995).

    CAS  Article  Google Scholar 

  168. Lu, K., Dempsey, J., Schultz, R. M., Shih, C. & Teicher, B. A. Cryptophycin-induced hyperphosphorylation of Bcl-2, cell cycle arrest and growth inhibition in human H460 NSCLC cells. Cancer Chemother. Pharmacol. 47, 170–178 (2001).

    CAS  PubMed  Article  Google Scholar 

  169. Mooberry, S. L., Taoka, C. R. & Busquets, L. Cryptophycin 1 binds to tubulin at a site distinct from the colchicine binding site and at a site that may overlap the vinca binding site. Cancer Lett. 107, 53–57 (1996).

    CAS  PubMed  Article  Google Scholar 

  170. Kerksiek, K., Mejillano, M. R., Schwartz, R. E., George, G. I. & Himes, R. H. Interaction of cryptophycin 1 with tubulin and microtubules. FEBS Lett. 377, 59–61 (1995).

    CAS  PubMed  Article  Google Scholar 

  171. Smith, C. D. & Zhang, X. Q. Mechanism of action of cryptophycin — interaction with the vinca alkaloid domain of tubulin. J. Biol. Chem. 271, 6192–6198 (1996).

    CAS  PubMed  Article  Google Scholar 

  172. Panda, D., Himes, R. H., Moore, R. E., Wilson, L. & Jordan, M. A. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry 36, 12948–12953 (1997).

    CAS  PubMed  Article  Google Scholar 

  173. Wagner, M. M. et al. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother. Pharmacol. 43, 115–125 (1999).

    CAS  PubMed  Article  Google Scholar 

  174. Sessa, C. et al. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single intermittent or weekly schedule. Eur. J. Cancer 38, 2388–2396 (2002).

    CAS  PubMed  Article  Google Scholar 

  175. Stevenson, J. P. et al. Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin. Cancer Res. 8, 2524–2529 (2002).

    CAS  PubMed  Google Scholar 

  176. Edelman, M. J. et al. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 39, 197–199 (2003).

    PubMed  Article  Google Scholar 

  177. Liang, J. et al. Cryptophycins-309, 249 and other cryptophycin analogs: Preclinical efficacy studies with mouse and human tumors. Investig. New Drugs 23, 213–224 (2005).

    CAS  Article  Google Scholar 

  178. Pettit, G. R. The dolastatins. Fortschr. Chem. Org. Naturst. 70, 1–79 (1997).

    CAS  PubMed  Google Scholar 

  179. Pettit, G. R. et al. The isolation and structure of a remarkable marine animal antineoplastic constituent — Dolastatin 10. J. Am. Chem. Soc. 109, 6883–6885 (1987).

    CAS  Article  Google Scholar 

  180. Pettit, G. R. Progress in the discovery of biosynthetic anticancer drugs. J. Nat. Prod. 59, 812–821 (1996).

    CAS  PubMed  Article  Google Scholar 

  181. Pettit, G. R. et al. The absolute-configuration and synthesis of natural (−)-Dolastatin-10. J. Am. Chem. Soc. 111, 5463–5465 (1989).

    CAS  Article  Google Scholar 

  182. Bai, R., Pettit, G. R. & Hamel, E. Dolastatin-10, a powerful cytostatic peptide derived from a marine animal — inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem. Pharmacol. 39, 1941–1949 (1990).

    CAS  PubMed  Article  Google Scholar 

  183. Bai, R., Pettit, G. R. & Hamel, E. Binding of dolastatin-10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J. Biol. Chem. 265, 17141–17149 (1990).

    CAS  PubMed  Article  Google Scholar 

  184. Bai, R., Friedman, S. J., Pettit, G. R. & Hamel, E. Dolastatin-15, a potent antimitotic depsipeptide derived from Dolabella auricularia: interaction with tubulin and effects on cellular microtubules. Biochem. Pharmacol. 43, 2637–2645 (1992).

    CAS  PubMed  Article  Google Scholar 

  185. Verdier-Pinard, P., Kepler, J. A., Pettit, G. R. & Hamel, E. Sustained intracellular retention of dolastatin 10 causes its potent antimitotic activity. Mol. Pharmacol. 57, 180–187 (2000).

    CAS  PubMed  Article  Google Scholar 

  186. Pitot, H. C. et al. Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res. 5, 525–531 (1999).

    CAS  PubMed  Google Scholar 

  187. Madden, T. et al. Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res. 6, 1293–1301 (2000).

    CAS  PubMed  Google Scholar 

  188. Vaishampayan, U. et al. Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin. Cancer Res. 6, 4205–4208 (2000).

    CAS  PubMed  Google Scholar 

  189. Krug, L. M. et al. Phase II study of dolastatin-10 in patients with advanced non-small-cell lung cancer. Ann. Oncol. 11, 227–228 (2000).

    CAS  PubMed  Article  Google Scholar 

  190. Margolin, K. et al. Dolastatin-10 in metastatic melanoma: a phase II and pharmokinetic trial of the California Cancer Consortium. Invest. New Drugs 19, 335–340 (2001).

    CAS  PubMed  Article  Google Scholar 

  191. Saad, E. D. et al. Phase II study of dolastatin-10 as first-line treatment for advanced colorectal cancer. Am. J. Clin. Oncol. 25, 451–453 (2002).

    PubMed  Article  Google Scholar 

  192. von Mehren, M. et al. Phase II trial of dolastatin-10, a novel anti-tubulin agent, in metastatic soft tissue sarcomas. Sarcoma 8, 107–111 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. Perez, E. A. et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer. Invest. New Drugs 23, 257–261 (2005).

    CAS  PubMed  Article  Google Scholar 

  194. Kindler, H. L. et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers. Invest. New Drugs 23, 489–493 (2005).

    CAS  PubMed  Article  Google Scholar 

  195. Newman, D. J. & Cragg, G. M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216–1238 (2004).

    CAS  PubMed  Article  Google Scholar 

  196. Kobayashi, M. et al. Antitumor activity of TZT-1027, a novel dolastatin 10 derivative. Jpn. J. Cancer Res. 88, 316–327 (1997).

    CAS  Google Scholar 

  197. Schoffski, P. et al. Phase I and pharmacokinetic study of TZT-1027, a novel synthetic dolastatin 10 derivative, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer. Ann. Oncol. 15, 671–679 (2004).

    Google Scholar 

  198. de Jonge, M. J. et al. Phase I and pharmacokinetic study of the dolastatin 10 analogue TZT-1027, given on days 1 and 8 of a 3-week cycle in patients with advanced solid tumors. Clin. Cancer Res. 11, 3806–3813 (2005).

    CAS  PubMed  Article  Google Scholar 

  199. Hashiguchi, N. et al. TZT-1027 elucidates antitumor activity through direct cytotoxicity and selective blockade of blood supply. Anticancer Res. 24, 2201–2208 (2004).

    CAS  PubMed  Google Scholar 

  200. Natsume, T. et al. Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Jpn. J. Cancer Res. 91, 737–747 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. Hirata, Y. & Uemura, D., Halichondrins — antitumor polyether macrolides from a marine sponge. Pure App. Chem. 58, 701–710 (1986).

    CAS  Article  Google Scholar 

  202. Uemura, D. et al. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J. Am. Chem. Soc. 107, 4796–4798 (1985).

    CAS  Article  Google Scholar 

  203. Pettit, G. R. et al. Isolation and structure of halistatin 1 from the eastern Indian Ocean marine sponge Phakellia carteri. J. Org. Chem. 58, 2538–2543 (1993).

    CAS  Article  Google Scholar 

  204. Pettit, G. R. et al. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J. Med. Chem. 34, 3339–3340 (1991).

    CAS  PubMed  Article  Google Scholar 

  205. Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem., 266, 15882–15889 (1991).

    CAS  PubMed  Article  Google Scholar 

  206. Dabydeen, D. A. et al. Comparison of the activities of the truncated halichondrin B analog NSC 707389 (E7389) with those of the parent compound and a proposed binding site on tubulin. Mol. Pharmacol. 70, 1866–1875 (2006).

    CAS  PubMed  Article  Google Scholar 

  207. Aicher, T. D et al. Total synthesis of halichondrin B and norhalichondrin B. J. Am. Chem. Soc. 114, 3162–3164 (1992).

    CAS  Article  Google Scholar 

  208. Hart, J. B., Lill, R. E., Hickford, S. J. H., Blunt, J. W. & Munro, M. H. G. in Drugs from the Sea (ed. Fusetani, N.) 134–153 (Karger, Basel, 2000).

    Book  Google Scholar 

  209. Gravalos, D. G., Lake, R., Blunt, J. W., Munro, M. H. G. & Litaudon, M. S. P. Halichondrins: cytotoxic polyether macrolides. EP0572109 (B1) (1993).

  210. Munro, M. H. G. et al. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 70, 15–25 (1999).

    CAS  PubMed  Article  Google Scholar 

  211. Stamos, D. P., Sean, S. C. & Kishi, Y. New synthetic route to the C14-C38 segment of halichondrins. J. Org. Chem. 62, 7552–7553 (1997).

    CAS  Article  Google Scholar 

  212. Wang, Y., Habgood, G. J., Christ, W. J., Kishi, Y., Littlefield, B. A. & Yu, M. J. Structure–activity relationships of halichondrin B analogues: modifications at C30-C38. Bioorg. Med. Chem. Lett., 10, 1029–1032 (2000).

    CAS  PubMed  Article  Google Scholar 

  213. Littlefield, B. A. et al. Macrocyclic analogs and methods of their use and preparation. WO9965894 (A1) (1999).

  214. Yu, M. J., Kishi, Y. & Littlefield, B. A. in Anticancer Agents from Natural Products (eds Cragg, G. M., Kingston, D. G. I. & Newman, D. J.) 241–265 (Taylor and Francis, Boca Raton, 2005).

    Google Scholar 

  215. Towle, M. J. et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 61, 1013–1021 (2001).

    CAS  PubMed  Google Scholar 

  216. Forero, J. B. et al. E7389, a novel anti-tubulin, in patients with refractory breast cancer. J. Clin. Oncol. 24 (Suppl. 18), 653 (2006).

    Article  Google Scholar 

  217. Blum, J. L. et al. Phase II study of eribulin mesylate (E7389) halichondrin B analog in patients with refractory breast cancer. J. Clin. Oncol. 25 (Suppl. 18), 1034 (2007).

    Article  Google Scholar 

  218. Spira, A. I., et al. Phase II study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 25 (Suppl. 18), 7546 (2007).

    Article  Google Scholar 

  219. PR Newswire. Eribulin Mesylate Demonstrated Anti-Tumor Activity in Heavily Pretreated Patients With Advanced Breast Cancer. PR Newswire web site [online], <http://www.prnewswire.co.uk/cgi/news/release?id=227511> (2008).

  220. Hamann, M. T. & Scheuer, P. J. Kahalalide F: a bioactive depsipeptide from the Sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp. J. Am. Chem. Soc. 115, 5825–5826 (1993).

    CAS  Article  Google Scholar 

  221. Goetz, G., Yoshida, W. Y. & Scheuer, P. J. The absolute stereochemistry of kahalalide F. Tetrahedron 55, 7739–7746 (1999).

    CAS  Article  Google Scholar 

  222. Hamann, M. T., Otto, C. S., Scheuer, P. J. & Dunbar, D. C. Kahalalides: bioactive peptide from a marine mollusk Elysia rufescens and its algal diet Bryopsis sp. J. Org. Chem. 61, 6594–6600 (1996).

    CAS  PubMed  Article  Google Scholar 

  223. Minami, Y. et al. Structure of cypemycin, a new peptide antibiotic. Tetrahedron Lett. 35, 8001–8004 (1994).

    Article  Google Scholar 

  224. Neuhof, T. et al. Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J. Nat. Prod. 68, 695–700 (2005).

    CAS  PubMed  Article  Google Scholar 

  225. Becerro, M. A., Goetz, G., Paul, V. J. & Scheuer, P. J. Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host alga Bryopsis sp. J. Chem. Ecol. 27, 2287–2299 (2001).

    CAS  PubMed  Article  Google Scholar 

  226. Lopez-Macia, A., Jimenez, J. C., Royo, M., Giraet, E. & Albericio, F. Synthesis and structure determination of kahalalide F. J. Am. Chem. Soc. 123, 11398–11401 (2001).

    CAS  PubMed  Article  Google Scholar 

  227. Bonnard, I., Manzanares, I. & Rinehart, K. L. Stereochemistry of kahalalide F. J. Nat. Prod. 66, 1466–1470 (2003).

    CAS  PubMed  Article  Google Scholar 

  228. Garcia-Rocha, M., Bonay, P. & Avila, J. The antitumoral compound Kahalalide F acts on cell lysosomes. Cancer Lett. 99, 43–50 (1996).

    CAS  PubMed  Article  Google Scholar 

  229. Suarez, Y. et al. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol. Cancer Ther. 2, 863–872 (2003).

    CAS  PubMed  Google Scholar 

  230. Janmaat, M. L., Rodriguez, J. A., Jimeno, J., Kruyt, F. A. E. & Giaccone, G. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol. Pharmacol. 68, 502–510 (2005).

    CAS  PubMed  Article  Google Scholar 

  231. Sewell, J. M. et al. The mechanism of action of Kahalalide F: variable cell permeability in human hepatoma cell lines. Eur. J. Cancer 41, 1637–1644 (2005).

    CAS  PubMed  Article  Google Scholar 

  232. Sparidans, R. W. et al. Chemical and enzymatic stability of a cyclic depsipeptide, the novel, marine-derived, anti-cancer agent kahalalide F. Anticancer Drugs 12, 575–582 (2001).

    CAS  PubMed  Article  Google Scholar 

  233. Brown, A. P., Morrissey, R. L., Faircloth, G. T. & Levine, B. S. Preclinical toxicity studies of kahalalide F, a new anticancer agent: single and multiple dosing regimens in the rat. Cancer Chemother. Pharmacol. 50, 333–340 (2002).

    CAS  PubMed  Article  Google Scholar 

  234. Rademaker-Lakhai, J. M. et al. Phase I clinical and pharmacokinetic study of Kahalalide F in patients with advanced androgen refractory prostate cancer. Clin. Cancer Res. 11, 1854–1862 (2005).

    CAS  Google Scholar 

  235. Ciruelos, C. et al. A phase I clinical and pharmacokinetic (PK) study with Kahalalide F (KF) in patients (pts) with advanced solid tumors (AST) with a continuous weekly (W) 1-hour iv infusion schedule. Eur. J. Cancer 38 (Suppl.), S33 (2002).

    Google Scholar 

  236. Pettit, G. R. et al. Isolation and structure of bryostatin-1. J. Am. Chem. Soc. 104, 6846–6848 (1982).

    CAS  Article  Google Scholar 

  237. Schaufelberger, D. E. et al. The large-scale isolation of bryostatin-1 from Bugula neritina following current good manufacturing practices. J. Nat. Prod. 54, 1265–1270 (1991).

    CAS  PubMed  Article  Google Scholar 

  238. Rouhi, M. A. Supply issues complicate trek of chemicals from sea to market. Chem. Eng. News 73, 42–44 (1995).

    Article  Google Scholar 

  239. Evans, D. A. et al. Total synthesis of bryostatin 2. J. Am. Chem. Soc. 121, 7540–7552 (1999).

    CAS  Article  Google Scholar 

  240. Ohmori, K. et al. Total synthesis of bryostatin 3. Angew. Chem. Int. Ed. Engl. 39, 2290–2294 (2000).

    CAS  PubMed  Article  Google Scholar 

  241. Ohmori, K. Evolution of synthetic strategies for highly functionalized natural products: a successful route to bryostatin 3. Bull. Chem. Soc. Jap. 77, 875–885 (2004).

    CAS  Article  Google Scholar 

  242. Kageyama, M. et al. Synthesis of bryostatin-7. J. Am. Chem. Soc. 112, 7407–7408 (1990).

    CAS  Article  Google Scholar 

  243. Blanchette, M. A. et al. Synthesis of bryostatins.1. construction of the C(1)-C(16) fragment. J. Org. Chem. 54, 2817–2825 (1989).

    CAS  Article  Google Scholar 

  244. Voight, E. A., Seradi, H., Roethle, P. A. & Burke, S. D. Synthesis of the bryostatin 1 northern hemisphere (C1-C16) via desymmetrization by ketalization/ring-closing metathesis. Org. Lett. 6, 4045–4048 (2004).

    CAS  PubMed  Article  Google Scholar 

  245. DeBrabander, J. & Vandewalle, M. Towards the asymmetric synthesis of bryostatin 1. Pure Appl. Chem. 68, 715–718 (1996).

    CAS  Article  Google Scholar 

  246. Isakov, N., Galron, D., Mustelin, T., Pettit, G. R. & Altman, A. Inhibition of phorbol ester-induced T-cell proliferation by bryostatin is associated with rapid degradation of protein-kinase-C. J. Immunol. 150, 1195–1204 (1993).

    CAS  PubMed  Google Scholar 

  247. Wender, P. A. et al. Synthesis of the first members of a new class of biologically active bryostatin analogues. J. Am. Chem. Soc. 120, 4534–4535 (1998).

    CAS  Article  Google Scholar 

  248. Wender, P. A. et al. Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proc. Natl Acad. Sci. USA 85, 7197–7201 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  249. Hennings, H. et al. Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin. Carcinogenesis 8, 1343–1346 (1987).

    CAS  PubMed  Article  Google Scholar 

  250. Berkow, R. L. et al. In vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity. Cancer Res. 53, 2810–2815 (1993).

    CAS  PubMed  Google Scholar 

  251. Hu, Z. B., Ma, W. L., Uphoff, C. C., Lanotte, M. & Drexler, H. G. Modulation of gene-expression in the acute promyelocytic leukemia-cell line Nb4. Leukemia 7, 1817–1823 (1993).

    CAS  PubMed  Google Scholar 

  252. Grant, S., Pettit, G. R. & McCrady, C. Effect of bryostatin-1 on the in vitro radioprotective capacity of recombinant granulocyte macrophage colony-stimulating factor (Rgm-Csf) toward committed human myeloid progenitor cells (Cfu-Gm). Exp. Hematol. 20, 34–42 (1992).

    CAS  PubMed  Google Scholar 

  253. Mutter, R. & Wills, M. Chemistry and clinical biology of the bryostatins. Bioorg. Med. Chem. 8, 1841–1860 (2000).

    CAS  PubMed  Article  Google Scholar 

  254. Propper, D. J. et al. A phase II study of bryostatin 1 in metastatic malignant melanoma. Br. J. Cancer 78, 1337–1341 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  255. Varterasian, M. et al. Phase I trial of bryostatin 1 in relapsed lymphoma and CLL. Blood 88, 2269 (1996).

    Google Scholar 

  256. Varterasian, M. L. et al. Phase II study of bryostatin 1 in patients with relapsed multiple myeloma. Invest. New Drugs 19, 245–247 (2001).

    CAS  PubMed  Article  Google Scholar 

  257. Varterasian, M. L. et al. Phase II trial of bryostatin 1 in patients with relapsed low-grade non-Hodgkin's lymphoma and chronic lymphocytic leukemia Clin. Cancer Res. 6, 825–828 (2000).

    CAS  PubMed  Google Scholar 

  258. Grant, S. et al. Phase Ib trial of bryostatin 1 in patients with refractory malignancies. Clin. Cancer Res. 4, 611–618 (1998).

    CAS  PubMed  Google Scholar 

  259. Clamp, A. & Jayson, G. C. The clinical development of the bryostatins. Anticancer Drugs 13, 673–683 (2002).

    CAS  PubMed  Article  Google Scholar 

  260. Hickman, P. F. et al. Bryostatin 1, a novel antineoplastic agent and protein-kinase-C activator, induces human myalgia and muscle metabolic defects — a P-31 magnetic-resonance spectroscopic study. Br. J. Cancer 72, 998–1003 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  261. Pfister, D. G. et al. A phase II trial of bryostatin-1 in patients with metastatic or recurrent squamous cell carcinoma of the head and neck. Invest. New Drugs 20, 123–127 (2002).

    CAS  PubMed  Article  Google Scholar 

  262. Zonder, J. A. et al. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin. Cancer Res. 7, 38–42 (2001).

    CAS  PubMed  Google Scholar 

  263. Bedikian, A. Y. et al. Phase II evaluation of bryostatin-1 in metastatic melanoma. Melanoma Res. 11, 183–188 (2001).

    CAS  PubMed  Article  Google Scholar 

  264. Pagliaro, L. et al. A phase II trial of bryostatin-1 for patients with metastatic renal cell carcinoma. Cancer 89, 615–618 (2000).

    CAS  PubMed  Article  Google Scholar 

  265. Clamp, A. R. et al. A phase II trial of bryostatin-I administered by weekly 24-hour infusion in recurrent epithelial ovarian carcinoma. Br. J. Cancer 89, 1152–1154 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  266. Cragg, L. H. et al. Phase I trial and correlative laboratory studies of bryostatin I (NSC 339555) and high-dose 1-β-D-arabinofuranosylcytosine in patients with refractory acute leukemia. Clin. Cancer Res. 8, 2123–2133 (2002).

    CAS  PubMed  Google Scholar 

  267. Dowlati, A. et al. Phase I and correlative study of combination bryostatin 1 and vincristine in relapsed B-cell malignancies. Clin. Cancer Res. 9, 5929–5935 (2003).

    CAS  PubMed  Google Scholar 

  268. Ajani, J. A. Multi-center Phase II study of sequential paclitaxel and bryostatin-1 (NSC 339555) in patients with untreated, advanced gastric or gastroesophageal junction adenocarcinoma. Invest. New Drugs 24, 353–357 (2006).

    CAS  PubMed  Article  Google Scholar 

  269. Schwartz, G. K. & Shah, M. A. Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005).

    CAS  PubMed  Article  Google Scholar 

  270. Feher, M. & Schmidt, J. M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    CAS  PubMed  Article  Google Scholar 

  271. Udwary, D. W. et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl Acad. Sci. USA 104, 10376–10381 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  272. Newman, D. J. & Hill, R. T. New drugs from marine microbes: the tide is turning. J. Ind. Microbiol. Biotechnol. 33, 539–544 (2006).

    CAS  PubMed  Article  Google Scholar 

  273. Piel, J. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39–50 (2006).

    CAS  PubMed  Article  Google Scholar 

  274. Hildebrand, M. et al. bryA: An unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina. Chem. Biol. 11, 1543–1552 (2004).

    CAS  PubMed  Article  Google Scholar 

  275. Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont from the marine bryozoan Bugula neritina. J. Nat. Prod. 70, 67–74 (2007).

    CAS  PubMed  Article  Google Scholar 

  276. Homer, The Iliad, (7th century, B.C). Fagles, R. (translation). Penguin Books (1990).

    Google Scholar 

  277. Homer, The Odyssey (7th century B. C.). Fagles, R. (translation). Penguin Books (2006).

    Google Scholar 

  278. Feling, R. H. et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Intl. Ed. 42, 355–357 (2003).

    CAS  Article  Google Scholar 

  279. Maldonado, L., Fenical, W., Goodfellow, M., Jensen, P. R. & Ward, A. C. Salinispora gen nov., sp. nov., Salinispora arenicola sp. nov., and S. tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Internat. J. System. Appl. Microbiol. 55, 1759–1766 (2005).

    Google Scholar 

  280. Chauhan, D. et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407–419 (2005).

    CAS  PubMed  Article  Google Scholar 

  281. Chauhan, D. et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111, 1654–1664 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  282. Fenicala, W. et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg. Med. Chem. 5 Nov 2008 (doi:10.1016/j.bmc.2008.10.075). This article, and several within the same issue of the journal, chronicle the discovery of key marine antitumour drugs by the original investigators and illustrates issues of procurement, scale-up, production and clinical investigations.

    Google Scholar 

  283. Searle, P. A. & Molinski, T. F. Phorboxazoles A and B — potent cytostatic macrolides from marine sponge Phorbas sp. J. Am. Chem. Soc. 117, 8126–8131 (1995).

    CAS  Article  Google Scholar 

  284. Searle, P. A., Molinski, T. F., Brzezinski, L. J. & Leahy, J. W. Absolute configuration of phorboxazoles A and B from the marine sponge Phorbas sp.1. macrolide and hemiketal rings. J. Am. Chem. Soc. 118, 9422–9423 (1996).

    CAS  Article  Google Scholar 

  285. Molinski T. F. Absolute configuration of phorboxazoles A and B from the marine sponge, Phorbas sp.2. C43 and complete stereochemistry. Tetrahedron Lett. 37, 7879–7880 (1996).

    CAS  Article  Google Scholar 

  286. Skepper, C. K., MacMillan, J. B., Zhou, G.-X., Masuno, M. N. & Molinski, T. F. Chlorocyclopropane macrolides from the marine sponge Phorbas sp. Assignment of the absolute configurations of phorbasides A and B by quantitative CD. J. Am. Chem. Soc. 129, 4150–4151 (2007).

    CAS  PubMed  Article  Google Scholar 

  287. MacMillan, J. B., Xiong-Zhou, G., Skepper, C. K. & Molinski, T. F. Phorbasides A-E, cytotoxic chlorocyclopropane macrolide glycosides from the marine sponge Phorbas sp. CD determination of C-methyl sugar configurations. J. Org. Chem. 73, 3699–3706 (2008).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Blunt (University of Canterbury, New Zealand) and D. Newman (Developmental Therapeutics Program, US National Cancer Institute) for valuable discussions, and to S. Lopez-Legintil (University of North Carolina, Wilmington, USA) for kind permission to reproduce the underwater image of Ecteinascidia turbinata (figure 2b). Some of the authors' research described herein was supported by grants to T.F.M. from the US National Cancer Institute, National Institutes of Health (CA122256 and CA085602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz F. Molinski.

Related links

Related links

FURTHER INFORMATION

NCI Clinical Trials

NCI Fact Sheets

The Gordon Research Conference in Marine Natural Products

The Natural Products Branch of the Developmental Therapeutics Program of the NIH

Ziconatide @ 3Dchem.com

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molinski, T., Dalisay, D., Lievens, S. et al. Drug development from marine natural products. Nat Rev Drug Discov 8, 69–85 (2009). https://doi.org/10.1038/nrd2487

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2487

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing