Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The obesity pipeline: current strategies in the development of anti-obesity drugs

Key Points

  • Despite recognition as an epidemic, obesity remains largely an unsolved medical problem, caused by the increased consumption of energy-dense, nutrient-poor foods and reduced physical activity. Obesity is a complex condition associated with numerous increased health risks and affects all ages and socio-economic groups.

  • All but the most severe of cases can be successfully managed through lifestyle changes in diet and physical activity alone, although low compliance has encouraged interest in effective therapies, including gastrointestinal surgery (efficacious and long-lasting, but limited in use because of associated risks and costs) and pharmacological interventions.

  • The market for a safe and efficacious drug is potentially huge, but the value of currently approved therapies does not reflect this potential, this being evidence of their limited efficacy and side-effect profiles.

  • Two drugs are currently approved in the United States for the long-term treatment of obesity: orlistat (Xenical; Roche) and sibutramine (Meridia; Abbott). Orlistat acts on the gastrointestinal system, blocking the absorption of dietary fat, whereas sibutramine acts within the CNS to reduce energy intake and increase energy expenditure. Both display limited efficacy and are compounded by limiting side effects.

  • Rimonabant (Acomplia; Sanofi-Aventis) is a first-in-class cannabinoid CB1 antagonist, recently approved in the European Union for the treatment of obesity, which yielded 12-month weight loss of 6.3 kg versus 1.6 kg for placebo. There are concerns about CB1 antagonism, however.

  • The pipeline of compounds currently in development for the treatment of obesity is reviewed, including APD356, Qnexa, Contrave, Cetilistat and AOD9604.

  • Recent advances in the understanding of the roles gut peptides play in energy homeostasis has led to the identification of several that are known to modulate eating behaviour, including glucagon-like-peptide-1, oxyntomodulin, pancreatic polypeptide and peptide YY3–36, all of which respond to nutrients within the gut, interacting with specific receptors to regulate appetite.

  • Several compounds based on gut peptides now in development for the treatment of obesity are reviewed, including Nastech's intranasal PYY(3–36), 7TM Pharma's TM30338, and Amylin Pharmaceuticals' Pramlintide.

Abstract

This review provides a summary of currently available pharmaceutical therapies for the treatment of obesity, along with an overview of the pipeline of products currently in development, and the key mechanisms on which the major development candidates are based. In particular, the recent increase in understanding of the role of gut peptides in energy homeostasis is highlighted as a promising source of potential future obesity therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Body mass index.
Figure 2: The tissue-specific processing of proglucagon.

Similar content being viewed by others

References

  1. World Health Organization. Global Strategy on Diet, Physical Activity and Health [online], <http://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf> (2004).

  2. North American Association for the Study of Obesity and the National Heart, and Blood Institute. The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults [online], <http://www.nhlbi.nih.gov/guidelines/obesity/prctgd_c.pdf> (2000).

  3. Department of Health and the Health and Social Care Information Centre. Health Survey for England (Department of Health and the Health and Social Care Information Centre, 2004).

  4. Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Food and Drug Administration. Guidance for the clinical evaluation of weight control drugs [online], <http://www.fda.gov/Cder/guidance/obesity.pdf> (1996).

  6. Ioannides-Demos, L. L., Proietto, J., Tonkin, A. M. & McNeil, J. J. Safety of drug therapies used for weight loss and treatment of obesity. Drug Saf. 29, 277–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Foxcroft, D. R. & Milne, R. Orlistat for the treatment of obesity: rapid review and cost-effectiveness model. Obes. Rev. 1, 121–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Finer, N. Sibutramine: its mode of action and efficacy. Int. J. Obes. Relat. Metab. Disord. 26 (Suppl. 4), S29–S33 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Kopelman, P. G. Clinical treatment of obesity: are drugs and surgery the answer? Proc. Nutr. Soc. 64, 65–71 (2005).

    Article  PubMed  Google Scholar 

  10. Wolfe, B. M. & Morton, J. M. Weighing in on bariatric surgery: procedure use, readmission rates, and mortality. JAMA 294, 1960–1963 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Schioth, H. B. G protein-coupled receptors in regulation of body weight. CNS Neurol. Disord. Drug Targets 5, 241–249 (2006).

    Article  PubMed  Google Scholar 

  12. Weintraub, M., Hasday, J. D., Mushlin, A. I. & Lockwood, D. H. A double-blind clinical trial in weight control. Use of fenfluramine and phentermine alone and in com-bination. Arch. Intern. Med. 144, 1143–1148 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Heal, D. J. et al. A comparison of the effects of sibutramine hydrochloride, bupropion and methamphetamine on dopaminergic function: evidence that dopamine is not a pharmacological target for sibutramine. Psychopharmacology (Berl) 107, 303–309 (1992).

    Article  CAS  Google Scholar 

  15. Dunlop, J. et al. WAY-163909 [(7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1h i]indole], a novel 5-hydroxytryptamine 2C receptor-selective agonist with anorectic activity. J. Pharmacol. Exp. Ther. 313, 862–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Howlett, A. C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 68–69, 619–631 (2002).

  19. Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Ravinet Trillou, C. et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R345–R353 (2003).

    Article  PubMed  Google Scholar 

  22. Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Despres, J. P., Golay, A. & Sjostrom, L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Pi-Sunyer, F. X., Aronne, L. J., Heshmati, H. M., Devin, J. & Rosenstock, J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295, 761–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. van Oosten, B. W., Killestein, J., Mathus-Vliegen, E. M. & Polman, C. H. Multiple sclerosis following treatment with a cannabinoid receptor-1 antagonist. Mult. Scler. 10, 330–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rosenfeld, W. E. Topiramate: a review of preclinical, pharmacokinetic, and clinical data. Clin. Ther. 19, 1294–1308 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Appolinario, J. C., Bueno, J. R. & Coutinho, W. Psychotropic drugs in the treatment of obesity: what promise? CNS Drugs 18, 629–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Gadde, K. M. et al. Bupropion for weight loss: an investigation of efficacy and tolerability in overweight and obese women. Obes. Res. 9, 544–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Anderson, J. W. et al. Bupropion SR enhances weight loss: a 48-week double-blind, placebo- controlled trial. Obes. Res. 10, 633–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Druce, M. & Bloom, S. R. The regulation of appetite. Arch. Dis. Child. 91, 183–187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greenway, F. L. et al. Bupropion and naltrexone for the treatment of obesity. Am. Diabetes Assoc. 66th Scientific Sessions Abs1706-P (2006).

  32. Moller, N., Jorgensen, J. O., Alberti, K. G., Flyvbjerg, A. & Schmitz, O. Short-term effects of growth hormone on fuel oxidation and regional substrate metabolism in normal man. J. Clin. Endocrinol. Metab. 70, 1179–1186 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Richelsen, B. Action of growth hormone in adipose tissue. Horm. Res. 48 (Suppl. 5), 105–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Ridderstrale, M. & Tornqvist, H. Effects of tyrosine kinase inhibitors on tyrosine phosphorylations and the insulin-like effects in response to human growth hormone in isolated rat adipocytes. Endocrinology 137, 4650–4656 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Jorgensen, J. O. et al. Adult growth hormone deficiency. Horm. Res. 42, 235–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Cowell, C. T. & Dietsch, S. Adverse events during growth hormone therapy. J. Pediatr. Endocrinol. Metab. 8, 243–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, Z. & Ng, F. M. Antilipogenic action of synthetic C-terminal sequence 177–191 of human growth hormone. Biochem Mol Biol Int 30, 187–196 (1993).

    CAS  PubMed  Google Scholar 

  38. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This paper describes the discovery of leptin.

    Article  CAS  PubMed  Google Scholar 

  39. Woods, S. C. & Gibbs, J. The regulation of food intake by peptides. Ann. NY Acad. Sci. 575, 236–243 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Woods, S. C. Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G7–G13 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Stanley, S., Wynne, K. & Bloom, S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G693–697 (2004). The authors provide a review of gastrointestinal satiety signals.

    Article  CAS  PubMed  Google Scholar 

  42. Finer, N. Pharmacotherapy of obesity. Best Pract. Res. Clin. Endocrinol. Metab. 16, 717–742 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    Article  PubMed  Google Scholar 

  44. Chan, J. L., Mun, E. C., Stoyneva, V., Mantzoros, C. S. & Goldfine, A. B. Peptide YY levels are elevated after gastric bypass surgery. Obesity (Silver Spring) 14, 194–198 (2006).

    Article  CAS  Google Scholar 

  45. Neary, N. M., Small, C. J. & Bloom, S. R. Gut and mind. Gut 52, 918–921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tatemoto, K. & Mutt, V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285, 417–418 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. Adrian, T. E. et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89, 1070–1077 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. Adrian, T. E. et al. Peptide YY abnormalities in gastrointestinal diseases. Gastroenterology 90, 379–384 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Eberlein, G. A. et al. A new molecular form of PYY: structural characterization of human PYY(3–36) and PYY(1–36). Peptides 10, 797–803 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Grandt, D. et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul. Pept. 51, 151–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Larhammar, D. Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide. Regul. Pept. 65, 165–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Okada, S., Ohshima, K., Mori, M. & Takemoto, K. Peripheral not central administration PYY decreased high fat diet intake. Abstract 180, 75th Annual Meeting of the Endocrine Society (1993). This paper provides the first description of the capacity of PYY (3–36) to reduce food intake.

    Google Scholar 

  53. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002). The authors demonstrate that PYY (3–36) can reduce food intake in humans.

    Article  CAS  PubMed  Google Scholar 

  54. Boggiano, M. M. et al. PYY3-36 as an anti-obesity drug target. Obes. Rev. 6, 307–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 349, 941–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Degen, L. et al. Effect of peptide YY3–36 on food intake in humans. Gastroenterology 129, 1430–1436 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. McGowan, B. M. & Bloom, S. R. Peptide YY and appetite control. Curr. Opin. Pharmacol. 4, 583–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Batterham, R. L. & Bloom, S. R. The gut hormone peptide YY regulates appetite. Ann. NY Acad. Sci. 994, 162–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. le Roux, C. W. et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147, 3–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kimmel, J. R., Hayden, L. J. & Pollock, H. G. Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem. 250, 9369–9376 (1975).

    CAS  PubMed  Google Scholar 

  61. Adrian, T. E. et al. Distribution and release of human pancreatic polypeptide. Gut 17, 940–944 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asakawa, A. et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124, 1325–1336 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Ueno, N. et al. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 117, 1427–1432 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Berntson, G. G., Zipf, W. B., O'Dorisio, T. M., Hoffman, J. A. & Chance, R. E. Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome. Peptides 14, 497–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Batterham, R. L. et al. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 88, 3989–3992 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. 7TM Pharma. 7TM Pharma's new first-in-class anti-obesity drug completes Phase I/II clinical studies. Press release [online], <http://demo.7tm.com/news/press_releases/7tm_pharma%E2%80%99s_new_first-in-class_anti-obesity_drug_completes_phase_i/ii_clinical_studies.aspx> (2006).

  67. Mantzoros, C. S. The role of leptin in human obesity and disease: a review of current evidence. Ann. Intern. Med. 130, 671–680 (1999). A review of the role of leptin in obesity.

    Article  CAS  PubMed  Google Scholar 

  68. Bray, G. A. & York, D. A. Clinical review 90: Leptin and clinical medicine: a new piece in the puzzle of obesity. J. Clin. Endocrinol. Metab. 82, 2771–2776 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Levin, B. E. Factors promoting and ameliorating the development of obesity. Physiol. Behav. 86, 633–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ahima, R. S., Saper, C. B., Flier, J. S. & Elmquist, J. K. Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol. 21, 263–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Tartaglia, L. A. The leptin receptor. J. Biol. Chem. 272, 6093–6096 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Fogteloo, A. J., Pijl, H., Frolich, M., McCamish, M. & Meinders, A. E. Effects of recombinant human leptin treatment as an adjunct of moderate energy restriction on body weight, resting energy expenditure and energy intake in obese humans. Diabetes Nutr. Metab. 16, 109–114 (2003).

    CAS  PubMed  Google Scholar 

  75. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Roth, J., Weyer, C., Anderson, C., Parkes, D. & Baron, A. D. Leptin responsivity restored in leptin-resistant diet-induced obese (DIO) rats: synergistic actions of amylin and leptin for reduction in body weight (BW) and fat. Am. Diabetes Assoc. 66th Scientific Sessions Abs 52-LB (2006).

  78. Weyer, C., Maggs, D. G., Young, A. A. & Kolterman, O. G. Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr. Pharm. Des. 7, 1353–1373 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Edelman, S. V. & Weyer, C. Unresolved challenges with insulin therapy in type 1 and type 2 diabetes: potential benefit of replacing amylin, a second β-cell hormone. Diabetes Technol. Ther. 4, 175–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Whitehouse, F. et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 25, 724–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Ratner, R. E. et al. Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes. Diabetes Technol. Ther. 4, 51–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Hollander, P. A. et al. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care 26, 784–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Hollander, P. et al. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes. Res. 12, 661–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Chapman, I. et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 48, 838–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Amylin Pharmaceuticals. Inc. Pramlintide obesity study results positive [press release], <http://investors.amylin.com/phoenix.zhtml?c=101911&p=irol-newsArticle&ID=815224&highlight> (2006).

  86. Drucker, D. J. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122, 531–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996). This paper provides the first description of the anorexigenic role of GLP-1.

    Article  CAS  PubMed  Google Scholar 

  88. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Mayo, K. E. et al. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol. Rev. 55, 167–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Joy, S. V., Rodgers, P. T. & Scates, A. C. Incretin mimetics as emerging treatments for type 2 diabetes. Ann. Pharmacother. 39, 110–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Eng, J., Kleinman, W. A., Singh, L., Singh, G. & Raufman, J. P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).

    CAS  PubMed  Google Scholar 

  92. Davidson, M. B., Bate, G. & Kirkpatrick, P. Exenatide. Nature Rev. Drug Discov. 4, 713–714 (2005).

    Article  CAS  Google Scholar 

  93. Naslund, E. et al. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. Br. J. Nutr. 91, 439–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Poon, T. et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol. Ther. 7, 467–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. DeFronzo, R. A. et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1092–1100 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Henry, R. R. et al. Exanatide maintained glycemic control with associated weight reduction over 2 years in patients with type 2 diabetes. Am. Diabetes Assoc. 66th Scientific Sessions Abs 485-P (2006).

  97. Ghatei, M. A., Uttenthal, L. O., Christofides, N. D., Bryant, M. G. & Bloom, S. R. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J. Clin. Endocrinol. Metab. 57, 488–495 (1983).

    Article  CAS  PubMed  Google Scholar 

  98. Dakin, C. L. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142, 4244–4250 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Dakin, C. L. et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145, 2687–2695 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Dakin, C. L. et al. Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am. J. Physiol. Endocrinol. Metab. 283, E1173–E1177 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Cohen, M. A. et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 88, 4696–4701 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond) (2006).

  103. Wynne, K. et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54, 2390–2395 (2005). A report showing that the administration of oxyntomodulin leads to weight loss in humans.

    Article  CAS  PubMed  Google Scholar 

  104. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Schepp, W. et al. Oxyntomodulin: a cAMP-dependent stimulus of rat parietal cell function via the receptor for glucagon-like peptide-1 (7–36)NH2. Digestion 57, 398–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Gros, L., Thorens, B., Bataille, D. & Kervran, A. Glucagon-like peptide-1-(7–36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology 133, 631–638 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Wadman, M. Rimonabant adds appetizing choice to slim obesity market. Nature Med. 12, 27 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Hinney, A. et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab. 84, 1483–1486 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Gu, W. et al. Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes 48, 635–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med. 5, 1066–1070 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Banno, R. et al. The melanocortin agonist melanotan II increases insulin sensitivity in OLETF rats. Peptides 25, 1279–1286 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Benoit, S., Schwartz, M., Baskin, D., Woods, S. C. & Seeley, R. J. CNS melanocortin system involvement in the regulation of food intake. Horm. Behav. 37, 299–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Cepoi, D. et al. Assessment of a small molecule melanocortin-4 receptor-specific agonist on energy homeostasis. Brain Res. 1000, 64–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Hallschmid, M., Benedict, C., Born, J., Fehm, H. L. & Kern, W. Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man. Physiol. Behav. 83, 55–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Griffond, B. & Baker, B. I. Cell and molecular cell biology of melanin-concentrating hormone. Int. Rev. Cytol. 213, 233–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Boutin, J. A. et al. Melanin-concentrating hormone and its receptors: state of the art. Can J. Physiol. Pharmacol. 80, 388–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Qu, D. et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Rossi, M. et al. Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology 138, 351–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Saito, Y. et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400, 265–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Chambers, J. et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400, 261–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Hill, J. et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J. Biol. Chem. 276, 20125–20129 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Sailer, A. W. et al. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc. Natl Acad. Sci. USA 98, 7564–7569 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shearman, L. P. et al. Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur. J. Pharmacol. 475, 37–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Mashiko, S. et al. Antiobesity effect of a melanin-concentrating hormone 1 receptor antagonist in diet-induced obese mice. Endocrinology 146, 3080–3086 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Kowalski, T. J., Farley, C., Cohen-Williams, M. E., Varty, G. & Spar, B. D. Melanin-concentrating hormone-1 receptor antagonism decreases feeding by reducing meal size. Eur. J. Pharmacol. 497, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Ioannides-Demos, L. L., Proietto, J. & McNeil, J. J. Pharmacotherapy for obesity. Drugs 65, 1391–1418 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Korner, J. & Aronne, L. J. Pharmacological approaches to weight reduction: therapeutic targets. J. Clin. Endocrinol. Metab. 89, 2616–2621 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Gadde, K. M., Franciscy, D. M., Wagner, H. R., 2nd & Krishnan, K. R. Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA 289, 1820–1825 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 46, 1244–1249 (1996).

  131. Lambert, P. D. et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl Acad. Sci. USA 98, 4652–4657 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ettinger, M. P. et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 289, 1826–1832 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Shintani, M. et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 50, 227–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Druce, M. R. et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int. J. Obes. (Lond) 30, 293–296 (2006).

    Article  CAS  Google Scholar 

  136. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Wortley, K. E. et al. Absence of ghrelin protects against early-onset obesity. J. Clin. Invest. 115, 3573–3578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zorrilla, E. P. et al. From the Cover: Vaccination against weight gain. Proc. Natl Acad. Sci. USA 103, 13226–13231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Giacobino, J. P. β3-adrenoceptor: an update. Eur. J. Endocrinol. 132, 377–385 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Widen, E. et al. Association of a polymorphism in the β3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N. Engl. J. Med. 333, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Clement, K. et al. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 333, 352–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Walston, J. et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β3-adrenergic-receptor gene. N. Engl. J. Med. 333, 343–347 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. Kordik, C. P. & Reitz, A. B. Pharmacological treatment of obesity: therapeutic strategies. J. Med. Chem. 42, 181–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Michael K. Badman, M.K. & and Flier, J. S. The gut and energy balance: visceral allies in the obesity wars. Science 307, 1909–1914 (2005). A review of gut regulatory mechanisms.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Burt and C. Orphanides for critical reading of the manuscript during preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Bloom.

Ethics declarations

Competing interests

D.C. and S.B. hold options and equity in Thiakis, respectively. Thiakis Ltd (UK) is developing oxyntomodulin for the treatment of obesity and has granted a license to Nastech Pharmaceutical Co. (US) for the development of the latter's nasal PYY(3–36) product.

Glossary

Amphetamine

Molecule that inhibits dopamine uptake and increases the level of this transmitter in the synaptic cleft. Its intake by normal subjects induces a psychotic state.

Sympathomimetics

Agents stimulating the sympathetic nervous system,such as adrenaline and dopamine. These generally increase cardiac output, dilate bronchioles, and produce constriction of blood vessels.

Hypothalamus

A small gland in the base of the brain and above the pituitary gland that controls many body functions such as temperature and appetite, and regulates the secretion of hormones by the pituitary gland.

Exogenous obesity

Obesity caused by overeating.

Tachycardia

Abnormally rapid beating of the heart.

Anorectics

Substances that reduce the desire to eat.

Area postrema

Chemoreceptor zone located on the dorsal surface of the medulla oblongata. The area postrema lacks a specific blood–brain diffusion barrier to large polar molecules and is therefore anatomically positioned to detect the chemical milieu of the blood. The area psotrema has been implicated as a chemoreceptor trigger zone for vomiting (emesis).

Postprandial

Following ingestion of food.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, D., Bloom, S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov 5, 919–931 (2006). https://doi.org/10.1038/nrd2136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing