Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Opinion

Angiogenesis: an organizing principle for drug discovery?

Abstract

Angiogenesis — the process of new blood-vessel growth — has an essential role in development, reproduction and repair. However, pathological angiogenesis occurs not only in tumour formation, but also in a range of non-neoplastic diseases that could be classed together as 'angiogenesis-dependent diseases'. By viewing the process of angiogenesis as an 'organizing principle' in biology, intriguing insights into the molecular mechanisms of seemingly unrelated phenomena might be gained. This has important consequences for the clinical use of angiogenesis inhibitors and for drug discovery, not only for optimizing the treatment of cancer, but possibly also for developing therapeutic approaches for various diseases that are otherwise unrelated to each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps in tumour angiogenesis.
Figure 3: Examples of anti-angiogenic therapy.
Figure 4: Oncogene addiction is angiogenesis dependent.
Figure 5: Angiogenic proteins in breast cancer.
Figure 6: Three general mechanisms of angiogenesis inhibitors currently approved by the FDA.
Figure 7: Small molecules to increase endogenous angiogenesis inhibitors.
Figure 2: Angiogenesis in rat sarcoma.

Similar content being viewed by others

References

  1. Sholley, M. M., Ferguson, G. P., Seibel, H. R., Montour, J. L., & Wilson, J. D. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51, 624–634 (1984).

    CAS  PubMed  Google Scholar 

  2. Folkman, J. Angiogenesis. in Harrison's Textbook of Internal Medicine (eds Braunwald, E. et al.) (McGraw–Hill, New York, 2001).

    Google Scholar 

  3. Moulton, K. S. et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc. Natl Acad. Sci. USA 100, 4736–4741 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Folkman, J. Angiogenesis in psoriasis: therapeutic implications. J. Invest. Dermatol. 59, 40–43 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Zeng, X., Chen, J., Miller, Y. I., Javaherian, K. & Moulton, K. S. Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis. J. Lipid Res. 46, 1849–1859 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ezekowitz, A., Mulliken, J. & Folkman, J. Interferon-α therapy of haemangiomas in newborns and infants. Br. J. Haematol. 79 (Suppl. 1), 67–68 (1991).

    Article  PubMed  Google Scholar 

  7. Szabo, S. et al. Accelerated healing of duodenal ulcers by oral administration of a mutein of basic fibroblast growth factor in rats. Gastroenterology 106, 1106–1111 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, J. W. et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574–584 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Folkman J. in Targeted Therapies in Rheumatology (eds Smolen, J. S. & Lipsky P. E.) 111–131 (Martin Dunitz, London, 2003).

    Google Scholar 

  10. Moulton, K. S. et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99, 1726–1732 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Moulton, K. S. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr. Opin. Lipidol. 17, 548–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gimbrone, M. A., Jr., Cotran, R. S. & Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ausprunk, D. H., Knighton, D. R. & Folkman, J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am. J. Pathol. 79, 597–628 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Gimbrone, M. A. Jr., Cotran, R. S., Leapman, S. B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl Cancer Inst. 52, 413–427 (1974).

    Article  PubMed  Google Scholar 

  16. Auerbach, R., Arensman, R., Kubai, L. & Folkman, J. Tumor-induced angiogenesis: lack of inhibition by irradiation. Int. J. Cancer 15, 241–245 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, S. & Folkman, J. Protamine is an inhibitor of angiogenesis. Nature 297, 307–312 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Crum, R., Szabo, S. & Folkman, J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230, 1375–1378 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Ausprunk, D. H., Falterman, K. & Folkman, J. The sequence of events in the regression of corneal capillaries. Lab. Invest. 38, 284–294 (1978).

    CAS  PubMed  Google Scholar 

  21. Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Frater-Schroder, M., Risau, W., Hallmann, R., Gautschi, P. & Bohlen, P. Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl Acad. Sci. USA 84, 5277–5281 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Folkman, J. Endogenous angiogenesis inhibitors. Acta Pathol. Microbiol. Immunol. Scand. 112, 496–507 (2004).

    Article  CAS  Google Scholar 

  25. Nyberg, P., Xie, L. & Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967–3979 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Folkman, J. in Cancer Medicine 7th Edn (eds Kufe, D. W. et al.) (B.C. Decker, Hamilton, Ontario, 2006).

    Google Scholar 

  27. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Abdollahi, A. et al. Endostatin's antiangiogenic signaling network. Mol. Cell 13, 649–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Inoue, K., Korenaga, H., Tanaka, N. G., Sakamoto, N. & Kadoya, S. The sulfated polysaccharide —peptidoglycan complex potently inhibits embryonic angiogenesis and tumor growth in the presence of cortisone acetate. Carbohydr. Res. 181, 135–142 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Udagawa, T. et al. Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. FASEB J. 20, 95–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Higgins, K.J., Abdelrahim, M., Liu, S., Yoon, K. & Safe, S. Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem. Biophys. Res. Commun. 345, 292–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Yasui, H., Hideshima, T., Richardson, P. G. & Anderson, K. C. Recent advances in the treatment of multiple myeloma. Curr. Pharm. Biotechnol. 7, 381–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ranieri, G. et al. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem. 13, 1845–1857 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Rosenfeld, P. J. Intravitreal bevacizumab: the low cost alternative to lucentis? Am. J. Ophthalmol. 142, 141–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Rosenfeld, P. J., Heier, J. S., Hantsbarger, G. & Shams, N. Tolerability and efficacy of multiple escalating doses of ranibizumab (lucentis) for neovascular age-related macular degeneration. Ophthalmology 113, 623–632 (2006).

    Article  PubMed  Google Scholar 

  37. Kim, I. K. et al. Effect of intravitreal injection of ranibizumab in combination with verteporfin PDT on normal primate retina and choroid. Invest. Ophthalmol. Vis. Sci. 47, 357–363 (2006).

    Article  PubMed  Google Scholar 

  38. Husain, D. et al. Safety and efficacy of intravitreal injection of ranibizumab in combination with verteporfin PDT on experimental choroidal neovascularization in the monkey. Arch. Ophthalmol. 123, 509–516 (2005).

    Article  PubMed  Google Scholar 

  39. Michels, S. & Rosenfeld, P. J. [Treatment of neovascular age-related macular degeneration with ranibizumab/lucentis]. Klin. Monatsbl. Augenheilkd. 222, 480–484 (2005) (in German).

    Article  CAS  PubMed  Google Scholar 

  40. Pieramici, D. J. & Avery, R. L. Ranibizumab: treatment in patients with neovascular age-related macular degeneration. Expert Opin. Biol. Ther. 6, 1237–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Shima, D. T. et al. Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol. Med. 1, 182–193 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ng, E. W. & Adamis, A. P. Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can. J. Ophthalmol. 40, 352–368 (2005).

    Article  PubMed  Google Scholar 

  43. Lim, M. S. Re: Correlational of oral tongue cancer inversion with matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) expression, by Kim S-H, Cho NH, Kim K, et al. J. Surg. Oncol. 93, 253–254 (2006).

    Article  PubMed  Google Scholar 

  44. Des Guetz, G. et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br. J. Cancer 94, 1823–1832 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kerbel, R. S., Viloria-Petit, A., Klement, G. & Rak, J. “Accidental” anti-angiogenic drugs. Anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur. J. Cancer 36, 1248–1257 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Morelli, M.P. et al. Anti-tumor activity of the combination of cetuximab, and anti-EGFR blocking monoclonal antibody and ZD6474, an inhibitor of BEGFR and EGFR tyrosine kinases. J. Cell Physiol. 208, 344–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Pinedo, H.M. et al. Involvement of platelets in tumour angiogenesis? Lancet 352, 1775–1777 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Greene, A. K. et al. Urinary matrix metalloproteinases and their endogenous inhibitors predict hepatic regeneration after murine partial hepatectomy. Transplantation 78, 1139–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730–10735 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc. Natl Acad. Sci. USA 103, 16266–16271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klagsbrun, M. & Eichmann, A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 16, 535–548 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, Q., Rasmussen, S. A. & Friedman, J. M. Mortality associated with Down's syndrome in the USA from 1983 to 1997: a population-based study. Lancet 359, 1019–1025 (2002).

    Article  PubMed  Google Scholar 

  53. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Vogel, G. Developmental biology. The unexpected brains behind blood vessel growth. Science 307, 665–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D. J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Kutcher, M. E., Klagsbrun, M. & Mamluk, R. VEGF is required for the maintenance of dorsal root ganglia blood vessels but not neurons during development. FASEB J. 18, 1952–1954 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Folkman, J., Browder, T. & Palmblad, J. Angiogenesis research: guidelines for translation to clinical application. Thromb. Haemost. 86, 23–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Klement, G. et al. Early tumor detection using platelet uptake of angiogenesis regulators. Blood 104 (ASH Annual Meeting Abstracts), 839 (2004).

    Google Scholar 

  59. Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst. 98, 316–325 (2006).

    Article  PubMed  Google Scholar 

  60. Almog, N. et al. Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB J. 20, 947–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Verheul, H. M. et al. Uptake of bevacizumab by platelets blocks the biological activity of platelet-derived vascular endothelial growth factor (VEGF). Proc. Amer. Assoc. Cancer Res. 47, Abstract #5708 (2006).

  62. Klement, G., Cervi, D., Yip, T. T., Folkman, J. & Italiano, J. Platelet PF-4 is an early marker of tumor angiogenesis. Blood 108 (ASH Annual Meeting Abstract), 1476 (2006).

    Google Scholar 

  63. Italiano, J., Richardson, J. L., Folkman, J. & Klement, G. Blood platelets organize pro- and anti-angiogenic factors into separate, distinct alpha granules: implications for the regulation of angiogenesis. Blood 108 (ASH Annual Meeting Abstracts), 393 (2006).

    Google Scholar 

  64. Volpert, O. V., Lawler, J. & Bouck, N. P. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc. Natl Acad. Sci USA 95, 6343–6348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rastinejad, F., Polverini, P. J. & Bouck, N. P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Dameron, K. M., Volpert, O. V., Tainsky, M. A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Kang, S. -Y. et al. Repression of stromal thrombospondin-1 is a determinant for metastatic tissue specificity. Proc. Amer. Assoc. Cancer Res. 47, Abstract #2798 (2006).

  68. Iruela-Arispe, M. L., Porter, P., Bornstein, P. & Sage, E. H. Thrombospondin-1, an inhibitor of angiogenesis, is regulated by progesterone in the human endometrium. J. Clin. Invest. 97, 403–412 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. North, P. E. et al. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. A rch. Dermatol. 137, 559–570 (2001).

    CAS  Google Scholar 

  70. Barnes, C. M. et al. Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc. Natl Acad. Sci USA 102, 19097–19102 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Greene, A. K. et al. Endothelial-directed hepatic regeneration after partial hepatectomy. Ann. Surg. 237, 530–535 (2003).

    PubMed  PubMed Central  Google Scholar 

  72. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nature Med. 10, 625–632 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Folkman, J. Is tissue mass regulated by vascular endothelial cells? Prostate as the first evidence. Endocrinology 139, 441–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Street, J. et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl Acad. Sci. USA 99, 9656–9661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerber, H. P., & Ferrara, N. The role of VEGF in normal and neoplastic hematopoiesis. J. Mol. Med. 81, 20–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Kaplan, F. et al. Urinary basic fibroblast growth factor. A biochemical marker for preosseous fibroproliferative lesions in patients with fibrodysplasia ossificans progressiva. Clin. Orthop. 346, 59–65 (1998).

    Google Scholar 

  77. Ferrara, N., LeCouter, J., Lin, R., & Peale, F. EG-VEGF and Bv8: a novel family of tissue-restricted angiogenic factors. Biochim. Biophys. Acta 1654, 69–78 (2004).

    CAS  PubMed  Google Scholar 

  78. Chin, L. & DePinho, R. A. Flipping the oncogene switch: illumination of tumor maintenance and regression. Trends Genet. 16, 147–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell. 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  PubMed  Google Scholar 

  82. Jang, J. W., Boxer, R. B. & Chodosh, L. A. Isoform-specific ras activation and oncogene dependence during MYC- and Wnt-induced mammary tumorigenesis. Mol. Cell. Biol. 26, 8109–8121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Folkman, J. & Ryeom, S. Is oncogene addiction angiogenesis-dependent? Cold Spring Harb. Symp. Quant. Biol. 70, 389–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Weinstein, I. B. & Joe, A. K. Mechanisms of disease: oncogene addiction — a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol. 3, 448–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Demetri, G. D. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin. Oncol. 28, 19–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Duensing, A. et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 23, 3999–4006 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ritchie, E. & Nichols, G. Mechanisms of resistance to imatinib in CML patients: a paradigm for the advantages and pitfalls of molecularly targeted therapy. Curr. Cancer Drug Targets 6, 645–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Rak, J. et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res. 60, 490–498 (2000).

    CAS  PubMed  Google Scholar 

  89. Rak, J., Yu, J. L., Klement, G. & Kerbel, R. S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc. 5, 24–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Yoshioka, M. et al. Chondromodulin-1 maintains cardiac valvular function by preventing angiogenesis. Nature Med. 12, 1151–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Zorick, T. S. et al. High serum endostatin levels in Down syndrome: implications for improved treatment and prevention of solid tumours. Eur. J. Hum. Genet. 9, 811–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Hesser, B. A. et al. Down syndrome critical region protein 1 (DSCR1), a novel VEGF target gene that regulates expression of inflammatory markers on activated endothelial cells. Blood 104, 149–158 (2004).

    Article  PubMed  Google Scholar 

  93. Lourenco, G. J. et al. A high risk of occurrence of sporadic breast cancer in individuals with the 104NN polymorphism of the COL18A1 gene. Breast Cancer Res. Treat. 100, 335–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Sund, M. et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc. Natl Acad. Sci. USA 102, 2934–2939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sommer, A. et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N. Engl. J. Med. 325, 1412–1417 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Rohan, R. M., Fernandez, A., Udagawa, T., Yuan, J. & D'Amato, R. J. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14, 871–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rogers, M. S., Rohan, R. M., Birsner, A. E. & D'Amato, R. J. Genetic loci that control vascular endothelial growth factor-induced angiogenesis. FASEB J. 17, 2112–2114 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Beecken, W. D. et al. Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. J. Natl Cancer Inst. 93, 382–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Schuch, G., Kisker, O., Atala, A. & Soker, S. Pancreatic tumor growth is regulated by the balance between positive and negative modulators of angiogenesis. Angiogenesis 5, 181–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Kisker, O. et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 61, 7669–7674 (2001).

    CAS  PubMed  Google Scholar 

  101. Roy, R., Wewer, U. M., Zurakowski, D., Pories, S. E. & Moses, M. A. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J. Biol. Chem. 279, 51323–51330 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. In “Washington Post”. (February 28, 2004).

  103. Satchi-Fainaro, R. et al. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell. 7, 251–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Satchi-Fainaro, R. et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nature Med. 10, 255–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Pore, N. et al. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 15, 3197–3204 (2006).

    Article  CAS  Google Scholar 

  106. Wood, J. et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J. Pharmacol. Exp. Ther. 302, 1055–1061 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Giraudo, E., Inoue, M., and Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114, 623–633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ferretti, G. et al. Zoledronic-acid-induced circulating level modifications of angiogenic factors, metalloproteinases and proinflammatory cytokines in metastatic breast cancer patients. Oncology 69, 35–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Santini, D. et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin. Cancer Res. 9, 2893–2897 (2003).

    CAS  PubMed  Google Scholar 

  110. Boehm, T. et al. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Kulke, M.H. et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 24, 3555–3561 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Mehta, P. Thalidomide and thrombosis. Clin. Adv. Hematol. Oncol. 1, 464–465 (2003).

    PubMed  Google Scholar 

  113. Fernandez, P. M. & Rickles, F. R. Tissue factor and angiogenesis in cancer. Curr. Opin. Hematol. 9, 401–406 (2002).

    Article  PubMed  Google Scholar 

  114. Jain, R.K. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 9, 7–16 (2005).

    Google Scholar 

  115. Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2006).

    Article  CAS  Google Scholar 

  116. Teicher, B.A. et al. Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat. Oncol. Investig. 2, 269–176 (1995).

    Article  Google Scholar 

  117. Calabrese, E. J., Staudenmayer, J. W. & Stanek, E. J. Drug development and hormesis: changing conceptual understanding of the dose response creates new challenges and opportunities for more effective drugs. Curr. Opin. Drug Discov. Devel. 9, 117–123 (2006).

    CAS  PubMed  Google Scholar 

  118. Slaton, J. W., Perrotte, P., Inoue, K., Dinney, C. P. & Fidler, I. J. Interferon-α-mediated down-regulation of angiogenesis-related genes and therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin. Cancer Res. 5, 2726–2734 (1999).

    CAS  PubMed  Google Scholar 

  119. Celik, I. et al. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer Res. 65, 11044–11050 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Tjin Tham Sjin, R. M. et al. Endostatin therapy reveals a U-shaped curve for antitumor activity. Cancer Gene Ther. (2006).

  121. Panigrahy, D. et al. PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest. 110, 923–932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kuo, C. J. et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl Acad. Sci USA 98, 4605–4610 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marshall, E. Cancer therapy. Setbacks for endostatin. Science 295, 2198–2199 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Folkman, J. Antiangiogenesis in cancer therapy — endostatin and its mechanisms of action. Exp. Cell Res. 312, 594–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64, 8249–8255 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Dorrell, M.I., Aguilar, E., Scheppke, L. Barnett, F. H. & Friedlander, M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc. Natl Acad. Sci. USA 8 Jan 2007 (doi:10.1073/pnas.0607542104).

  127. Kaban, L. B. et al. Antiangiogenic therapy of a recurrent giant cell tumor of the mandible with interferon α-2a. Pediatrics 103, 1145–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Marler, J. J. et al. Successful antiangiogenic therapy of giant cell angioblastoma with interferon α 2b: report of 2 cases. Pediatrics 109, e37 (2002).

    Article  PubMed  Google Scholar 

  129. Kaban, L. B. et al. Antiangiogenic therapy with interferon α for giant cell lesions of the jaws. J. Oral Maxillofac. Surg. 60, 1103–1111 (2002).

    Article  PubMed  Google Scholar 

  130. Folkman, J. The Harvey Lectures, Series 92, 1996–1997. 65–82 (John Wiley & Sons, New York, 1998).

    Google Scholar 

  131. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  132. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bocci, G., Francia, G., Man, S., Lawler, J. & Kerbel, R. S. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl Acad. Sci. USA 100, 12917–12922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kieran, M. W. et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol. 27, 573–581 (2005).

    Article  PubMed  Google Scholar 

  136. Nilsson, U. W. & Dabrosin, C. Estradiol and tamoxifen regulate endostatin generation via matrix metalloproteinase activity in breast cancer in vivo. Cancer Res. 66, 4789–4794 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Ma, L., del Soldato, P. & Wallace, J. L. Divergent effects of new cyclooxygenase inhibitors on gastric ulcer healing: shifting the angiogenic balance. Proc. Natl Acad. Sci. USA 99, 13243–13247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nagashima, M., Asano, G. & Yoshino, S. Imbalance in production between vascular endothelial growth factor and endostatin in patients with rheumatoid arthritis. J. Rheumatol. 27, 2339–2342 (2000).

    CAS  PubMed  Google Scholar 

  139. Kalas, W. et al. Restoration of thrombospondin 1 expression in tumor cells harbouring mutant ras oncogene by treatment with low doses of doxycycline. Biochem. Biophys. Res. Commun. 310, 109–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Marx, J. Angiogenesis. A boost for tumor starvation. Science 301, 452–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor b1 platelet-derived endothelail cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57(5), 963–969 (1997).

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Breast Cancer Research Foundation, a Department of Defense Innovator Award and a Department of Defense Congressional Award. I thank S. Connors and J. Grillo for help with the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Age-related macular degeneration

Alzheimer's disease

Chronic myeloid leukaemia

colorectal cancer

Down syndrome

infantile haemangiomas

multiple myeloma

non-small-cell lung cancer

rheumatoid arthritis

testicular cancer

FURTHER INFORMATION

Judah Folkman's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folkman, J. Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov 6, 273–286 (2007). https://doi.org/10.1038/nrd2115

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing