Abstract
What is a drug target? And how many such targets are there? Here, we consider the nature of drug targets, and by classifying known drug substances on the basis of the discussed principles we provide an estimation of the total number of current drug targets.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Drews, J. & Ryser, S. The role of innovation in drug development. Nature Biotechnol. 15, 1318–1319 (1997).
- 2
Burgess, J. & Golden, J. Cracking the druggable genome. Bio-IT World, [online] (2002).
- 3
Hopkins, A. & Groom, C. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).
- 4
Saunders, J. G-protein-coupled receptors in drug discovery. Bioorg. Med. Chem. Lett. 15, 3653 (2005)
- 5
Zambrowicz, B. P. & Sands. A. T. Knockouts model the 100 best-selling drugs — will they model the next 100? Nature Rev. Drug Discov. 2, 38–51 (2003).
- 6
Jonker, D. M., Visser, S. A. G., van der Graaf, P. H., Voskuyl, R. A. & Danhof, M. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol. Therapeut. 106, 1–18 (2005).
- 7
Agnati, L. F., Fuxe, K. & Ferré, S. How receptor mosaics decode transmitter signals. Possible relevance of cooperativity. Trends Biochem. Sci. 30, 188–193 (2005).
- 8
Heien, M. L. A. V. et al. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl Acad. Sci. USA 102, 10023–10028 (2005).
- 9
Mitcheson, J. S., Chen, J. & Sanguinetti, M. C. Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J. Gen. Physiol. 115, 229–240 (2000).
- 10
Hyman, S. E. & Fenton, W. S. What are the right targets for psychopharmacology? Science 299, 350–351 (2003).
- 11
Apic, G., Ignjatovic, T., Boyer, S. & Russell, R. B. Illuminating drug discovery with biological pathways. FEBS Lett. 579, 1872–1877 (2005).
- 12
Schneider, G. Trends in virtual combinatorial library design. Curr. Med. Chem. 9, 2095–2101 (2002).
- 13
Goodnow, R. A. Jr., Guba, W. & Haap, W. Library design practices for success in lead generation with small molecule libraries. Comb. Chem. High Throughput Screen. 6, 649–660 (2003).
- 14
Hendlich, M., Bergner, A., Gunther, J. & Klebe, G. Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 326, 607–620 (2003).
- 15
Gohlke, H. & Klebe, G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. Engl. 41, 2644–2676 (2002).
- 16
Schwabe, U. ATC-Code (Wissenschaftliches Institut der AOK, Bonn, Germany, 1995).
- 17
Imming, P. et al. A classification of drug substances according to their mechanism of action. Pharmazie 59, 579–589 (2004).
- 18
Swinney, D. C. Biochemical mechanisms of drug action: what does it take for success? Nature Rev. Drug Discov. 3, 801–808 (2004).
- 19
World Health Organization. The Essential Medicines List, [online] (2002).
- 20
Approved Drug Products 25th edition and Cumulative Supplement (US Department of Health and Human Services, 2005).
- 21
Pharmazeutische Zeitung Neue Arzneistoffe, [online], (2005).
- 22
CDER Drug and Biologic Approval Reports [online], (2006).
- 23
Robertson, J. G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).
- 24
Alexander, S. P. H, Mathie, A. & Peters, J. A. TiPS nomenclature supplement. Trends Pharmacol. Sci. 12, 1–146 (2001).
- 25
Mutschler, E., Geisslinger, G., Kroemer, H. K., Schä fer-Korting, M. Mutschler Arzneimittelwirkungen (Wissenschaftliche, Stuttgart, 2001).
- 26
Goldberg, N. R. et al. A. Probing conformational changes in neurotransmitter transporters: a structural context. Eur. J. Pharmacol. 479, 3–12 (2003).
- 27
Saier Jr., M. H. A functional-phylogenetic system for the classification of transport proteins. J. Cell Biochem. Suppl. 32–33, 84–94 (1999).
- 28
Krishnan, K., Campbell, S., Abdel-Rahman, F., Whaley, S. & Stone, W. L. Cancer chemoprevention drug targets. Curr. Drug Targets 4, 45–54 (2003).
- 29
Morphy, R. & Rankovic, Z. Designed multiple ligands: an emerging drug discovery paradigm. J. Med. Chem. 48, 6523–6543 (2005).
- 30
Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).
- 31
Law, M. R., Wald, J., Morris, J. K. & Jordan, R. E. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. Br. Med. J. 326, 1427–1431 (2003).
- 32
Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 1–7 (2005).
- 33
Roden, D. M. Antiarrhythmic drugs: past, present, and future. J. Cardiovasc. Electrophysiol. 14, 1389–1396 (2003).
- 34
Grosser, T., Fries, S. & FitzGerald, G. A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116, 4–15 (2006).
- 35
Sozzani, S. et al. Propranolol, a phosphatidate phosphohydrolase inhibitor, also inhibits protein kinase C. J. Biol. Chem. 267, 20481–20488 (1992).
- 36
Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B. & Prossnitz, E. R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307, 1625–1630 (2005).
- 37
Chulia, S. et al. Relationships between structure and vascular activity in a series of benzylisoquinolines. Br. J. Pharmacol. 122, 409–416 (1997).
- 38
Frantz, S. Playing dirty. Nature 437, 942–943 (2005).
- 39
Petersen, E. N. The pharmacology and toxicology of disulfiram and its metabolites. Acta Psychiatr. Scand. Suppl. 369, 7–13 (1992).
- 40
Baker, G. B., Coutts, R. T., McKenna, K. F. & Sherry-McKenna, R. L. Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review. J. Psychiatry Neurosci. 17, 206–214 (1992).
- 41
Haefely, W. et al. Pharmacology of moclobemide. Clin. Neuropharmacol. 16 (Suppl 2), 8–18 (1993).
- 42
Garavito, R. M., Malkowski, M. G. & DeWitt, D. L. The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat. 68–69, 129–152 (2002).
- 43
Smith, W. L. & Song, I. The enzymology of prostaglandin endoperoxide H synthases-1 and-2. Prostaglandins Other Lipid Mediat. 68–69, 115–28 (2002).
- 44
Hogestatt, E. D. et al. Conversion of acetaminophen to the bioactive N-acyl phenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J. Biol. Chem. 280, 31405–31412 (2005).
- 45
Mann, K. G. The challenge of regulating anticoagulant drugs: Focus on warfarin. Am. Heart J. 149 (Suppl 1), 36–42 (2005).
- 46
Miller, R. W. Aromatase inhibitors: mechanism of action and role in the treatment of breast cancer. Semin. Oncol. 30 (4 Suppl 14), 3–11 (2003).
- 47
Maertens, J. A. History of the development of azole derivatives. Clin. Microbiol. Infect. 10 (Suppl 1), 1–10 (2004).
- 48
Klotz, U. The role of aminosalicylates at the beginning of the new millennium in the treatment of chronic inflammatory bowel disease. Eur. J. Clin. Pharmacol. 56, 353–362 (2000).
- 49
Parnes, S. M. The role of leukotriene inhibitors in patients with paranasal sinus disease. Curr. Opin. Otolaryngol. Head Neck. Surg. 11, 184–191 (2003).
- 50
Cooper, D. S. Antithyroid drugs. N. Engl. J. Med. 352, 905–917 (2005).
- 51
Allison, A. C. & Eugui, E. M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47, 85–118 (2000).
- 52
Stancu, C. & Sima, A. Statins: mechanism of action and effects. J. Cell. Mol. Med. 5, 378–387 (2001).
- 53
Bull, H. G. et al. Mechanism-based inhibition of human steroid 5a-reductase by finasteride: enzyme-catalyzed formation of NADP-Dihydrofinasteride, a potent bisubstrate analog inhibitor. J. Am. Chem. Soc. 118, 2359–2365 (1996).
- 54
Matthews, D. A. et al. Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J. Biol. Chem. 260, 381–391 (1985).
- 55
Goldman, I. D. & Zhao, R. Molecular, biochemical, and cellular pharmacology of pemetrexed. Semin. Oncol. 29 (6 Suppl 18), 3–17 (2002).
- 56
Anderson, A. C. Targeting DHFR in parasitic protozoa. Drug Discov. Today 10, 121–128 (2005).
- 57
Fox, R. I. Mechanism of action of leflunomide in rheumatoid arthritis. J. Rheumatol. Suppl. 53, 20–26 (1998).
- 58
Heath, R. J., White, S. W. & Rock, C. O. Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl. Microbiol. Biotechnol. 58, 695–703 (2002).
- 59
Ryder, N. S. The mechanism of action of terbinafine. Clin. Exp. Dermatol. 14, 98–100 (1989).
- 60
Barrett-Bee, K. & Dixon, G. Ergosterol biosynthesis inhibition: a target for antifungal agents. Acta Biochim. Pol. 42, 465–479 (1995).
- 61
Borges, F., Fernandes, E. & Roleira, F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 9, 195–217 (2002).
- 62
Brownlee, J. M., Johnson-Winters, K., Harrison, D. H. & Moran, G. R. Structure of the ferrous form of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Biochemistry 43, 6370–6377 (2004).
- 63
Yarbro, J. W. Mechanism of action of hydroxyurea. Semin. Oncol. 19 (Suppl 9), 1–10 (1992).
- 64
Hofmann, J. Modulation of protein kinase C in antitumor treatment. Rev. Physiol. Biochem. Pharmacol. 142, 1–96 (2001).
- 65
Jendrossek, V. & Handrick, R. Membrane targeted anticancer drugs: potent inducers of apoptosis and putative radiosensitisers. Curr. Med. Chem. Anti-Canc. Agents 3, 343–353 (2003).
- 66
Atkins, M., Jones, C. A. & Kirkpatrick, P. Sunitinib maleate. Nature Rev. Drug Discov. 5, 279–280 (2006).
- 67
Schlünzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).
- 68
Mannisto, P. T. et al. Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog. Drug Res. 39, 291–350 (1992).
- 69
Komo, K., Oizumi, K. & Oka, S. Mode of action of rifampin on mycobacteria. Am. Rev. Respir. Dis. 107, 1006–1012 (1973).
- 70
Painter, G. R., Almond, M. R., Mao, S. & Liotta, D. C. Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse transcriptase. Curr. Top. Med. Chem. 4, 1035–1044 (2004).
- 71
Zapor, M. J., Cozza, K. L., Wynn, G. H., Wortmann, G. W. & Armstrong, S. C. Antiretrovirals, Part II: focus on non-protease inhibitor antiretrovirals (NRTIs, NNRTIs, and fusion inhibitors). Psychosomatics 45, 524–535 (2004).
- 72
Bell, C., Matthews, G. V. & Nelson, M. R. Non-nucleoside reverse transcriptase inhibitors — an overview. Int. J. STD AIDS 14, 71–77 (2003).
- 73
Young, S. D. et al. L-743,726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother. 39, 2602–2605 (1995).
- 74
Earnshaw, D. L., Bacon, T. H., Darlison, S. J., Edmonds, K., Perkins, R. M. & Vere Hodge, R. A. Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob. Agents Chemother. 36, 2747–2757 (1992).
- 75
Walther, M. M., Trahan, E. E., Cooper, M., Venzon, D. & Linehan, W. M. Suramin inhibits proliferation and DNA synthesis in transitional carcinoma cell lines. J. Urol. 152, 1599–1602 (1994).
- 76
Gurvich, N., Tsygankova, O. M., Meinkoth, J. L. & Klein, P. S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64, 1079–1086 (2004).
- 77
Angehagen, M., Ben-Menachem, E., Ronnback, L. & Hansson, E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem. Res. 28, 333–340 (2003).
- 78
Buchdunger, E. et al. ABL protein-tyrosine kinase inhibitor STI571 Inhibits in vitro signal transduction mediated by c-Kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295, 139–145 (2000).
- 79
Minna, J. D. & Dowell, J. Erlotinib hydrochloride. Nature Rev. Drug Discov. 4, S14–S15 (2005).
- 80
Yoon, H. J. et al. Crystallization and preliminary X-ray crystallographic analysis of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-N-acetylglucosamine and fosfomycin. Mol. Cell 19, 398–401 (2005).
- 81
El Zoeiby, A., Sanschagrin, F. & Levesque, R. C. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47, 1–12 (2003).
- 82
Goto, M. et al. M. Structural determinants for branched-chain aminotransferase isozyme specific inhibition by the anticonvulsant drug gabapentin. J. Biol. Chem. 280, 37246–37256 (2005).
- 83
Adams, J. The proteasome: a suitable antineoplastic target. Nature Rev. Cancer 4, 349–360 (2004).
- 84
Sugimoto, H., Ogura, H., Arai, Y., Limura, Y. & Yamanishi, Y. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn. J. Pharmacol. 89, 7–20 (2002).
- 85
Kwong, T. C. Organophosphate pesticides: biochemistry and clinical toxicology. Ther. Drug Monit. 24, 144–149 (2002).
- 86
Fisone, G., Borgkvist, A. & Usiello, A. Caffeine as a psychomotor stimulant: mechanism of action. Cell. Mol. Life Sci. 61, 857–872 (2004).
- 87
Honerjager, P. & Nawrath, H. Pharmacology of bipyridine phosphodiesterase III inhibitors. Eur. J. Anaesthesiol. Suppl. 5, 7–14 (1992).
- 88
Kaneda, T., Takeuchi, Y., Matsui, H., Shimizu, K., Urakawa, N. & Nakajyo, S. Inhibitory mechanism of papaverine on carbachol-induced contraction in bovine trachea. J. Pharmacol. Sci. 98, 275–282 (2005).
- 89
Corbin, J. D. & Francis, S. H. Molecular biology and pharmacology of PDE-5-inhibitor therapy for erectile dysfunction. J. Androl. 24 (Suppl 6), 38–41 (2003).
- 90
Beutler, A. S., Li, S., Nicol, R. & Walsh, M. J. Carbamazepine is an inhibitor of histone deacetylases. Life Sci. 76, 3107–3115 (2005).
- 91
Calfee, D. P. & Hayden, F. G. New approaches to influenza chemotherapy: neuraminidase inhibitors. Drugs 56, 537–553 (1998).
- 92
Krasikov, V. V., Karelov, D. V. & Firsov, L. M. alpha-Glucosidases. Biochemistry (Mosc). 66, 267–281 (2001).
- 93
Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. 21 (Suppl 3), 12–23 (1997).
- 94
Wynn, G. H., Zapor, M. J., Smith, B. H., Wortmann, G., Oesterheld, J. R., Armstrong, S. C. & Cozza, K. L. Antiretrovirals, part 1: overview, history, and focus on protease inhibitors. Psychosomatics 45, 262–270 (2004).
- 95
Wegner, J. Biochemistry of serine protease inhibitors and their mechanisms of action: a review. J. Extra. Corpor. Technol. 35, 326–338 (2003).
- 96
Konaklieva, M. I. β-lactams as inhibitors of serine enzymes. Curr. Med. Chem. Anti-Infect. Agents 1, 215–238 (2002).
- 97
Nicolau, K. C., Boddy, C. N. C., Brase, S. & Winssinger, N. Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew. Chem., Int. Ed. Engl. 38, 2096–2152 (1999).
- 98
Matagne, A., Dubus, A., Galleni, M. & Frere, J. M. The β-lactamase cycle. Nat. Prod. Rep. 16, 1–19 (1999).
- 99
Hirsh, J., Raschke, R., Warkentin, T. E., Dalen, J. E., Deykin, D. & Poller, L. Heparin: mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy and safety. Chest 108 (Suppl. 4), 258–275 (1995).
- 100
Nader, H. B., Lopes, C. C., Rocha, H. A., Santos, E. A. & Dietrich, C. P. Heparins and heparinoids: occurrence, structure and mechanism of antithrombotic and hemorrhagic activities. Curr. Pharm. Des. 10, 951–966 (2004).
- 101
Wolvekamp, M. C. & de Bruin, R. W. Diamine oxidase: an overview of historical, biochemical and functional aspects. Dig. Dis. 12, 2–14 (1994).
- 102
Weitz, J. I., Stewart, R. J. & Fredenburgh, J. C. Mechanism of action of plasminogen activators. Thromb. Haemost. 82, 974–982 (1999).
- 103
Bajaj, A. P. & Castellino, F. J. Activation of human plasminogen by equimolar levels of streptokinase. J. Biol. Chem. 252, 492–498 (1977).
- 104
Spronk, H. M., Govers-Riemslag, J. W. & ten Cate, H. The blood coagulation system as a molecular machine. Bioessays 25, 1220–1228 (2003).
- 105
Bauer, K. A. Fondaparinux sodium: a selective inhibitor of factor Xa. Am. J. Health Syst. Pharm. 58 (Suppl 2), 14–17 (2001).
- 106
Nemec, K. & Schubert-Zsilavecz, M. From teprotide to captopril. Rational design of ACE inhibitors. Pharm. Unserer Zeit 32, 11–16 (2003).
- 107
Pastel, D. A. Imipenem-cilastatin sodium, a broad-spectrum carbapenem antibiotic combination. Clin. Pharm. 5, 719–736 (1986).
- 108
Bondeson, J. The mechanisms of action of disease-modifying antirheumatic drugs: a review with emphasis on macrophage signal transduction and the induction of proinflammatory cytokines. Gen. Pharmacol. 29, 127–150 (1997).
- 109
Adnane, L., Trail, P. A., Taylor, I., Wilhelm, S. M. Sorafenib (BAY 43–9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 407, 597–612 (2005).
- 110
De la Baume, S., Brion, F., Dam- Trung-Tuong, M. & Schwartz, J. C. Evaluation of enkephalinase inhibition in the living mouse, using [3H]acetorphan as a probe. J. Pharmacol. Exp. Ther. 247, 653–660 (1988).
- 111
Reynolds, N. J. & Al-Daraji, W. I. Calcineurin inhibitors and sirolimus: mechanisms of action and applications in dermatology. Clin. Exp. Dermatol. 27, 555–561 (2002).
- 112
Patel, S., Martinez-Ripoll, M., Blundell, T. L. & Albert, A. Structural enzymology of Li+-sensitive/Mg2+-dependent phosphatases. J. Mol. Biol. 320, 1087–1094 (2002).
- 113
Spiegelberg, B. D, Dela Cruz, J., Law, T. H & York, J. D. Alteration of lithium pharmacology through manipulation of phosphoadenosine phosphate metabolism. J. Biol. Chem. 280, 5400–5405 (2005).
- 114
Tiede, I. et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest. 111, 1133–1145 (2003).
- 115
El Ghachi, M., Bouhss, A., Blanot, D. & Mengin-Lecreulx, D. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J. Biol. Chem. 279, 30106–30113 (2004).
- 116
Bartholini, G. & Pletscher, A. Decarboxylase inhibitors. Pharmacol. Ther. [B]. 1, 407–421 (1975).
- 117
Supuran, C. T., Scozzafava, A. & Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev. 23, 146–189 (2003).
- 118
Sonneville, A. Hypostamine (tritoqualine), a synthetic reference antihistaminic. Allerg. Immunol. (Paris) 20, 365–368 (1988).
- 119
Huang, Y., Pledgie, A., Casero, R. A. Jr. & Davidson, NE. Molecular mechanisms of polyamine analogs in cancer cells. Anticancer Drugs 16, 229–241 (2005).
- 120
Chen, Z. et al. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc. Natl Acad. Sci. USA 102, 12159–12164 (2005).
- 121
Thatcher, G. R., Nicolescu, A. C., Bennett, B. M. & Toader, V. Nitrates and NO release: contemporary aspects in biological and medicinal chemistry. Free Rad. Biol. Medic. 37, 1122–1143 (2004).
- 122
Ignarro, L. J. After 130 years, the molecular mechanism of action of nitroglycerin is revealed. Proc. Natl Acad. Sci. USA 99, 7816–7817 (2002).
- 123
Kukovetz, W. R. & Holzmann, S. Cyclic GMP as the mediator of molsidomine-induced vasodilatation. Eur. J. Pharmacol. 122, 103–109 (1986).
- 124
Fenn, T. D., Stamper, G. F., Morollo, A. A. & Ringe, D. A side reaction of alanine racemase: transamination of cycloserine. Biochemistry 42, 5775–5783 (2003).
- 125
Drlica, K. & Malik, M. Fluoroquinolones: action and resistance. Curr. Top. Med. Chem. 3, 249–282 (2003).
- 126
Pizzolato, J. F. & Saltz, L. B. The camptothecins. Lancet 361, 2235–2242 (2003).
- 127
Meresse, P., Dechaux, E., Monneret, C. & Bertounesque, E. Etoposide: discovery and medicinal chemistry. Curr. Med. Chem. 11, 2443–2466 (2004).
- 128
Polak-Wyss, A., Lengsfeld, H., Oesterhelt, G. Effect of oxiconazole and Ro 14–4767/002 on sterol pattern in Candida albicans. Sabouraudia 23, 433–441 (1985).
- 129
Achari, A. et al. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Struct. Biol. 4, 490–497 (1997).
- 130
Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer 3, 330–338 (2003).
- 131
Gilli, R., Lopez, C., Sari, J. C. & Briand, C. Thermodynamic study of the interaction of methotrexate, its metabolites, and new antifolates with thymidylate synthase: influence of FdUMP. Biochem. Pharmacol. 40, 2241–2246 (1990).
- 132
Su, J. G., Mansour, J. M. & Mansour, T. E. Purification, kinetics and inhibition by antimonials of recombinant phosphofructokinase from Schistosoma mansoni. Mol. Biochem. Parasitol. 81, 171–178 (1996).
- 133
Sehgal, S. N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant. Proc. 35 (Suppl 3), 7–14 (2003).
- 134
Foley, M. & Tilley, L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther. 79, 55–87 (1998).
- 135
Denning, D. W. Echinocandin antifungal drugs. Lancet 362, 1142–1151 (2003).
- 136
McCormack, P. L. & Goa, K. L. Miglustat. Drugs 63, 2427–2434 (2003).
- 137
Graham, M. L. Pegaspargase: a review of clinical studies. Adv. Drug Deliv. Rev. 55, 1293–1302 (2003).
- 138
Pea, F. Pharmacology of drugs for hyperuricemia. Mechanisms, kinetics and interactions. Contrib. Nephrol. 147, 35–46 (2005).
- 139
Dressler, D. & Adib Saberi, F. Botulinum toxin: mechanisms of action. Eur. Neurol. 53, 3–9 (2005).
- 140
Czapinski, P., Blaszczyk, B. & Czuczwar, S. J. Mechanisms of action of antiepileptic drugs. Curr. Top. Med. Chem. 5, 3–14 (2005).
- 141
Wafford, K. A. GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Curr. Opin. Pharmacol. 5, 47–52 (2005).
- 142
Hoffman, E. J. & Warren, E. W. Flumazenil: a benzodiazepine antagonist. Clin. Pharm. 12, 641–656 (1993).
- 143
Martin, R. J., Robertson, A. P. & Bjorn, H. Target sites of anthelmintics. Parasitology 114 (Suppl), 111–124 (1997).
- 144
Martin, R. J. Modes of action of anthelmintic drugs. Vet. J. 154, 11–34 (1997).
- 145
McManus, M. C. Neuromuscular blockers in surgery and intensive care, Part 1. Am. J. Health Syst. Pharm. 58, 2287–2299 (2001).
- 146
Bowman, W. C. Neuromuscular block. Br. J. Pharmacol. 147 S1, 277–286 (2006).
- 147
Samochocki, M. et al. Galantamine is an allosterically potentiating ligand of the human α4/β2 nAChR. Acta Neurol. Scand. Suppl. 176, 68–73 (2000).
- 148
Rogawski, M. A. & Wenk, G. L. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. C. N. S. Drug Rev. (Fall) 9, 275–308 (2003).
- 149
Dahchour, A. & De Witte, P. Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog. Neurobiol. 60, 343–362 (2000).
- 150
Kress, H. G. Mechanisms of action of ketamine. Anaesthesist 46 (Suppl. 1), 8–19 (1997).
- 151
Gautam, D. et al. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol. Pharmacol. 66, 260–267 (2004).
- 152
Eglen, R. M., Choppin, A. & Watson, N. Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol. Sci. 22, 409–414 (2001)
- 153
Pitschner, H. F. et al. Selective antagonists reveal different functions of M cholinoceptor subtypes in humans. Trends Pharmacol. Sci. Suppl. 92–96 (1989).
- 154
Hegde, S. S. et al. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br. J. Pharmacol. 120, 1409–1418. (1997).
- 155
Fredholm, B. B., Chen, J. F., Masino, S. A. & Vaugeois, J. M. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385–412 (2005).
- 156
Schumacher, B., Scholle, S., Holzl, J., Khudeir, N., Hess, S. & Muller, C. E. Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. J. Nat. Prod. 65, 1479–1485 (2002).
- 157
Fisone, G., Borgkvist, A. & Usiello, A. Caffeine as a psychomotor stimulant: mechanism of action. Cell. Mol. Life Sci. 61, 857–872 (2004).
- 158
Ruffolo, R. R., Bondinell, W. Jr. & Hieble, J. P. α- and β-adrenoceptors: from the gene to the clinic. 2. Structure–activity relationships and therapeutic applications. J. Med. Chem. 38, 3681–3716 (1995).
- 159
Hieble, J. P., Bondinell, W. & Ruffolo, R. R. From the gene to the clinic. 1. Molecular biology and adrenoceptor classification. J. Med. Chem. 38, 3415–3444 (1995).
- 160
Silberstein, S. D. The pharmacology of ergotamine and dihydroergotamine. Headache 37 (Suppl. 1), 15–25 (1997).
- 161
Burnier, M. Angiotensin II type 1 receptor blockers. Circulation 13, 904–12 (2001).
- 162
Brown, E. M. Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporo. Int. 14 (Suppl 3), 25–34 (2003).
- 163
Nemeth, E. F. et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J. Pharmacol. Exp. Ther. 308, 627–635 (2004).
- 164
Grotenhermen, F. Pharmacology of cannabinoids. Neuro. Endocrinol. Lett. 25, 14–23 (2004).
- 165
Nicosia, S. Pharmacodynamic properties of leukotriene receptor antagonists. Monaldi Arch. Chest Dis. 54, 242–246 (1999)
- 166
Vallone, D., Picetti, R. & Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 24, 125–132 (2000).
- 167
Clozel, M. et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 270, 228–235 (1994).
- 168
Hill, D. R. & Bowery, N. G. 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290, 149–152 (1981).
- 169
Unson, C. G. Molecular determinants of glucagon receptor signaling. Biopolymers 66, 218–235 (2002).
- 170
Keating, G. M. Exenatide. Drugs 65, 1681–1692 (2005).
- 171
Simons, F. E. Advances in H1-antihistamines. N. Engl. J. Med. 351, 2203–2217 (2004).
- 172
Mills, J. G. & Wood, J. R. The pharmacology of histamine H2-receptor antagonists. Methods Find. Exp. Clin. Pharmacol. 11 (Suppl 1), 87–95 (1989).
- 173
Pasternak, G. W. Molecular biology of opioid analgesia. J. Pain Symptom. Manage. 29 (Suppl.) S2–S9 (2005).
- 174
Surratt, C. K. & Adams, W. R. G protein-coupled receptor structural motifs: relevance to the opioid receptors. Curr. Top. Med. Chem. 5, 315–324 (2005).
- 175
Diemunsch, P. & Grelot, L. Potential of substance P antagonists as antiemetics. Drugs 60, 533–546 (2000).
- 176
Narumiya, S., Sugimoto, Y. & Ushikubi, F. Prostanoid receptors: structures, properties, and functions. Physiol. Rev. 79, 1193–1226 (1999).
- 177
Krauss, A. H. & Woodward, D. F. Update on the mechanism of action of bimatoprost: a review and discussion of new evidence. Surv. Ophthalmol. 49 (Suppl. 1), 5–11 (2004).
- 178
Herbert, J. M. & Savi, P. P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin. Vasc. Med. 3, 113–122 (2003).
- 179
Tunnicliff, G. Molecular basis of buspirone's anxiolytic action. Pharmacol. Toxicol. 69, 149–156 (1991).
- 180
Ahn, A. H. & Basbaum, A. I. Where do triptans act in the treatment of migraine? Pain 115, 1–4 (2005).
- 181
Meltzer, H. Y., LI, Z., Kaneda, Y. & Ichikawa, J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 1159–1172 (2003).
- 182
Blower, P. R. Granisetron: relating pharmacology to clinical efficacy. Support Care Cancer 11, 93–100 (2003).
- 183
Galligan, J. J. & Vanner, S. Basic and clinical pharmacology of new motility promoting agents. Neurogastroenterol. Motil. 17, 643–653 (2005).
- 184
Chini, B. & Fanelli, F. Molecular basis of ligand binding and receptor activation in the oxytocin and vasopressin receptor family. Exp. Physiol. 85 Spec. No 59S–66S (2000).
- 185
Kam, P. C., Williams, S. & Yoong, F. F. Vasopressin and terlipressin: pharmacology and its clinical relevance. Anaesthesia 59, 993–1001 (2004).
- 186
Kopchick, J. J. Discovery and mechanism of action of pegvisomant. Eur. J. Endocrinol. 148 (Suppl. 2), 21–25 (2003).
- 187
Zhu, Y. & D'Andrea, A. D. The molecular physiology of erythropoietin and the erythropoietin receptor. Curr. Opin. Hematol. 1, 113–118 (1994).
- 188
Crawford, J. Neutrophil growth factors. Curr. Hematol. Rep. 1, 95–102 (2002).
- 189
Sylvester, R. K. Clinical applications of colony-stimulating factors: a historical perspective. Am. J. Health Syst. Pharm. 59, Suppl 2, S6–12 (2002)
- 190
Fleischmann, R., Stern, R. & Iqbal, I. Anakinra: an inhibitor of IL-1 for the treatment of rheumatoid arthritis. Expert. Opin. Biol. Ther. 4, 1333–1344 (2004).
- 191
Schmidinger, M., Hejna, M. & Zielinski, C. C. Aldesleukin in advanced renal cell carcinoma. Expert. Rev. Anticancer Ther. 4, 957–80 (2004).
- 192
Cole, P. & Rabasseda, X. The soluble tumor necrosis factor receptor etanercept: a new strategy for the treatment of autoimmune rheumatic disease. Drugs Today (Barc.) 40, 281–324 (2004).
- 193
Topol, E. J., Byzova, T. V. & Plow, E. F. Platelet GPIIb-IIIa blockers. Lancet 353, 227–231 (1999).
- 194
Accili, D., Nakae, J. & Flier, J. S. in Diabetes Mellitus — A Fundamental and Clinical Text 3rd edn (eds LeRoith, D., Taylor, S. I. & Olefsky, J. M.) (Lippincott Williams & Wilkins, Philadelphia, 2003).
- 195
Jiang, G. & Zhang, B. B. Modulation of insulin signalling by insulin sensitizers. Biochem. Soc. Trans. 33, 358–361 (2005)
- 196
Rogerson, F. M, Brennan, F. E. & Fuller, P. J. Mineralocorticoid receptor binding, structure and function. Mol. Cell. Endocrinol. 217, 203–212 (2004).
- 197
Necela, B. M. & Cidlowski, J. A. Crystallization of the human glucocorticoid receptor ligand binding domain: a step towards selective glucocorticoids. Trends Pharmacol. Sci. 24, 58–61 (2003).
- 198
Li, X. & O'Malley, B. W. Unfolding the action of progesterone receptors. J. Biol. Chem. 278, 39261–39264 (2003).
- 199
Katzenellenbogen, B. S. et al. Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology. J. Steroid Biochem. Mol. Biol. 74, 279–285 (2000).
- 200
Levenson, A. S. & Jordan, V. C. Selective oestrogen receptor modulation: molecular pharmacology for the millennium. Eur. J. Cancer 35, 1628–1639 (1999).
- 201
Gobinet, J., Poujol, N. & Sultan, Ch. Molecular action of androgens. Mol. Cell. Endocrinol. 198, 15–24 (2002).
- 202
Roy, A. K. et al. Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann. N. Y. Acad. Sci. 949, 44–57 (2001).
- 203
Gao, W., Bohl, C. E. & Dalton, J. T. Chemistry and structural biology of androgen receptor. Chem. Rev. 105(9), 3352–3370 (2005).
- 204
Neumann, F. The antiandrogen cyproterone acetate: discovery, chemistry, basic pharmacology, clinical use and tool in basic research. Exp. Clin. Endocrinol. 102, 1–32 (1994).
- 205
Carlberg, C. Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic ligands. Recent Results Cancer Res. 164, 29–42 (2003)
- 206
Pinette, K. V., Yee, Y. K., Amegadzie, B. Y. & Nagpal, S. Vitamin D receptor as a drug discovery target. Mini Rev. Med. Chem. 3, 193–204 (2003).
- 207
Minucci, S. & Ozato, K. Retinoid receptors in transcriptional regulation. Curr. Opin. Genet. Dev. 6, 567–574 (1996).
- 208
Zwermann, O., Schulte, D. M., Reincke, M. & Beuschlein, F. ACTH 1–24 inhibits proliferation of adrenocortical tumors in vivo. Eur. J. Endocrinol. 153, 435–444 (2005).
- 209
The Retinoids. Biology, Chemistry and Medicine (eds Mangelsdorf, D. J. et al.) 319–349 (Raven Press, New York, 1994).
- 210
Czernielewski, J., Michel, S., Bouclier, M., Baker, M. & Hensby, J. C. Adapalene biochemistry and the evolution of a new topical retinoid for treatment of acne. J. Eur. Acad. Dermatol. Venereol. 15 (Suppl 3), 5–12 (2001).
- 211
Duriez, P. Mechanism of actions of statins and fibrates. Therapie 58, 5–14 (2003).
- 212
Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).
- 213
Willson, T. M. et al. The structure–activity relationship between peroxisome proliferator-activated receptor agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39, 665–668 (1996).
- 214
Brent, G. A. The molecular basis of thyroid hormone action. N. Engl. J. Med. 331, 847–853 (1994).
- 215
Saier Lab Bioinformatics Group. Transport Classification Database, [online] (2006).
- 216
Schmidt, D. & Elger, C. E. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic drugs? Epilepsy Behav. 5, 627–635 (2004).
- 217
Greenberg, R. M. Are Ca2+ channels targets of praziquantel action? Int. J. Parasitol. 35, 1–9 (2005).
- 218
Moosmang, S., Lenhardt, P., Haider, N., Hofmann, F. & Wegener, J. W. Mouse models to study L-type calcium channel function. Pharmacol. Ther. 106, 347–355 (2005).
- 219
Triggle, D. J. 1, 4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol. 23, 293–303 (2003).
- 220
Striessnig, J., Grabner, M., Mitterdorfer, J., Hering, S., Sinnegger, M. J. & Glossmann, H. Structural basis of drug binding to L-Ca2+ channels. Trends Pharmacol. Sci. 19, 108–115 (1998).
- 221
Meredith, P. A. Lercanidipine: a novel lipophilic dihydropyridine calcium antagonist with long duration of action and high vascular selectivity. Expert Opin. Investig. Drugs 8, 1043–1062 (1999).
- 222
Dworkin, R. H. & Kirkpatrick, P. Pregabalin. Nature Rev. Drug Discov. 4, 455–456 (2005).
- 223
Ninomiya, T., Takano, M., Haruna, T., Kono, Y. & Horie, M. Verapamil, a Ca2+ entry blocker, targets the pore-forming subunit of cardiac type KATP channel (Kir6. 2). J. Cardiovasc. Pharmacol. 42, 161–168 (2003).
- 224
Gomora, J. C., Daud, A. N., Weiergraber, M. & Perez-Reyes, E. Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol. Pharmacol. 60, 1121–1132 (2001).
- 225
Tamargo, J., Caballero, R., Gomez, R., Valenzuela, C. & Delpon, E. Pharmacology of cardiac potassium channels. Cardiovasc. Res. 62, 9–33 (2004).
- 226
Ashcroft, F. M. & Gribble, F. M. New windows on the mechanism of action of K(ATP) channel openers. Trends Pharmacol. Sci. 21, 439–445 (2000).
- 227
Davies, M. P., McCurrie, J. R. & Wood, D. Comparative effects of K+ channel modulating agents on contractions of rat intestinal smooth muscle. Eur. J. Pharmacol. 297, 249–256 (1996).
- 228
Hu, S., Boettcher, B. R. & Dunning, B. E. The mechanisms underlying the unique pharmacodynamics of nateglinide. Diabetologia 46 (Suppl. 1), M37–43 (2003).
- 229
Bryan, J., Crane, A., Vila-Carriles, W. H., Babenko, A. P. & Aguilar-Bryan, L. Insulin secretagogues, sulfonylurea receptors and K(ATP) channels. Curr. Pharm. Des. 11, 2699–2716 (2005).
- 230
Kodama, I., Kamiya, K. & Toyama, J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am. J. Cardiol. 84, 20R–28R (1999).
- 231
Roden, D. M. Antiarrhythmic drugs: past, present, and future. J. Cardiovasc. Electrophysiol. 14, 1389–1396 (2003).
- 232
Ambrosio, A. F., Soares-Da-Silva, P., Carvalho, C. M. & Carvalho, A. P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2–093, and BIA 2–024. Neurochem. Res. 27, 121–130 (2002).
- 233
Falk, R. H. & Fogel, R. I. Flecainide. J. Cardiovasc. Electrophysiol. 5, 964–981 (1994).
- 234
Coulter, D. A. Antiepileptic drug cellular mechanisms of action: where does lamotrigine fit in? J. Child Neurol. 12 (Suppl. 1), S2–S9 (1997).
- 235
Southam, E. et al. Effect of lamotrigine on the activities of monoamine oxidases A and B in vitro and on monoamine disposition in vivo. Eur. J. Pharmacol. 519, 237–245 (2005).
- 236
Lou, B. S., Lin, T. H. & Lo, C. Z. The interactions of phenytoin and its binding site in DI-S6 segment of Na+ channel voltage-gated peptide by NMR spectroscopy and molecular modeling study. J. Pept. Res. 66, 27–38 (2005).
- 237
Faber, T. S. & Camm, A. J. The differentiation of propafenone from other class Ic agents, focusing on the effect on ventricular response rate attributable to its beta-blocking action. Eur. J. Clin. Pharmacol. 51, 199–208 (1996).
- 238
White, H. S. Molecular pharmacology of topiramate: managing seizures and preventing migraine. Headache 45 (Suppl. 1), S48–S56 (2005).
- 239
Gurvich, N. & Klein, P. S. Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol. Ther. 96, 45–66 (2002).
- 240
Kang, M., Lisk, G., Hollingworth, S., Baylor, S. M. & Desai, S. A. Malaria parasites are rapidly killed by dantrolene derivatives specific for the plasmodial surface anion channel. Mol. Pharmacol. 68, 34–40 (2005).
- 241
Parness, J. & Palnitkar, S. S. Identification of dantrolene binding sites in porcine skeletal muscle sarcoplasmatic reticulum. J. Biol. Chem. 270, 18465–18472 (1995).
- 242
Zygmunt, P. M., Chuang, H., Movahed, P., Julius, D. & Hogestatt, E. D. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur. J. Pharmacol. 396, 39–42 (2000).
- 243
Dutzler, R. The structural basis of ClC chloride channel function. Trends Neurosci. 27, 315–320 (2004).
- 244
Reinsprecht, M., Pecht, I., Schindler, H. & Romanin, C. Potent block of Cl− channels by antiallergic drugs. Biochem. Biophys. Res. Commun. 188, 957–963 (1992).
- 245
Cheeseman, C. L., Delany, N. S., Woods, D. J. & Wolstenholme, A. J. High-affinity ivermectin binding to recombinant subunits of the Haemonchus contortus glutamate-gated chloride channel. Mol. Biochem. Parasitol. 114, 161–168 (2001).
- 246
Saier Lab Bioinformatics Group, Transport Classicication Database, http://www.tcdb.org
- 247
Gamba, G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol. Rev. 85, 423–493 (2005).
- 248
Ellison, D. H. The thiazide-sensitive Na-Cl cotransporter and human disease: reemergence of an old player. J. Am. Soc. Nephrol. 14, 538–540 (2003).
- 249
Plata, C., Meade, P., Hall, A., Welch, R. C., Vazquez, N., Hebert, S. C., Gamba, G. Alternatively spliced isoform of apical Na+-K+-Cl− cotransporter gene encodes a furosemide-sensitive Na+-Cl−cotransporter. Am. J. Physiol. Renal. Physiol. 280, F574–582 (2001).
- 250
Kleyman, T. R., Sheng, S., Kosari, F. & Kieber-Emmons, T. Mechanism of action of amiloride: a molecular prospective. Semin. Nephrol. 19, 524–532 (1999).
- 251
Ismailov, I. I. et al. Identification of an amiloride binding domain within the alpha-subunit of the epithelial Na+ channel. J. Biol. Chem. 272, 21075–21083 (1997).
- 252
Priewer, H. & Ullrich, F. Potassium and magnesium retaining triamterene derivatives. Pharmazie 52, 179–181 (1997).
- 253
Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003).
- 254
Olbe, L., Carlsson, E. & Lindberg, P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nature Rev. Drug Discov. 2, 132–139 (2003).
- 255
Paula, S., Tabet, M. R. & Ball, W. J. Jr. Interactions between cardiac glycosides and sodium/potassium-ATPase: three-dimensional structure-activity relationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition. Biochemistry 44, 498–510 (2005).
- 256
Garcia-Calvo, M. et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl Acad. Sci. USA 102, 8132–8137 (2005).
- 257
Goldberg, N. R., Beuming, T., Soyer, O. S., Goldstein, R. A., Weinstein, H. & Javitch, J. A. Probing conformational changes in neurotransmitter transporters: a structural context. Eur. J. Pharmacol. 479, 3–12 (2003).
- 258
Saier, Jr., M. H. A functional-phylogenetic system for the classification of transport proteins. J. Cell Biochem. Suppl. 32–33, 84–94 (1999).
- 259
Owens, M. J., Morgan, W. N., Plott, S. J. & Nemeroff, C. B. Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J. Pharmacol. Exp. Ther. 283, 1305–1322 (1997).
- 260
Blakely, R. D., De Felice, L. J. & Hartzell, H. C. Molecular physiology of norepinephrine and serotonin transporters. J. Exp. Biol. 196, 263–281 (1994).
- 261
Bondarev, M. L., Bondareva, T. S., Young, R. & Glennon, R. A. Behavioral and biochemical investigations of bupropion metabolites. Eur. J. Pharmacol. 474, 85–93 (2003).
- 262
Beique, J. C., Lavoie, N., de Montigny, C. & Debonnel, G. Affinities of venlafaxine and various reuptake inhibitors for the serotonin and norepinephrine transporters. Eur. J. Pharmacol. 349, 129–132 (1998).
- 263
Henry, J. P. et al. Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules. J. Exp. Biol. 196, 251–262 (1994).
- 264
Deupree, J. D. & Weaver, J. A. Identification and characterization of the catecholamine ransporter in bovine chromaffin granules using [3H]reserpine. J. Biol. Chem. 259, 10907–10912 (1984).
- 265
Dervan, P. B. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. 9, 2215–2235 (2001).
- 266
Mattes, W. B., Hartley, J. A. & Kohn, K. W. DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res. 14, 2971–2987 (1986).
- 267
Maccubbin, A. E., Caballes, L., Scappaticci, F., Struck, R. F. & Gurtoo, H. L. 32P-postlabeling analysis of binding of the cyclophosphamide metabolite, acrolein, to DNA. Cancer Commun. 2, 207–211 (1990).
- 268
Sanada, M., Takagi, Y., Ito, R. & Sekiguchi, M. Killing and mutagenic actions of dacarbazine, a chemotherapeutic alkylating agent, on human and mouse cells: effects of Mgmt and Mlh1 mutations. DNA Repair (Amst.) 3, 413–420 (2004).
- 269
Delalande, O., Malina, J., Brabec, V. & Kozelka, J. Chiral differentiation of DNA adducts formed by enantiomeric analogues of antitumor cisplatin is sequence-dependent. Biophys. J. 88, 4159–4169 (2005).
- 270
Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003).
- 271
Temperini, C. et al. The crystal structure of the complex between a disaccharide anthracycline and the DNA hexamer d(CGATCG) reveals two different binding sites involving two DNA duplexes. Nucleic Acids Res. 31, 1464–1469 (2003).
- 272
Hecht, S. M. Bleomycin: new perspectives on the mechanism of action. J. Nat. Prod. 63, 158–168 (2000).
- 273
Lamp, K. C., Freeman, C. D., Klutman, N. E. & Lacy, M. K. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin. Pharmacokinet. 36, 353–373 (1999).
- 274
Carter, A. P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).
- 275
Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).
- 276
Colca, J. R. et al. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J. Biol. Chem. 278, 21972–21979 (2003).
- 277
Duflos, A., Kruczynski, A., Barret, J. M. Novel aspects of natural and modified vinca alkaloids. Curr. Med. Chem. Anti-Canc. Agents 2, 55–70 (2002).
- 278
Lipp, H. P. & Bokemeyer, C. The action and toxicity of taxanes. Pharm. Unserer Zeit 34, 128–137 (2005).
- 279
Molad, Y. Update on colchicine and its mechanism of action. Curr. Rheumatol. Rep. 4, 252–256 (2002).
- 280
Hermann, T. Drugs targeting the ribosome. Curr. Opin. Struct. Biol. 15, 355–366 (2005).
- 281
Anokhina, M. M., Barta, A., Nierhaus, K. H., Spiridonova, V. A. & Kopylov, A. M. Mapping of the second tetracycline binding site on the ribosomal small subunit of E. coli. Nucleic Acids Res. 32, 2594–2597 (2004).
- 282
Spizek, J., Novotna, J. & Rezanka, T. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Adv. Appl. Microbiol. 56, 121–154 (2004).
- 283
Harms, J. M., Schlunzen, F., Fucini, P., Bartels, H. & Yonath, A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2, 4 (2004).
- 284
Nygren, P., Sorbye, H., Osterlund, P. & Pfeiffer, P. targeted drugs in metastatic colorectal cancer with special emphasis on guidelines for the use of bevacizu-mab and cetuximab. Acta Oncol. 44, 203–217 (2005).
- 285
Muhsin, M., Graham, J. & Kirkpatrick, P. Bevacizumab. Nature Rev. Drug Discov. 3, 995–996 (2004).
- 286
Marecki, S. & Kirkpatrick, P. Efalizumab. Nature Rev. Drug Discov. 3, 473–474 (2004).
- 287
Goldberg, R. M. Cetuximab. Nature Rev. Drug Discov. 4, S10–S11 (2005).
- 288
Albanell, J., Codony, J., Rovira, A., Mellado, B. & Gascon, P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv. Exp. Med. Biol. 532, 253–268 (2003).
- 289
Davis, L. A. Omalizumab: a novel therapy for allergic asthma. Ann. Pharmacother. 38, 1236–1242 (2004).
- 290
Hooks, M. A., Wade, C. S. & Millikan, W. J., Jr. Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11, 26–37 (1991).
- 291
Witzig, T. E. Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: a new treatment approach for B-cell non-Hodgkin's lymphoma. Drugs Today (Barc.) 40, 111–119 (2004).
- 292
Multani, P. & White, C. A. Rituximab. Cancer Chemother. Biol. Response Modif. 21, 235–258 (2003).
- 293
Linenberger, M. L. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19, 176–182 (2005).
- 294
Frampton, J. E. & Wagstaff, A. J. Alemtuzumab. Drugs 63, 1229–1243 (2003).
- 295
Scott, L. J. & Lamb, H. M. Palivizumab. Drugs 58, 305–313 (1999).
- 296
Kapic, E., Becic, F. & Kusturica, J. Basiliximab, mechanism of action and pharmacological properties. Med. Arh. 58, 373–376 (2004).
- 297
Carswell, C. I., Plosker, G. L. & Wagstaff, A. J. Daclizumab: a review of its use in the management of organ transplantation. BioDrugs 15, 745–773 (2001).
- 298
Bain, B. & Brazil, M. Adalimumab. Nature Rev. Drug Discov. 2, 693–694 (2003).
- 299
Winterfield, L. S. & Menter, A. Infliximab. Dermatol. Ther. 17, 409–426 (2004).
- 300
Faulds, D. & Sorkin, E. M. Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs 48, 583–598 (1994).
- 301
Noseworthy, J. H. & Kirkpatrick, P. Natalizumab. Nature Rev. Drug Discov. 4, 101–102 (2005).
Acknowledgements
We thank the following colleagues for help with compiling the first draft: T. Buβ, L. Ann Bailey, H. Morck, M. Ramadan and T. Rogosch (Fachbereich Pharmazie, Universität Marburg, Germany), and C. Oehler and R. Schneider (Institut für Pharmazie, Universität Halle, Germany).
Author information
Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5, 821–834 (2006). https://doi.org/10.1038/nrd2132
Issue Date:
Further reading
-
Using in silico modelling and FRET-based assays in the discovery of novel FDA-approved drugs as inhibitors of MERS-CoV helicase
SAR and QSAR in Environmental Research (2021)
-
Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application
Journal of Molecular Structure (2021)
-
Data science in unveiling COVID-19 pathogenesis and diagnosis: evolutionary origin to drug repurposing
Briefings in Bioinformatics (2021)
-
Targeting the integrated stress response in ophthalmology
Current Eye Research (2021)
-
SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development
Expert Review of Clinical Pharmacology (2021)