Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

HIV drug development: the next 25 years

Abstract

The development of drugs for HIV infection began soon after the virus was discovered 25 years ago. Since then, progress has been substantial, but numerous uncertainties persist about the best way to manage this disease. Here we review the current treatment options, consider novel mechanisms that can be exploited for existing drug targets, and explore the potential of novel targets. With a view to the next quarter century, we consider whether drug resistance can be avoided, which drug classes will be favoured over others, which strategies are most likely to succeed, and the potential impact of pharmacogenomics and individualized therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication cycle of HIV with current and possible targets for antiviral intervention.
Figure 2: Adherence to clarithromycin (for Mycobacterium avium infection) in HIV-infected patients, and variability in pharmacokinetics of lopinavir (for HIV infection).

References

  1. Department of Health and Human Services (DHHS). Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. AIDSinfo web site [online], (2006).

  2. Moore, R. D., Keruly, J. C., Gebo, K. A. & Lucas, G. M. An improvement in virologic response to highly active antiretroviral therapy in clinical practice from 1996 through 2002. J. Acquir. Immune Defic. Syndr. 39, 195–198 (2005).

    PubMed  Google Scholar 

  3. Struble, K. et al. Antiretroviral therapies for treatment-experienced patients: current status and research challenges. AIDS 19, 747–756 (2005).

    Article  PubMed  Google Scholar 

  4. Li, F. et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc. Natl Acad. Sci. USA 100, 13555–13560 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Markowitz, M. et al. Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals. J. Acquir. Immune Defic. Syndr. 43, 509–515 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Cooper, D. et al. Results of BENCHMRK-1, a Phase III study evaluating the efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple class resistant virus. Abstract 105aLB. 14th Conference on Retroviruses and Opportunistic Infections web site [online], (2007).

    Google Scholar 

  7. Stiegbigel, R. et al. Results of BENCHMRK-2, a Phase III study evaluating the efficacy and safety of MK-0518, a novel HIV-1 integrase inhibitor, in patients with triple class resistant virus. Abstract 105bLB. 14th Conference on Retroviruses and Opportunistic Infections web site [online], (2007).

    Google Scholar 

  8. Jones, G. et al. Resistance profile of HIV-1 mutants in vitro selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). Abstract 627. 14th Conference on Retroviruses and Opportunistic Infections web site [online], (2007).

    Google Scholar 

  9. Nelson, M. et al. Efficacy and safety of maraviroc plus optimized background therapy in viremic, ART-experienced patients infected with CCR5-tropic HIV-1 in Europe, Auastralia, and North America: 24-week results. Abstract 104aLB. 14th Conference on Retroviruses and Opportunistic Infections web site [online], (2007).

    Google Scholar 

  10. Lalezari, J. et al. Efficacy and safety of maraviroc plus optimized background therapy in viremic, ART-experienced patients infected with CCR5-tropic HIV-1, 24-week results of a Phase 2b/3 study in the U. S. & Canada. Abstract 104bLB. 14th Conference on Retroviruses and Opportunistic Infections [online], (2007).

    Google Scholar 

  11. Gulick, R. M. et al. Phase II study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1-infected, treatment-experienced patients: ACTG 5211. J. Infect. Dis. 196, 304–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hendrix, C. W. et al. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J. Acquir. Immune Defic. Syndr. 37, 1253–1262 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Moyle, G. et al. CXCR4 antagonism: proof of activity with AMD11070. Abstract 511. 14th Conference on Retroviruses and Opportunistic Infections [online], (2007).

    Google Scholar 

  14. Saag, M. et al. Proof of concept of ARV activity of AMD11070 (an orally administered CXCR4 entry inhibitor): results of the first dosing cohort A studied in ACTG Protocol A5210. Abstract 512. 14th Conference on Retroviruses and Opportunistic Infections [online], (2007).

    Google Scholar 

  15. Stone, N. D. et al. Multiple dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects (ACTG A5191). Antimicrob. Agents Chemother. 23 Apr 2007 (doi:10.1128/AAC.00013-07).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilmour, D., Knaut, H., Maischein, H. M. & Nusslein-Volhard, C. Towing of sensory axons by their migrating target cells in vivo. Nature Neurosci. 7, 491–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Y. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nature Med. 2, 1240–1243 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Glass, W. G. et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 203, 35–40 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greenough, T. C., Sullivan, J. L. & Desrosiers, R. C. Declining CD4 T-cell counts in a person infected with nef-deleted HIV-1. N. Engl. J. Med. 340, 236–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Haubrich, R. H. et al. A randomized trial of the activity and safety of Ro 24-7429 (tat antagonist) versus nucleoside for HIV infection. J. Infect. Dis. 172, 1246–1252 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Para, M. F. et al. in Program and Abstracts of the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract H-256 (ASM Press, Herndon, Virginia, 2006).

    Google Scholar 

  22. Greene, W. C. & Peterlin, B. M. Charting HIV's remarkable voyage through the cell: basic science as a passport to future therapy. Nature Med. 8, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Bishop, K. N., Holmes, R. K., Sheehy, A. M. & Malim, M. H. APOBEC-mediated editing of viral RNA. Science 305, 645 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Mitsuyasu, R. et al. The virologic, immunologic, and clinical effects of interleukin 2 with potent antiretroviral therapy in patients with moderately advanced human immunodeficiency virus infection: a randomized controlled clinical trial — AIDS Clinical Trials Group 328. Arch. Intern. Med. 167, 597–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Mellors, J. W. et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann. Intern. Med. 126, 946–954 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. The DAD Study Group. Class of antiretroviral drugs and the risk of myocardial infarction. N. Engl. J. Med. 356, 1723–1735 (2007).

  27. Rowland-Jones, S.L. & Whittle, H. C. Out of Africa: what can we learn from HIV-2 about protective immunity to HIV-1? Nature Immunol. 8, 329–331 (2007).

    Article  CAS  Google Scholar 

  28. Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Marucco, D. A. et al. Antiretroviral activity of pegylated interferon α-2a in patients co-infected with HIV/hepatitis C virus. J. Antimicrob. Chemother. 59, 565–568 (2007).

    Article  CAS  Google Scholar 

  30. Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl Acad. Sci. USA 96, 1492–1497 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Westby, M. et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J. Virol. 81, 2359–2371 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. De Gruttola, V. et al. Drug development strategies for salvage therapy: conflicts and solutions. AIDS Res. Hum. Retroviruses 22, 1106–1109 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Eron, J. J. et al. Once-daily versus twice-daily lopinavir/ritonavir in antiretroviral-naive HIV-positive patients: a 48-week randomized clinical trial. J. Infect. Dis. 189, 265–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, M. A. et al. A once-daily lopinavir/ritonavir-based regimen provides noninferior antiviral activity compared with a twice-daily regimen. J. Acquir. Immune Defic. Syndr. 43, 153–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Martin, A. M. et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic HSP70-HOM variant. Proc. Natl Acad. Sci. USA 101, 4180–4185 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Hetherington, S. et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Haas, D. W. et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18, 2391–2400 (2004).

    CAS  PubMed  Google Scholar 

  38. Lappin, G. & Garner, R. C. Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nature Rev. Drug Discov. 2, 233–240 (2003).

    Article  CAS  Google Scholar 

  39. Lampe, F. C. et al. Changes over time in risk of initial virological failure of combination antiretroviral therapy: a multicohort analysis, 1996 to 2002. Arch. Intern. Med. 166, 521–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Swindells, S. et al. Regimen simplification to atazanavir-ritonavir alone as maintenance antiretroviral therapy after sustained virologic suppression. JAMA 296, 806–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Karlstrom, O., Josephson, F. & Sonnerborg, A. Early virologic rebound in a pilot trial of ritonavir-boosted atazanavir as maintenance monotherapy. J. Acquir. Immune Defic. Syndr. 44, 417–422 (2007).

    Article  PubMed  Google Scholar 

  42. Zuger, A. Report from the XVI International AIDS Conference. ACTG 5142 compares class-sparing regimens in treatment-naive patients. AIDS Clin. Care 18, 98 (2006).

    PubMed  Google Scholar 

  43. Zuger, A. Report from the XVI International AIDS Conference. Lopinavir/ritonavir monotherapy. AIDS Clin. Care. 18, 99–100 (2006).

    PubMed  Google Scholar 

  44. Muller, V. & Bonhoeffer, S. Mathematical approaches in the study of viral kinetics and drug resistance in HIV-1 infection. Curr. Drug Targets Infect. Disord. 3, 329–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. McMahon, M. A. et al. The HBV drug entecavir — effects on HIV-1 replication and resistance. N. Engl. J. Med. 356, 2614–2621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gallant, J. E. et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N. Engl. J. Med. 354, 251–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Benson, C. A. et al. A prospective, randomized trial comparing the efficacy and safety of clarithromycin in combination with either ethambutol, rifabutin or both for the treatment of disseminated Mycobacterium avium complex (MAC) disease in persons with AIDS. Clin. Infect. Dis. 37, 1234–1243 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Nettles, R. E. et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring. Clin. Infect. Dis. 42, 1189–1196 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript includes previously unpublished data from the AIDS Clinical Trials Group (ACTG) Protocol 223 (Figure 2a), and was supported in part by NIH grants AI-27668, AI-068636 and AI-069465.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

During the preparation of this manuscript and for 12 months prior, the author received research grant support from Boehringer–Ingelheim Inc., Bristol–Myers Squibb and GlaxoSmithKline; served on scientific advisory boards for Boehringer–Ingelheim Inc., Bristol–Myers Squibb, Inhibitex Inc., Merck Pharmaceuticals, Tibotec Pharmaceuticals and Vertex Pharmaceuticals; and received lecture honoraria from Abbott Laboratories, Gilead Pharmaceuticals and GlaxoSmithKline.

Related links

Related links

DATABASES

HIV-1 Protein Interaction

nef

tat

vif

vpr

OMIM

Hepatitis B virus

hepatitis C virus

HIV-1

FURTHER INFORMATION

HIV Databases

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flexner, C. HIV drug development: the next 25 years. Nat Rev Drug Discov 6, 959–966 (2007). https://doi.org/10.1038/nrd2336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing