IMMUNOMODULATORS

Enhancing regulation

DOI: 10.1038/nrd2473

Currently under clinical investigation as anticancer therapies, histone deacetylase inhibitors (HDACis) also have anti-inflammatory effects, but the underlying mechanisms of action are not clear. Hancock and colleagues now show that HDACi therapy increases the number and suppressor ability of regulatory T cells (T_{reg} cells), which are key mediators of immune tolerance. They also provide evidence that HDACis have therapeutic potential for autoimmune diseases and preventing transplant rejection.

Using three different mouse models, the authors showed that HDACi treatment enhances the production of T_{reg} cells by either increasing thymic output of T_{reg} cells or peripheral conversion of conventional T cells (non- T_{reg} cells) into T_{reg} cells. HDACis are known to increase

histone acetylation, resulting in chromatin remodelling and modulation of gene transcription. HDACi therapy also increases expression of T_{reg} -associated genes such as *Foxp3* and cytotoxic T-lymphocyte-associated protein 4 (*Ctla4*). *In vitro*, HDACi-treated T_{reg} cells were two- to three-fold more effective than wild-type T_{reg} cells at suppressing proliferation of T effector (T_{eff}) cells, which produce cytokines associated with inflammation.

Specifically investigating HDAC expression in T_{reg} cells, the authors showed that HDAC9 expression was higher in these cells than in non- T_{reg} cells. Following T-cell receptor stimulation, expression of HDAC9 in non- T_{reg} cells decreased as they became T_{eff} cells, whereas expression in T_{reg} cells was 30-fold higher. Furthermore, $Hdac9^{-/-}$ mice had significantly more T_{reg} cells compared with wild-type mice with enhanced expression of *Foxp3*, *Ctla4* and *Gitr*, and increased acetylation of Foxp3, indicating that HDAC9 is a regulator of T_{reg} -associated genes.

To further investigate Foxp3 acetylation, western blotting and immunoprecipitations were performed on HDACi-treated T_{reg} and non- T_{reg} cells, revealing increased Foxp3 acetylation as well as increased binding of Foxp3 to promoter regions of target genes in the HDACi-treated T_{reg} cells. The importance of Foxp3 acetylation for the suppressor activity of T_{reg} cells was also demonstrated by transduction of non- T_{reg} cells with a vector encoding wild-type Foxp3, which resulted in non- T_{reg} cells with suppressive ability equivalent to T_{reg} cells. Mutagenesis studies showed that FOXP3 protein acetylation was required for avid DNA binding and Foxp3-dependent suppression and modulation of T_{reg} gene expression. Taken together, these data show that HDACi therapy increases histone and Foxp3 acetylation, as well as FOXP3 protein expression and DNA binding.

Suppressor activity of HDACienhanced T_{reg} cells in vivo was explored using three models. First, co-transfer of HDACi-treated T_{reg} and non-T_{reg} cells into immunodeficient mice resulted in substantially decreased T-cell proliferation compared with non-T_{reg} cells alone. Second, in a model of colitis, HDACi treatment increased the number of T_m cells in lymphoid tissues and decreased disease severity. Last, HDACi treatment was shown to modestly prolong the survival of cardiac and islet transplants, with addition of low-dose rapamycin inducing permanent transplant survival. Overall, inhibiting HDACs has a broad therapeutic potential for immunomodulation.

Bethan Hughes

Rev. Drug Discov. 5, 769–784 (2006)

ORIGINAL RESEARCH PAPER Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Med. 13, 1299–1307 (2007) FURTHER READING Bolden, J. E. et al. Anticancer activities of histone deacetylase inhibitors. Nature