Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics

Key Points

  • The inorganic anions nitrite (NO2) and nitrate (NO3) are usually viewed as inert end products of nitric oxide (NO) metabolism or unwanted residues in the food chain.

  • Recent studies show that nitrate and nitrite are physiologically recycled in blood and tissue to form NO and other bioactive nitrogen oxides. Thus, they should be viewed as storage pools for NO-like bioactivity, thereby complementing the NO synthase-dependent pathway.

  • There are two major sources of nitrate and nitrite: the endogenous l-arginine/NO-synthase pathway and the diet. Vegetables are particularly rich in nitrate.

  • The bioactivation of nitrate from dietary or endogenous sources requires its initial reduction to nitrite, and this conversion is mainly carried out by commensal bacteria inhabiting the gastrointestinal tract.

  • There are numerous pathways in the body for the further reduction of nitrite to bioactive NO, involving haemoglobin, myoglobin, xanthine oxidoreductase, ascorbate, polyphenols and protons.

  • The generation of NO by all these pathways is greatly enhanced during hypoxia and acidosis, thereby ensuring NO production in situations for which the oxygen-dependent NO-synthase enzyme activities are compromised.

  • Nitrite reduction to NO during physiological and pathological hypoxia appear to contribute to physiological hypoxic signalling, vasodilation, modulation of cellular respiration and the cellular response to ischaemic stress.

  • An expanding number of studies suggest a therapeutic potential for nitrate and nitrite in diseases such as myocardial infarction, stroke, systemic and pulmonary hypertension, and gastric ulceration.

Abstract

The inorganic anions nitrate (NO3) and nitrite (NO2) were previously thought to be inert end products of endogenous nitric oxide (NO) metabolism. However, recent studies show that these supposedly inert anions can be recycled in vivo to form NO, representing an important alternative source of NO to the classical l-arginine–NO-synthase pathway, in particular in hypoxic states. This Review discusses the emerging important biological functions of the nitrate–nitrite–NO pathway, and highlights studies that implicate the therapeutic potential of nitrate and nitrite in conditions such as myocardial infarction, stroke, systemic and pulmonary hypertension, and gastric ulceration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nitrate–nitrite–NO pathway.
Figure 2: The entero-salivary circulation of nitrate in humans.
Figure 3: Pathways for nitrite reduction to NO and its proposed physiological roles.
Figure 4: R-state or allosteric autocatalysis of nitrite reduction by haemoglobin.
Figure 5: Therapeutic opportunities for inorganic nitrite.

Similar content being viewed by others

References

  1. Tannenbaum, S. R. & Correa, P. Nitrate and gastric cancer risks. Nature 317, 675–676 (1985).

    CAS  PubMed  Google Scholar 

  2. Mensinga, T. T., Speijers, G. J. & Meulenbelt, J. Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 22, 41–51 (2003).

    CAS  PubMed  Google Scholar 

  3. Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502 (1994). The first suggestion of NOS-independent NO generation from inorganic nitrite and in vitro demonstration of its role in gastric host defence.

    CAS  PubMed  Google Scholar 

  4. Lundberg, J. O., Weitzberg, E., Lundberg, J. M. & Alving, K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut 35, 1543–1546 (1994). The first demonstration of NOS-independent NO generation from inorganic nitrate and nitrite in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zweier, J. L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nature Med. 1, 804–809 (1995). The first report demonstrating NOS-independent NO generation from nitrite in ischaemic heart tissue.

    CAS  PubMed  Google Scholar 

  6. Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nature Med. 9, 1498–1505 (2003). The first report demonstrating vasodilation in humans by infusions of nitrite at near physiological levels. Experiments show a novel function of deoxyhaemoglobin as a functional nitrite reductase contributing to vasodilation.

    CAS  PubMed  Google Scholar 

  7. Duncan, C. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nature Med. 1, 546–551 (1995).

    CAS  PubMed  Google Scholar 

  8. Lundberg, J. O. & Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 37, 395–400 (2004).

    CAS  PubMed  Google Scholar 

  9. Gladwin, M. T. et al. The emerging biology of the nitrite anion. Nature Chem. Biol. 1, 308–314 (2005).

    CAS  Google Scholar 

  10. Nagababu, E., Ramasamy, S., Abernethy, D. R. & Rifkind, J. M. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem. 278, 46349–46356 (2003).

    CAS  PubMed  Google Scholar 

  11. Shiva, S. et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ. Res. 100, 654–661 (2007).

    CAS  PubMed  Google Scholar 

  12. Rassaf, T. et al. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 100, 1749–1754 (2007).

    CAS  PubMed  Google Scholar 

  13. Zhang, Z. et al. Human xanthine oxidase converts nitrite ions into nitric oxide (NO). Biochem. Soc. Trans. 25, 524S (1997). An early report demonstrating nitrite reduction by xanthine oxidoreductase and suggesting a physiological role for this enzyme in NO generation.

    CAS  PubMed  Google Scholar 

  14. Godber, B. L. et al. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J. Biol. Chem. 275, 7757–7763 (2000).

    CAS  PubMed  Google Scholar 

  15. Millar, T. M. et al. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 427, 225–228 (1998).

    CAS  PubMed  Google Scholar 

  16. Carlsson, S., Wiklund, N. P., Engstrand, L., Weitzberg, E. & Lundberg, J. O. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide 5, 580–586 (2001).

    CAS  PubMed  Google Scholar 

  17. Peri, L. et al. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group? Free Radic. Biol. Med. 39, 668–681 (2005).

    CAS  PubMed  Google Scholar 

  18. Gago, B., Lundberg, J. O., Barbosa, R. M. & Laranjinha, J. Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic. Biol. Med. 43, 1233–1242 (2007).

    CAS  PubMed  Google Scholar 

  19. Giraldez, R. R., Panda, A., Xia, Y., Sanders, S. P. & Zweier, J. L. Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J. Biol. Chem. 272, 21420–21426 (1997).

    CAS  PubMed  Google Scholar 

  20. Oestergaard, L. et al. Diminished NO release in chronic hypoxic human endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 293, H2894–H2903 (2007).

    CAS  Google Scholar 

  21. Shiva, S. et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med. 204, 2089–2102 (2007). Shows that the cytoprotective effects of nitrite in ischaemia–reperfusion injury occur via the dynamic regulation of mitochondrial electron transfer, through reversible inhibition of complex I and subsequent limitation of oxidative damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Duranski, M. R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005). The first report demonstrating cytoprotective effects of low-dose nitrite in vivo after ischaemia–reperfusion injury of the heart and liver. This study provides proof of in vivo nitrite signalling at near physiological levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bryan, N. S. et al. Nitrite is signalling molecule and regulator of gene expression in mammalian tissue. Nature Chem. Biol. 1, 290–297 (2005). A report suggesting that the nitrite anion is a physiological signalling molecule independent of intermediary NO formation.

    CAS  Google Scholar 

  24. Modin, A. et al. Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol. Scand. 171, 9–16 (2001).

    CAS  PubMed  Google Scholar 

  25. Gladwin, M. T. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc. Natl Acad. Sci. USA 97, 11482–11487 (2000).

    CAS  PubMed  Google Scholar 

  26. Bryan, N. S. et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc. Natl Acad. Sci. USA 101, 4308–4313 (2004).

    CAS  PubMed  Google Scholar 

  27. Moncada, S. & Higgs, A. The l-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002–2012 (1993).

    CAS  PubMed  Google Scholar 

  28. Ignarro, L. J. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol. 53, 503–514 (2002).

    CAS  PubMed  Google Scholar 

  29. Shiva, S. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nature Chem. Biol. 2, 486–493 (2006).

    CAS  Google Scholar 

  30. Kleinbongard, P. et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic. Biol. Med. 35, 790–796 (2003).

    CAS  PubMed  Google Scholar 

  31. Kelm, M., Preik-Steinhoff, H., Preik, M. & Strauer, B. E. Serum nitrite sensitively reflects endothelial NO formation in human forearm vasculature: evidence for biochemical assessment of the endothelial l-arginine-NO pathway. Cardiovasc. Res. 41, 765–772 (1999).

    CAS  PubMed  Google Scholar 

  32. Rassaf, T., Feelisch, M. & Kelm, M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Radic. Biol. Med. 36, 413–422 (2004).

    CAS  PubMed  Google Scholar 

  33. Green, D. J., Maiorana, A., O'Driscoll, G. & Taylor, R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 561, 1–25 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewis, T. V., Dart, A. M., Chin-Dusting, J. P. & Kingwell, B. A. Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arterioscler. Thromb. Vasc. Biol. 19, 2782–2787 (1999).

    CAS  PubMed  Google Scholar 

  35. Jungersten, L., Ambring, A., Wall, B. & Wennmalm, A. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J. Appl. Physiol. 82, 760–764 (1997).

    CAS  PubMed  Google Scholar 

  36. Crawford, J. H. et al. Transduction of NO-bioactivity by the red blood cell in sepsis: novel mechanisms of vasodilation during acute inflammatory disease. Blood 104, 1375–1382 (2004).

    CAS  PubMed  Google Scholar 

  37. Kleinbongard, P. et al. Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic. Biol. Med. 40, 295–302 (2006).

    CAS  PubMed  Google Scholar 

  38. Lundberg, J. O., Weitzberg, E., Cole, J. A. & Benjamin, N. Nitrate, bacteria and human health. Nature Rev. Microbiol. 2, 593–602 (2004).

    CAS  Google Scholar 

  39. Wennmalm, Å. et al. Nitric oxide synthesis and metabolism in man. Ann. NY Acad. Sci. 714, 158–164 (1994).

    CAS  PubMed  Google Scholar 

  40. Spiegelhalder, B., Eisenbrand, G. & Preussman, R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14, 545–548 (1976).

    CAS  PubMed  Google Scholar 

  41. Weitzberg, E. & Lundberg, J. O. Nonenzymatic nitric oxide production in humans. Nitric Oxide 2, 1–7 (1998).

    CAS  PubMed  Google Scholar 

  42. Sobko, T. et al. Gastrointestinal nitric oxide generation in germ-free and conventional rats. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G993–G997 (2004).

    CAS  PubMed  Google Scholar 

  43. Weller, R. et al. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J. Invest. Dermatol. 107, 327–331 (1996).

    CAS  PubMed  Google Scholar 

  44. Sobko, T. et al. Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide 13, 272–278 (2005).

    CAS  PubMed  Google Scholar 

  45. Lundberg, J. O. et al. Urinary nitrite: more than a marker of infection. Urology 50, 189–191 (1997).

    CAS  PubMed  Google Scholar 

  46. Nathan, C. F. & Hibbs, J. B. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3, 65–70 (1991).

    CAS  PubMed  Google Scholar 

  47. Fang, F. C. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 99, 2818–2825 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stuehr, D. & Marletta, M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl Acad. Sci. USA 82, 7738–7742 (1985).

    CAS  PubMed  Google Scholar 

  49. Hibbs, J. B., Jr, Taintor, R. R. & Vavrin, Z. Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473–476 (1987).

    CAS  PubMed  Google Scholar 

  50. Dykhuizen, R. S. et al. Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob. Agents Chemother. 40, 1422–1425 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bjorne, H., Weitzberg, E. & Lundberg, J. O. Intragastric generation of antimicrobial nitrogen oxides from saliva — physiological and therapeutic considerations. Free Radic. Biol. Med. 41, 1404–1412 (2006).

    PubMed  Google Scholar 

  52. Bjorne, H. H. et al. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J. Clin. Invest. 113, 106–114 (2004).

    PubMed Central  Google Scholar 

  53. Petersson, J. et al. Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G718–G724 (2007).

    CAS  PubMed  Google Scholar 

  54. Holm, M., Olbe, L. & Fandriks, L. Intragastric CO2 and nitric oxide participate in the regulation of peptone-induced gastrin release in humans. Scand. J. Gastroenterol. 35, 1260–1265 (2000).

    CAS  PubMed  Google Scholar 

  55. Weiss, S., Wilkins, R. W. & Haynes, F. W. The nature of the collapse induced by sodium nitrite. J. Clin. Invest. 16, 73–84 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Furchgott, R. F. & Bhadrakom, S. Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J. Pharmacol. Exp. Ther. 108, 129–143 (1953).

    CAS  PubMed  Google Scholar 

  57. Ignarro, L. J. et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 218, 739–749 (1981).

    CAS  PubMed  Google Scholar 

  58. Lauer, T. et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc. Natl Acad. Sci. USA 98, 12814–12819 (2001).

    CAS  PubMed  Google Scholar 

  59. Cannon, R. O. 3rd et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J. Clin. Invest. 108, 279–287 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schechter, A. N. & Gladwin, M. T. Hemoglobin and the paracrine and endocrine functions of nitric oxide. N. Engl. J. Med. 348, 1483–1485 (2003).

    CAS  PubMed  Google Scholar 

  61. Dejam, A., Hunter, C. J. & Gladwin, M. T. Effects of dietary nitrate on blood pressure. N. Engl. J. Med. 356, 1590 (2007).

    CAS  PubMed  Google Scholar 

  62. Larsen, F. J., Ekblom, B., Sahlin, K., Lundberg, J. O. & Weitzberg, E. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 355, 2792–2793 (2006). A report demonstrating a reduction in blood pressure in humans by ingestion of dietary levels of inorganic nitrate. The authors suggest that nitrate is bioactivated in vivo to form nitrite and vasodilatory NO and that this may regulate basal blood pressure.

    CAS  PubMed  Google Scholar 

  63. Brooks, J. the action of nitrite on haemoglobin in the absence of oxygen. Proc. R. Soc. Med. 137, 368–382 (1937).

    Google Scholar 

  64. Doyle, M. P., Pickering, R. A., DeWeert, T. M., Hoekstra, J. W. & Pater, D. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J. Biol. Chem. 256, 12393–12398 (1981).

    CAS  PubMed  Google Scholar 

  65. Huang, K. T. et al. The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry. J. Biol. Chem. 280, 31126–31131 (2005).

    CAS  PubMed  Google Scholar 

  66. Huang, Z. et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Invest. 115, 2099–2107 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Basu, S. et al. Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of haemoglobin. Nature Chem. Biol. 3, 785–794 (2007).

    CAS  Google Scholar 

  68. Larsen, F. J., Lundberg, J. O., Weitzberg, E. & Ekblom, B. Effect of dietary nitrate on oxygen cost during exercise. Acta Physiol. (Oxf) 191, 59–66 (2007).

    CAS  Google Scholar 

  69. Li, H., Samouilov, A., Liu, X. & Zweier, J. L. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues. J. Biol. Chem. 276, 24482–24489 (2001).

    CAS  PubMed  Google Scholar 

  70. Nohl, H. et al. Mitochondria recycle nitrite back to the bioregulator nitric monoxide. Acta Biochim. Pol. 47, 913–921 (2000).

    CAS  PubMed  Google Scholar 

  71. Castello, P. R., David, P. S., McClure, T., Crook, Z. & Poyton, R. O. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell. Metab. 3, 277–287 (2006).

    CAS  PubMed  Google Scholar 

  72. Kozlov, A. V., Staniek, K. & Nohl, H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 454, 127–130 (1999).

    CAS  PubMed  Google Scholar 

  73. Kozlov, A. V., Dietrich, B. & Nohl, H. Various intracellular compartments cooperate in the release of nitric oxide from glycerol trinitrate in liver. Br. J. Pharmacol. 139, 989–997 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vanin, A. F., Bevers, L. M., Slama-Schwok, A. & van Faassen, E. E. Nitric oxide synthase reduces nitrite to NO under anoxia. Cell. Mol. Life Sci. 64, 96–103 (2007).

    CAS  PubMed  Google Scholar 

  75. Kozlov, A. V. et al. Mechanisms of vasodilatation induced by nitrite instillation in intestinal lumen: possible role of hemoglobin. Antioxid. Redox Signal. 7, 515–521 (2005).

    CAS  PubMed  Google Scholar 

  76. Tsuchiya, K. et al. Nitrite is an alternative source of NO in vivo. Am. J. Physiol. Heart Circ. Physiol. 288, H2163–H2170 (2004).

    PubMed  Google Scholar 

  77. Tsuchiya, K. et al. Malfunction of vascular control in lifestyle-related diseases: formation of systemic hemoglobin-nitric oxide complex (HbNO) from dietary nitrite. J. Pharmacol. Sci. 96, 395–400 (2004).

    CAS  PubMed  Google Scholar 

  78. Hunter, C. J. et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nature Med. 10, 1122–1127 (2004).

    CAS  PubMed  Google Scholar 

  79. Webb, A. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl Acad. Sci. USA 101, 13683–13688 (2004). The first report demonstrating cardioprotective effects of nitrite in heart preparations via xanthine oxidoreductase-mediated nitrite reduction to NO.

    CAS  PubMed  Google Scholar 

  80. Pluta, R. M., Dejam, A., Grimes, G., Gladwin, M. T. & Oldfield, E. H. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. Jama 293, 1477–1484 (2005).

    CAS  PubMed  Google Scholar 

  81. Dias-Junior, C. A., Gladwin, M. T. & Tanus-Santos, J. E. Low-dose intravenous nitrite improves hemodynamics in a canine model of acute pulmonary thromboembolism. Free Radic. Biol. Med. 41, 1764–1770 (2006).

    CAS  PubMed  Google Scholar 

  82. Murad, F. Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N. Engl. J. Med. 355, 2003–2011 (2006).

    CAS  PubMed  Google Scholar 

  83. Chen, Z., Zhang, J. & Stamler, J. S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl Acad. Sci. USA 99, 8306–8311 (2002).

    CAS  PubMed  Google Scholar 

  84. Li, H., Cui, H., Liu, X. & Zweier, J. L. Xanthine oxidase catalyzes anaerobic transformation of organic nitrates to nitric oxide and nitrosothiols: characterization of this mechanism and the link between organic nitrate and guanylyl cyclase activation. J. Biol. Chem. 280, 16594–16600 (2005).

    CAS  PubMed  Google Scholar 

  85. Crandall, L. A., Leake, A. S., Loevenhart, A. S. & Muehlberger, C. W. Acquired tolerance to and cross tolerance between the nitrous and nitric acid esters and sodium nitrite in man. J. Pharmacol. Exp. Therapeut. 103 (1930).

  86. Lu, P. et al. Nitrite-derived nitric oxide by xanthine oxidoreductase protects the liver against ischemia-reperfusion injury. Hepatobiliary Pancreat. Dis. Int. 4, 350–355 (2005).

    CAS  PubMed  Google Scholar 

  87. Baker, J. E. et al. Nitrite confers protection against myocardial infarction: role of xanthine oxidoreductase, NADPH oxidase and K(ATP) channels. J. Mol. Cell Cardiol. 43, 437–444 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jung, K. H. et al. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke 37, 2744–2750 (2006).

    CAS  PubMed  Google Scholar 

  89. Tripatara, P. et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J. Am. Soc. Nephrol. 18, 570–580 (2007).

    CAS  PubMed  Google Scholar 

  90. Lundberg, J. O., Feelisch, M., Bjorne, H., Jansson, E. A. & Weitzberg, E. Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide 15, 359–362 (2006).

    CAS  PubMed  Google Scholar 

  91. Classen, H. G., Stein-Hammer, C. & Thoni, H. Hypothesis: the effect of oral nitrite on blood pressure in the spontaneously hypertensive rat. Does dietary nitrate mitigate hypertension after conversion to nitrite? J. Am. Coll. Nutr. 9, 500–502 (1990).

    CAS  PubMed  Google Scholar 

  92. Pain, T. et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ. Res. 87, 460–466 (2000).

    CAS  PubMed  Google Scholar 

  93. Oldenburg, O., Cohen, M. V. & Downey, J. M. Mitochondrial K(ATP) channels in preconditioning. J. Mol. Cell. Cardiol. 35, 569–575 (2003).

    CAS  PubMed  Google Scholar 

  94. Oldenburg, O. et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 286, H468–H476 (2004).

    CAS  PubMed  Google Scholar 

  95. Xu, Z., Ji, X. & Boysen, P. G. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am. J. Physiol. Heart Circ. Physiol. 286, H1433–H1440 (2004).

    CAS  PubMed  Google Scholar 

  96. Das, D. K. Cellular, biochemical, and molecular aspects of reperfusion injury. Introduction. Ann. NY Acad. Sci. 723, xiii–xvi (1994).

    CAS  PubMed  Google Scholar 

  97. Zweier, J. L., Flaherty, J. T. & Weisfeldt, M. L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl Acad. Sci. USA 84, 1404–1407 (1987).

    CAS  PubMed  Google Scholar 

  98. Clementi, E., Brown, G. C., Feelisch, M. & Moncada, S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl Acad. Sci. USA 95, 7631–7636 (1998).

    CAS  PubMed  Google Scholar 

  99. Burwell, L. S., Nadtochiy, S. M., Tompkins, A. J., Young, S. & Brookes, P. S. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 394, 627–634 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dahm, C. C., Moore, K. & Murphy, M. P. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J. Biol. Chem. 281, 10056–10065 (2006).

    CAS  PubMed  Google Scholar 

  101. Cleeter, M. W., Cooper, J. M., Darley-Usmar, V. M., Moncada, S. & Schapira, A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345, 50–54 (1994).

    CAS  PubMed  Google Scholar 

  102. Carr, G. J. & Ferguson, S. J. Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim. Biophys. Acta 1017, 57–62 (1990).

    CAS  PubMed  Google Scholar 

  103. Brown, G. C. & Cooper, C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356, 295–298 (1994).

    CAS  PubMed  Google Scholar 

  104. Bolanos, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).

    CAS  PubMed  Google Scholar 

  105. Nadtochiy, S. M., Burwell, L. S. & Brookes, P. S. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 42, 812–825 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fox-Robichaud, A. et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J. Clin. Invest. 101, 2497–2505 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hataishi, R. et al. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 291, H379–H384 (2006).

    CAS  PubMed  Google Scholar 

  108. Liu, X. et al. Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J. Am. Coll. Cardiol. 50, 808–817 (2007).

    PubMed  Google Scholar 

  109. Lang, J. D., Jr et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Invest. 117, 2583–2591 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kinsella, J. P. et al. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N. Engl. J. Med. 355, 354–364 (2006).

    CAS  PubMed  Google Scholar 

  111. Hawkey, C. J. Nonsteroidal anti-inflammatory drug gastropathy. Gastroenterology 119, 521–535 (2000).

    CAS  PubMed  Google Scholar 

  112. Wallace, J. L. & Miller, M. J. Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology 119, 512–520. (2000).

    CAS  PubMed  Google Scholar 

  113. Evans, S. M. & Whittle, B. J. Role of bacteria and inducible nitric oxide synthase activity in the systemic inflammatory microvascular response provoked by indomethacin in the rat. Eur. J. Pharmacol. 461, 63–71 (2003).

    CAS  PubMed  Google Scholar 

  114. Hawkey, C. J. & Langman, M. J. Non-steroidal anti-inflammatory drugs: overall risks and management. Complementary roles for COX-2 inhibitors and proton pump inhibitors. Gut 52, 600–608 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jansson, E. A. et al. Protection from nonsteroidal anti-inflammatory drug (NSAID)-induced gastric ulcers by dietary nitrate. Free Radic. Biol. Med. 42, 510–518 (2007).

    CAS  PubMed  Google Scholar 

  116. Miyoshi, M. et al. Dietary nitrate inhibits stress-induced gastric mucosal injury in the rat. Free Radic. Res. 37, 85–90 (2003).

    CAS  PubMed  Google Scholar 

  117. Dykhuizen, R. S. et al. Helicobacter pylori is killed by nitrite under acidic conditions. Gut 42, 334–337 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bjorne, H., Govoni, M., Tornberg, D. C., Lundberg, J. O. & Weitzberg, E. Intragastric nitric oxide is abolished in intubated patients and restored by nitrite. Crit. Care Med. 33, 1722–1727 (2005).

    PubMed  Google Scholar 

  119. Reddy, D., Lancaster, J. R. Jr & Cornforth, D. P. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 221, 769–770 (1983).

    CAS  PubMed  Google Scholar 

  120. Dykhuizen, R. et al. Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defence. Antimicrob. Agents Chemother. 40, 1422–1425 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoon, S. S. et al. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J. Clin. Invest. 116, 436–446 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Carlsson, S., Govoni, M., Wiklund, N. P., Weitzberg, E. & Lundberg, J. O. In vitro evaluation of a new treatment for urinary tract infections caused by nitrate-reducing bacteria. Antimicrob. Agents Chemother. 47, 3713–3718 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Weller, R., Ormerod, A. D., Hobson, R. P. & Benjamin, N. J. A randomized trial of acidified nitrite cream in the treatment of tinea pedis. J. Am. Acad. Dermatol. 38, 559–563 (1998).

    CAS  PubMed  Google Scholar 

  124. Weller, R., Price, R. J., Ormerod, A. D., Benjamin, N. & Leifert, C. Antimicrobial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J. Appl. Microbiol. 90, 648–652 (2001).

    CAS  PubMed  Google Scholar 

  125. Ormerod, A. D., White, M. I., Shah, S. A. & Benjamin, N. Molluscum contagiosum effectively treated with a topical acidified nitrite, nitric oxide liberating cream. Br. J. Dermatol. 141, 1051–1053 (1999).

    CAS  PubMed  Google Scholar 

  126. Carlsson, S., Weitzberg, E., Wiklund, P. & Lundberg, J. O. Intravesical nitric oxide delivery for prevention of catheter-associated urinary tract infections. Antimicrob. Agents Chemother. 49, 2352–2355 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dezfulian, C., Raat, N., Shiva, S. & Gladwin, M. T. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc. Res. 75, 327–338 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Larauche, M. et al. Protective effect of dietary nitrate on experimental gastritis in rats. Br. J. Nutr. 89, 777–786 (2003).

    CAS  PubMed  Google Scholar 

  129. Wallace, J. L., Ignarro, L. J. & Fiorucci, S. Potential cardioprotective actions of NO-releasing aspirin. Nature Rev. Drug Discov. 1, 375–382 (2002).

    CAS  Google Scholar 

  130. Chakrapani, H., Gorczynski, M. J. & King, S. B. Allylic nitro compounds as nitrite donors. J. Am. Chem. Soc. 128, 16332–16337 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. National Toxicology Programe. Toxicology and carcinogenesis studies of sodium nitrite (CAS NO. 7632-00-0) in F344/N rats and B6C3F1 mice (drinking water studies). Natl Toxicol. Program Tech. Rep. Ser. 495, 7–273 (2001).

  132. Jiang, R., Paik, D. C., Hankinson, J. L. & Barr, R. G. Cured meat consumption, lung function, and chronic obstructive pulmonary disease among United States adults. Am. J. Respir. Crit. Care Med. 175, 798–804 (2007).

    PubMed  PubMed Central  Google Scholar 

  133. Ward, M. H. et al. Workgroup report: drinking-water nitrate and health — recent findings and research needs. Environ. Health Perspect. 113, 1607–1614 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Joshipura, K. J. et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 134, 1106–1114 (2001).

    CAS  PubMed  Google Scholar 

  135. Hu, F. B. & Willett, W. C. Optimal diets for prevention of coronary heart disease. Jama 288, 2569–2578 (2002).

    CAS  PubMed  Google Scholar 

  136. Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank J. Moffett, librarian of the Needham Research Institute, University of Cambridge, UK, for providing the image used in figure 1a, and G. K. Hansson for valuable comments on the manuscript. We have received support from the European Community's Sixth Framework programme (Eicosanox, LSMH-CT-2004-005033), the Swedish Heart and Lung Foundation, The Swedish Research Council, Torsten and Ragnar Söderbergs Foundation, Vinnova (CIDaT), and Stockholm County Council (ALF).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

M.G. is named as a co-inventor on a patent application by the NIH for the use of nitrite salts for cardiovascular disease. J.L. and E.W. have filed a patent application for the use of nitrite in the treatment of catheter-associated infections.

Related links

Related links

DATABASES

Swissprot Enzyme

Ceruloplasmin

NO synthase

xanthine oxidoreductase

Glossary

Xanthine oxidoreductase

An enzyme involved in purine metabolism that catalyses the oxidation of hypoxanthine to xanthine and the further oxidation of xanthine to uric acid.

Autocrine

A form of hormonal signalling in which a cell secretes a chemical messenger that binds to receptors on the same cell, leading to changes in the cell.

Paracrine

A form of cell signalling in which the target cell is close to (para = alongside of or next to) the signal-releasing cell.

Endocrine

A form of cell signalling in which chemical mediators are released directly into local blood vessels and travel to distant organ's to regulate the target organs function.

Hypoxic vasodilation

A physiological phenomenon in which blood vessels dilate in response to low oxygen levels.

Methaemoglobin

A form of the oxygen-carrying protein haemoglobin in which the iron in the haem group is in the Fe3+ state, not the Fe2+ of normal haemoglobin. Methaemoglobin is unable to carry oxygen.

Facultative anaerobic bacteria

A bacterium, that makes ATP by aerobic respiration if oxygen is present but is also capable of switching to anaerobic respiration.

Electron acceptor

A chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of it accepting electrons, is itself reduced in the process.

cyclic GMP

A cyclic nucleotide derived from guanosine triphosphate (GTP) that acts as a second messenger, much like cyclic AMP.

Allosteric

Allosteric regulation is the regulation of an enzyme or protein by binding an effector molecule at a site other than the protein's active site.

Mitochondrial electron transport chain

An electron transport chain associates energy-rich electron donors (for example, NADH) and mediates the biochemical reactions that produce ATP, which is the energy currency of life.

Reactive oxygen species

(ROS). Include oxygen ions, free radicals and peroxides that are both inorganic and organic. They are generally highly reactive owing to the presence of unpaired valence shell electrons. ROS form as a natural by-product of the normal metabolism of oxygen and have important roles in cell signalling. However, during times of environmental stress ROS levels can increase dramatically, which can result in significant damage to cell structures.

Organic nitrates

Drugs used principally in the treatment of angina pectoris and acting mainly by dilating the blood vessels by the formation of nitric oxide.

S-nitrosation

The conversion of thiol groups (-SH), including cysteine residues in proteins, to form S-nitrosothiols. S-Nitrosation has been suggested to be a mechanism for dynamic, post-translational regulation of proteins. In addition, S-nitrosothiols can act as donors of nitric oxide.

Preconditioning

A phenomenon in which a brief exposure to ischaemia renders the heart or another organ more tolerant to a subsequent sustained ischaemic insult.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundberg, J., Weitzberg, E. & Gladwin, M. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7, 156–167 (2008). https://doi.org/10.1038/nrd2466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing