Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic potential of resveratrol: the in vivo evidence

Key Points

  • Resveratrol, a small polyphenol, has been discovered and re-discovered as a potential therapeutic in recent years. Although putative cardioprotective effects were first noted in 1982, it was only after a 1992 report of high levels of resveratrol in red wine that these effects were investigated extensively. In 1997, resveratrol was isolated in a screen for cyclooxygenase inhibitors, and was shown to be an effective chemotherapeutic and chemopreventive agent. Moreover, in 2003, it was identified as the top hit in a screen for activators of sirtuin deacetylases and was shown to extend the lifespans of lower organisms.

  • The number of reported effects for resveratrol is constantly growing. Many direct targets have been identified in vitro, and protective effects have been demonstrated in various rodent models of disease.

  • Pharmacokinetic studies have consistently shown that levels of resveratrol in serum do not reach the concentrations required for most of the reported in vitro effects, or do so only transiently. In vivo evidence has therefore become increasingly important in efforts to understand how resveratrol elicits its effects in mammals.

  • One possibility that has been suggested based on data from lower organisms is that resveratrol acts as a caloric restriction mimetic. This hypothesis is intriguing because caloric restriction seems to slow the intrinsic rate of ageing, and improve general health, rather than block specific disease processes.

  • The many reported in vivo effects of resveratrol are reviewed here and, whenever possible, have been related to putative mechanisms and targets. Determining the mechanism(s) by which resveratrol and similar molecules act, and developing methods to improve bioavailability and/or specificity, has enormous potential to benefit human health.

Abstract

Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates that resveratrol has protective effects in rodent models of stress and disease. Here, we provide a comprehensive and critical review of the in vivo data on resveratrol, and consider its potential as a therapeutic for humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: trans-Resveratrol and related structures.
Figure 2: Resveratrol citations appearing on PubMed as a function of year.
Figure 3: The largest reported increases in mean and maximal lifespan for various species treated with resveratrol.

Similar content being viewed by others

References

  1. Takaoka, M. J. Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J. Faculty Sci. Hokkaido Imperial University 3, 1–16 (1940).

    CAS  Google Scholar 

  2. Nonomura, S., Kanagawa, H. & Makimoto, A. Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-jo-kon (Polygonum cuspidatum Sieb. et Zucc.). Yakugaku Zasshi 83, 988–990 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Langcake, P. & Pryce, R. J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 9, 77–86 (1976).

    Article  CAS  Google Scholar 

  4. Siemann, E. H. & Creasy, L. L. Concentration of the phytoalexin resveratrol in wine. Am. J. Eno. Vitic. 43, 49–52 (1992).

    CAS  Google Scholar 

  5. Jang, M. et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220 (1997). Shows that resveratrol is a naturally occurring inhibitor of cyclooxygenase that has both anti-inflammatory and anticarcinogenic properties in vivo.

    Article  CAS  PubMed  Google Scholar 

  6. Bradamante, S., Barenghi, L. & Villa, A. Cardiovascular protective effects of resveratrol. Cardiovasc. Drug Rev. 22, 169–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q. et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 958, 439–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Sinha, K., Chaudhary, G. & Gupta, Y. K. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci. 71, 655–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003). The first evidence that resveratrol is an activator of sirtuin deacetylases and extends the lifespan of S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  10. Valenzano, D. R. et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 16, 296–300 (2006). Shows that resveratrol can extend lifespan and delay neurodegeneration in vertebrates, although sirtuin-dependence of the effect is not addressed.

    Article  CAS  PubMed  Google Scholar 

  11. Buryanovskyy, L. et al. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry 43, 11417–11426 (2004). Provides a detailed description of the binding pocket for resveratrol on the highest-affinity target reported so far, as well as a discussion of the consequences of QR2 inhibition.

    Article  CAS  PubMed  Google Scholar 

  12. Barger, J. L., Walford, R. L. & Weindruch, R. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp. Gerontol. 38, 1343–1351 (2003).

    Article  PubMed  Google Scholar 

  13. McCay, C. M. & Crowell, M. F. Prolonging the lifespan. Scientific Monthly 39, 405–414 (1934).

    Google Scholar 

  14. Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Tessitore, L., Davit, A., Sarotto, I. & Caderni, G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 21, 1619–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y., Tseng, S. H., Lai, H. S. & Chen, W. J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136, 57–66 (2004).

    Article  PubMed  Google Scholar 

  17. Bove, K., Lincoln, D. W. & Tsan, M. F. Effect of resveratrol on growth of 4T1 breast cancer cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 291, 1001–1005 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Oshima, M. et al. Suppression of intestinal polyposis in Apcδ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Zha, S., Yegnasubramanian, V., Nelson, W. G., Isaacs, W. B. & De Marzo, A. M. Cyclooxygenases in cancer: progress and perspective. Cancer Lett. 215, 1–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Khanduja, K. L., Bhardwaj, A. & Kaushik, G. Resveratrol inhibits N-nitrosodiethylamine-induced ornithine decarboxylase and cyclooxygenase in mice. J. Nutr. Sci. Vitaminol. (Tokyo) 50, 61–65 (2004).

    Article  CAS  Google Scholar 

  21. Li, Z. G. et al. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol. Carcinogenesis 23, 1531–1536 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Aziz, M., Afaq, F. & Ahmad, N. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochem. Photobiol. 81, 25–31 (2004).

    Article  Google Scholar 

  23. Subbaramaiah, K. et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J. Biol. Chem. 273, 21875–21882 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Martin, A. R., Villegas, I., La Casa, C. & de la Lastra, C. A. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem. Pharmacol. 67, 1399–1410 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Stewart, J. R., Ward, N. E., Ioannides, C. G. & O'Brian, C. A. Resveratrol preferentially inhibits protein kinase C-catalyzed phosphorylation of a cofactor-independent, arginine-rich protein substrate by a novel mechanism. Biochemistry 38, 13244–13251 (1999). Shows that the IC 50 of resveratrol against PKC is substrate- and co-factor-dependent, which could explain the disparity between effective concentrations in vitro and serum concentrations in vivo for this and other putative targets.

    Article  CAS  PubMed  Google Scholar 

  26. Schneider, Y. et al. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett. 158, 85–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, Z. D., Cao, Y., Wang, K. F., Xu, S. F. & Han, R. Chemopreventive effect of resveratrol to cancer. Ai Zheng 23, 869–873 (2004).

    CAS  PubMed  Google Scholar 

  28. Afaq, F., Adhami, V. M. & Ahmad, N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol. Appl. Pharmacol. 186, 28–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Martinez, M. E. et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc. Natl Acad. Sci. USA 100, 7859–7864 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyskens, F. L. Jr & Gerner, E. W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 5, 945–951 (1999).

    CAS  PubMed  Google Scholar 

  31. Kimura, Y. & Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr. 131, 1844–1849 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Tseng, S. H. et al. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res. 10, 2190–2202 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Brakenhielm, E., Cao, R. & Cao, Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 15, 1798–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Giudice, A. & Montella, M. Activation of the Nrf2–ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28, 169–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, C., Shin, Y. G., Kosmeder, J. W., Pezzuto, J. M. & van Breemen, R. B. Liquid chromatography/tandem mass spectrometric determination of inhibition of human cytochrome P450 isozymes by resveratrol and resveratrol-3-sulfate. Rapid Commun. Mass Spectrom. 17, 307–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Piver, B., Berthou, F., Dreano, Y. & Lucas, D. Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol. Lett. 125, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Chang, T. K., Lee, W. B. & Ko, H. H. Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1. Can. J. Physiol. Pharmacol. 78, 874–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Chan, W. K. & Delucchi, A. B. Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci. 67, 3103–3112 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ciolino, H. P., Daschner, P. J. & Yeh, G. C. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res. 58, 5707–5712 (1998).

    CAS  PubMed  Google Scholar 

  40. Casper, R. F. et al. Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol. Pharmacol. 56, 784–790 (1999).

    CAS  PubMed  Google Scholar 

  41. Zhou, S. et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin. Pharmacokinet. 44, 279–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Revel, A. et al. Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. J. Appl. Toxicol. 23, 255–261 (2003). Describes the in vivo confirmation of effects predicted on the basis of the inhibition of the AHR by resveratrol.

    Article  CAS  PubMed  Google Scholar 

  43. Berge, G., Ovrebo, S., Eilertsen, E., Haugen, A. & Mollerup, S. Analysis of resveratrol as a lung cancer chemopreventive agent in A/J mice exposed to benzo[a]pyrene. Br. J. Cancer 91, 1380–1383 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao, Z. & Li, Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 489, 39–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kaga, S., Zhan, L., Matsumoto, M. & Maulik, N. Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J. Mol. Cell Cardiol. 39, 813–822 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Floreani, M., Napoli, E., Quintieri, L. & Palatini, P. Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated atria from menadione toxicity. Life Sci. 72, 2741–2750 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Long, D. J. et al. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J. Biol. Chem. 277, 46131–46139 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Long, D. J. et al. Disruption of the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene in mice causes myelogenous hyperplasia. Cancer Res. 62, 3030–3036 (2002).

    CAS  PubMed  Google Scholar 

  49. Hebbar, V. et al. Toxicogenomics of resveratrol in rat liver. Life Sci. 76, 2299–2314 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Aggarwal, B. B. et al. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 24, 2783–2840 (2004).

    CAS  PubMed  Google Scholar 

  51. Yu, L., Sun, Z. J., Wu, S. L. & Pan, C. E. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. World J. Gastroenterol. 9, 2341–2343 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schneider, Y. et al. Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr. Cancer 39, 102–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Reagan-Shaw, S., Afaq, F., Aziz, M. H. & Ahmad, N. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. Oncogene 23, 5151–5160 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Garvin, S., Ollinger, K. & Dabrosin, C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett. 231, 113–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Provinciali, M. et al. Effect of resveratrol on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Int. J. Cancer 115, 36–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Zhou, H. B., Chen, J. J., Wang, W. X., Cai, J. T. & Du, Q. Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice. World J. Gastroenterol. 11, 280–284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gautam, S. C., Xu, Y. X., Dumaguin, M., Janakiraman, N. & Chapman, R. A. Resveratrol selectively inhibits leukemia cells: a prospective agent for ex vivo bone marrow purging. Bone Marrow Transplant. 25, 639–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Ferry-Dumazet, H. et al. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis 23, 1327–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Fulda, S. & Debatin, K. M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res. 64, 337–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Kensler, T. et al. Role of reactive intermediates in tumor promotion and progression. Prog. Clin. Biol. Res. 391, 103–116 (1995).

    CAS  PubMed  Google Scholar 

  61. Gromadzinska, J. & Wasowicz, W. The role of reactive oxygen species in the development of malignancies. Int. J. Occup. Med. Environ. Health 13, 233–245 (2000).

    CAS  PubMed  Google Scholar 

  62. Sengottuvelan, M., Viswanathan, P. & Nalini, N. Chemopreventive effect of trans-resveratrol — a phytoalexin against colonic aberrant crypt foci and cell proliferation in 1,2-dimethylhydrazine induced colon carcinogenesis. Carcinogenesis 27, 1038–1046 (2005).

    Article  PubMed  Google Scholar 

  63. Miura, D., Miura, Y. & Yagasaki, K. Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci. 73, 1393–1400 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Wenzel, E., Soldo, T., Erbersdobler, H. & Somoza, V. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats. Mol. Nutr. Food Res. 49, 482–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Collins, A. R. Antioxidant intervention as a route to cancer prevention. Eur. J. Cancer 41, 1923–1930 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Renaud, S. & Gueguen, R. The French paradox and wine drinking. Novartis Found. Symp. 216, 208–217, discussion 152–158, 217–222 (1998).

    Google Scholar 

  67. Renaud, S. & de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339, 1523–1526 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Richard, J. L. Coronary risk factors. The French paradox. Arch. Mal. Coeur Vaiss. 80, 17–21 (1987).

    PubMed  Google Scholar 

  69. Gronbaek, M. et al. Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 310, 1165–1169 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bohm, M., Rosenkranz, S. & Laufs, U. Alcohol and red wine: impact on cardiovascular risk. Nephrol. Dial. Transplant. 19, 11–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Seigneur, M. et al. Effect of the consumption of alcohol, white wine, and red wine on platelet function and serum lipids. J. Appl. Cardiol. 5, 215–222 (1990).

    Google Scholar 

  72. Demrow, H. S., Slane, P. R. & Folts, J. D. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 91, 1182–1188 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Fitzpatrick, D. F., Hirschfield, S. L. & Coffey, R. G. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am. J. Physiol. 265, H774–H778 (1993).

    CAS  PubMed  Google Scholar 

  74. Lekakis, J. et al. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur. J. Cardiovasc. Prev. Rehabil. 12, 596–600 (2005).

    PubMed  Google Scholar 

  75. Wang, Z. et al. Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. Int. J. Mol. Med. 16, 533–540 (2005).

    CAS  PubMed  Google Scholar 

  76. Fuhrman, B., Lavy, A. & Aviram, M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am. J. Clin. Nutr. 61, 549–554 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Frankel, E. N., Kanner, J., German, J. B., Parks, E. & Kinsella, J. E. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341, 454–457 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Zern, T. L., West, K. L. & Fernandez, M. L. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J. Nutr. 133, 2268–2272 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Bertelli, A. A. et al. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int. J. Tissue React. 17, 1–3 (1995).

    CAS  PubMed  Google Scholar 

  80. Wang, Z. et al. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int. J. Mol. Med. 9, 77–79 (2002).

    PubMed  Google Scholar 

  81. Zini, R., Morin, C., Bertelli, A., Bertelli, A. A. & Tillement, J. P. Effects of resveratrol on the rat brain respiratory chain. Drugs Exp. Clin. Res. 25, 87–97 (1999).

    CAS  PubMed  Google Scholar 

  82. Hamberg, M., Svensson, J. & Samuelsson, B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl Acad. Sci. USA 72, 2994–2998 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hamberg, M., Svensson, J., Wakabayashi, T. & Samuelsson, B. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc. Natl Acad. Sci. USA 71, 345–349 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moncada, S., Gryglewski, R., Bunting, S. & Vane, J. R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263, 663–665 (1976).

    Article  CAS  PubMed  Google Scholar 

  85. Mukherjee, D., Nissen, S. E. & Topol, E. J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286, 954–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Davies, N. M. & Jamali, F. COX-2 selective inhibitors cardiac toxicity: getting to the heart of the matter. J. Pharm. Pharm. Sci. 7, 332–336 (2004).

    CAS  PubMed  Google Scholar 

  87. Szewczuk, L. M., Forti, L., Stivala, L. A. & Penning, T. M. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J. Biol. Chem. 279, 22727–22737 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Williams, A. & Hennekens, C. H. The role of aspirin in cardiovascular diseases — forgotten benefits? Expert Opin. Pharmacother. 5, 109–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 231, 232–235 (1971).

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell, J. A., Akarasereenont, P., Thiemermann, C., Flower, R. J. & Vane, J. R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl Acad. Sci. USA 90, 11693–11697 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Naderali, E. K., Doyle, P. J. & Williams, G. Resveratrol induces vasorelaxation of mesenteric and uterine arteries from female guinea-pigs. Clin. Sci. (Lond.) 98, 537–543 (2000).

    Article  CAS  Google Scholar 

  92. Jager, U. & Nguyen-Duong, H. Relaxant effect of trans-resveratrol on isolated porcine coronary arteries. Arzneimittelforschung 49, 207–211 (1999).

    CAS  PubMed  Google Scholar 

  93. Li, H. F., Chen, S. A. & Wu, S. N. Evidence for the stimulatory effect of resveratrol on Ca2+-activated K+ current in vascular endothelial cells. Cardiovasc. Res. 45, 1035–1045 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Orallo, F. et al. The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol. Pharmacol. 61, 294–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Das, S. et al. Coordinated induction of iNOS–VEGF–KDR–eNOS after resveratrol consumption: a potential mechanism for resveratrol preconditioning of the heart. Vascul. Pharmacol. 42, 281–289 (2005). Explores the molecular basis of resveratrol's capacity to protect hearts from ischaemic injury, both upstream and downstream of nitric oxide.

    Article  CAS  PubMed  Google Scholar 

  96. Cruz, M. N. et al. Acute responses to phytoestrogens in small arteries from men with coronary heart disease. Am. J. Physiol. Heart Circ. Physiol. 290, H1969–H1975 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Holvoet, P. Oxidized LDL and coronary heart disease. Acta Cardiol. 59, 479–484 (2004).

    Article  PubMed  Google Scholar 

  98. Frankel, E. N., Waterhouse, A. L. & Kinsella, J. E. Inhibition of human LDL oxidation by resveratrol. Lancet 341, 1103–1104 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Fremont, L., Belguendouz, L. & Delpal, S. Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci. 64, 2511–2521 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Turrens, J. F., Lariccia, J. & Nair, M. G. Resveratrol has no effect on lipoprotein profile and does not prevent peroxidation of serum lipids in normal rats. Free Radic. Res. 27, 557–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Urpi-Sarda, M. et al. Uptake of diet resveratrol into the human low-density lipoprotein. Identification and quantification of resveratrol metabolites by liquid chromatography coupled with tandem mass spectrometry. Anal. Chem. 77, 3149–3155 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Morales, A. I. et al. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid. Redox Signal. 4, 893–898 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Mizutani, K., Ikeda, K., Kawai, Y. & Yamori, Y. Protective effect of resveratrol on oxidative damage in male and female stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 28, 55–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Arichi, H. et al. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. Chem. Pharm. Bull. (Tokyo) 30, 1766–1770 (1982).

    Article  CAS  Google Scholar 

  105. Wilson, T., Knight, T. J., Beitz, D. C., Lewis, D. S. & Engen, R. L. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. Life Sci. 59, PL15–PL21 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Turner, R. T., Evans, G. L., Zhang, M., Maran, A. & Sibonga, J. D. Is resveratrol an estrogen agonist in growing rats? Endocrinology 140, 50–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Z. et al. Effect of resveratrol on platelet aggregation in vivo and in vitro. Chin. Med. J. (Engl.) 115, 378–380 (2002).

    CAS  Google Scholar 

  108. Kollar, P. et al. Experimental study of resveratrol and flavonoids in red wine with regard to their possible hypolipemic effects. Vnitr. Lek. 46, 856–860 (2000).

    CAS  PubMed  Google Scholar 

  109. Irikura, T., Takagi, K., Okada, K. & Yagasaki, K. Effect of KCD-232, a new hypolipidemic agent, on serum lipoprotein changes in hepatoma-bearing rats. Lipids 20, 420–424 (1985).

    Article  CAS  PubMed  Google Scholar 

  110. Lobo, R. A. Benefits and risks of estrogen replacement therapy. Am. J. Obstet. Gynecol. 173, 982–989 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Gehm, B. D., McAndrews, J. M., Chien, P. Y. & Jameson, J. L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl Acad. Sci. USA 94, 14138–14143 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox'? Eur. J. Endocrinol. 138, 619–620 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Hodis, H. N. et al. Hormone therapy and the progression of coronary-artery atherosclerosis in postmenopausal women. N. Engl. J. Med. 349, 535–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Bluming, A. Z. Hormone replacement therapy: the debate should continue. Geriatrics 59, 30–31, 35–37 (2004).

    PubMed  Google Scholar 

  115. Simmons, D. L., Botting, R. M. & Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, G. et al. Synthesis and anti-inflammatory activity of resveratrol analogs. Chem. Pharm. Bull. (Tokyo) 53, 1587–1590 (2005).

    Article  CAS  Google Scholar 

  117. Birrell, M. A. et al. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-κB-independent mechanism. FASEB J. 19, 840–841 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Elmali, N. et al. Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm. Res. 54, 158–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Wu, S. L., Pan, C. E., Yu, L. & Meng, K. W. Immunosuppression by combined use of cyclosporine and resveratrol in a rat liver transplantation model. Transplant. Proc. 37, 2354–2359 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Wu, S. L., Yu, L., Meng, K. W., Ma, Z. H. & Pan, C. E. Resveratrol prolongs allograft survival after liver transplantation in rats. World J. Gastroenterol. 11, 4745–4749 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shigematsu, S. et al. Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radic. Biol. Med. 34, 810–817 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Suzuki, M. et al. Superoxide mediates reperfusion-induced leukocyte–endothelial cell interactions. Am. J. Physiol. 257, H1740–H1745 (1989).

    CAS  PubMed  Google Scholar 

  123. Kimmey, M. B. Cardioprotective effects and gastrointestinal risks of aspirin: maintaining the delicate balance. Am. J. Med. 117 (Suppl. 5A), S72–S78 (2004).

    Google Scholar 

  124. Feng, Y. H. et al. Low dose of resveratrol enhanced immune response of mice. Acta Pharmacol. Sin. 23, 893–897 (2002).

    CAS  PubMed  Google Scholar 

  125. Docherty, J. J. et al. Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antiviral Res. 67, 155–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Docherty, J. J., Smith, J. S., Fu, M. M., Stoner, T. & Booth, T. Effect of topically applied resveratrol on cutaneous herpes simplex virus infections in hairless mice. Antiviral Res. 61, 19–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Ray, P. S. et al. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic. Biol. Med. 27, 160–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Sato, M. et al. Myocardial protection with red wine extract. J. Cardiovasc. Pharmacol. 35, 263–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Bradamante, S. et al. Does resveratrol induce pharmacological preconditioning? Int. J. Tissue React. 22, 1–4 (2000).

    CAS  PubMed  Google Scholar 

  130. Hung, L. M. et al. The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy. Br. J. Pharmacol. 135, 1627–1633 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hattori, R., Otani, H., Maulik, N. & Das, D. K. Pharmacological preconditioning with resveratrol: role of nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 282, H1988–H1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Imamura, G. et al. Pharmacological preconditioning with resveratrol: an insight with iNOS knockout mice. Am. J. Physiol. Heart Circ. Physiol. 282, H1996–H2003 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Hung, L. M., Chen, J. K., Huang, S. S., Lee, R. S. & Su, M. J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc. Res. 47, 549–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Bradamante, S. et al. Resveratrol provides late-phase cardioprotection by means of a nitric oxide- and adenosine-mediated mechanism. Eur. J. Pharmacol. 465, 115–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Inoue, H. et al. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice. Neurosci. Lett. 352, 203–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Y. J., He, F. & Li, X. L. The neuroprotection of resveratrol in the experimental cerebral ischemia. Zhonghua Yi Xue Za Zhi 83, 534–536 (2003).

    CAS  PubMed  Google Scholar 

  137. Gupta, Y. K., Chaudhary, G., Sinha, K. & Srivastava, A. K. Protective effect of resveratrol against intracortical FeCl3-induced model of posttraumatic seizures in rats. Methods Find. Exp. Clin. Pharmacol. 23, 241–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Gupta, Y. K., Briyal, S. & Chaudhary, G. Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol. Biochem. Behav. 71, 245–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Gupta, Y. K., Chaudhary, G. & Srivastava, A. K. Protective effect of resveratrol against pentylenetetrazole-induced seizures and its modulation by an adenosinergic system. Pharmacology 65, 170–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Sharma, M. & Gupta, Y. K. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 71, 2489–2498 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Z., Yu, B., Li, W. & Sun, J. Estrogenicity of trans-resveratrol in immature mice in vivo. Wei Sheng Yan Jiu 31, 188–190 (2002).

    CAS  PubMed  Google Scholar 

  142. Freyberger, A., Hartmann, E., Hildebrand, H. & Krotlinger, F. Differential response of immature rat uterine tissue to ethinylestradiol and the red wine constituent resveratrol. Arch. Toxicol. 74, 709–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Kubo, K. et al. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci. Res. 45, 345–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Kyselova, V., Peknicova, J., Buckiova, D. & Boubelik, M. Effects of p-nonylphenol and resveratrol on body and organ weight and in vivo fertility of outbred CD-1 mice. Reprod. Biol. Endocrinol. 1, 30 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nikaido, Y. et al. Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod. Toxicol. 18, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Juan, M. E., Vinardell, M. P. & Planas, J. M. The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. J. Nutr. 132, 257–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Crowell, J. A., Korytko, P. J., Morrissey, R. L., Booth, T. D. & Levine, B. S. Resveratrol-associated renal toxicity. Toxicol. Sci. 82, 614–619 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Gentilli, M. et al. Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw. Life Sci. 68, 1317–1321 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Torres-Lopez, J. E. et al. Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sci. 70, 1669–1676 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Granados-Soto, V., Arguelles, C. F. & Ortiz, M. I. The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology 43, 917–923 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Seidman, M., Babu, S., Tang, W., Naem, E. & Quirk, W. S. Effects of resveratrol on acoustic trauma. Otolaryngol. Head Neck Surg. 129, 463–470 (2003).

    Article  PubMed  Google Scholar 

  152. Lugarini, F., Hrupka, B. J., Schwartz, G. J., Plata-Salaman, C. R. & Langhans, W. A role for cyclooxygenase-2 in lipopolysaccharide-induced anorexia in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R862–R868 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Cadenas, S. & Barja, G. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3 . Free Radic. Biol. Med. 26, 1531–1537 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Giovannini, L. et al. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J. Cardiovasc. Pharmacol. 37, 262–270 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Yang, Y. & Piao, Y. Effects of resveratrol on Ca2+, Mg2+-ATPase activities after spinal cord trauma in rats. Zhong Yao Cai 25, 882–885 (2002).

    PubMed  Google Scholar 

  156. Yang, Y. B. & Piao, Y. J. Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacol. Sin. 24, 703–710 (2003).

    CAS  PubMed  Google Scholar 

  157. Fulgenzi, A., Bertelli, A. A., Magni, E., Ferrero, E. & Ferrero, M. E. In vivo inhibition of TNFα-induced vascular permeability by resveratrol. Transplant. Proc. 33, 2341–2343 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. McClintock, S. D., Till, G. O., Smith, M. G. & Ward, P. A. Protection from half-mustard-gas-induced acute lung injury in the rat. J. Appl. Toxicol. 22, 257–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Korolkiewicz, R. P. et al. Differential salutary effects of nonselective and selective COX-2 inhibitors in postoperative ileus in rats. J. Surg. Res. 109, 161–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Korolkiewicz, R. P. et al. The role and interactions of nitric oxide (NO), carbon monoxide (CO), and prostanoids in the pathogenesis of postoperative ileus in rats. J. Gastrointest. Surg. 8, 346–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Brachmann, C. B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).

    Article  CAS  PubMed  Google Scholar 

  162. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McBurney, M. W. et al. The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 23, 38–54 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guarente, L. & Picard, F. Calorie restriction — the SIR2 connection. Cell 120, 473–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Koubova, J. & Guarente, L. How does calorie restriction work? Genes Dev. 17, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038–17045 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Borra, M. T., Smith, B. C. & Denu, J. M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187–17195 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9, 605–615 (2005). Shows that activation of SIR-2.1 (a C. elegans sirtuin deacetylase) by resveratrol extends lifespan in a manner that is distinct from simple overexpression.

    Article  CAS  PubMed  Google Scholar 

  175. Marier, J. F. et al. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 302, 369–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Asensi, M. et al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic. Biol. Med. 33, 387–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Walle, T., Hsieh, F., DeLegge, M. H., Oatis, J. E. Jr & Walle, U. K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32, 1377–1382 (2004). The most detailed description so far of resveratrol metabolism in humans.

    Article  CAS  PubMed  Google Scholar 

  178. Vitaglione, P. et al. Bioavailability of trans-resveratrol from red wine in humans. Mol. Nutr. Food Res. 49, 495–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Gescher, A. J. & Steward, W. P. Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiol. Biomarkers Prev. 12, 953–957 (2003).

    CAS  PubMed  Google Scholar 

  180. Pervaiz, S. Resveratrol: from grapevines to mammalian biology. FASEB J. 17, 1975–1985 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Soleas, G. J., Diamandis, E. P. & Goldberg, D. M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem. 30, 91–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Mukamal, K. J. et al. Prospective study of alcohol consumption and risk of dementia in older adults. JAMA 289, 1405–1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Cleophas, T. J. Wine, beer and spirits and the risk of myocardial infarction: a systematic review. Biomed. Pharmacother. 53, 417–423 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. De Santi, C., Pietrabissa, A., Spisni, R., Mosca, F. & Pacifici, G. M. Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica 30, 609–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Sale, S. et al. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br. J. Cancer 90, 736–744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Vitrac, X. et al. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci. 72, 2219–2233 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Mertens-Talcott, S. U. & Percival, S. S. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett. 218, 141–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Chan, M. M., Mattiacci, J. A., Hwang, H. S., Shah, A. & Fong, D. Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem. Pharmacol. 60, 1539–1548 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Fang, J. G. et al. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry 8, 4191–4198 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Conte, A., Pellegrini, S. & Tagliazucchi, D. Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin. Brain Res. Bull. 62, 29–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Heredia, A., Davis, C. & Redfield, R. Synergistic inhibition of HIV-1 in activated and resting peripheral blood mononuclear cells, monocyte-derived macrophages, and selected drug-resistant isolates with nucleoside analogues combined with a natural product, resveratrol. J. Acquir. Immune Defic. Syndr. 25, 246–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Su, H. C., Hung, L. M. & Chen, J. K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab. 24 Jan 2006 [epub ahead of print]. Reports that resveratrol causes a significant improvement of the phenotype in a rat model of diabetes, improving glucose and triglyceride metabolism, and preventing overeating.

  193. Roth, G. S., Lane, M. A. & Ingram, D. K. Caloric restriction mimetics: the next phase. Ann. NY Acad. Sci. 1057, 365–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Lopez-Lluch, G. et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl Acad. Sci. USA 103, 1768–1773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Storz, P., Doppler, H. & Toker, A. Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor-κB. Mol. Pharmacol. 66, 870–879 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Lamming, D. W., Wood, J. G. & Sinclair, D. A. Small molecules that regulate lifespan: evidence for xenohormesis. Mol. Microbiol. 53, 1003–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Sinclair, D. A. & Howitz, K. T. in Handbook of the Biology of Aging (eds Masoro, E. J. & Austad, S. N.) 63–104 (Elsevier, Boston, 2006).

    Google Scholar 

  199. Lane, M. A., Ingram, D. K. & Roth, G. S. 2-Deoxy-D-glucose feeding in rats mimics physiological effects of caloric restriction. J. Anti-Aging Med. 1, 327–337 (1998).

    Article  CAS  Google Scholar 

  200. Calabrese, E. J. Hormesis: from marginalization to mainstream: a case for hormesis as the default dose-response model in risk assessment. Toxicol. Appl. Pharmacol. 197, 125–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Rattan, S. I. Aging, anti-aging, and hormesis. Mech. Ageing Dev. 125, 285–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Mine, M., Okumura, Y., Ichimaru, M., Nakamura, T. & Kondo, S. Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int. J. Radiat. Biol. 58, 1035–1043 (1990).

    Article  CAS  PubMed  Google Scholar 

  203. Masoro, E. J. Hormesis and the antiaging action of dietary restriction. Exp. Gerontol. 33, 61–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  204. Chippindale, A. K., Leroi, A. M., Kim, S. B. & Rose, M. R. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J. Evolutionary Biol. 6, 171–193 (1993).

    Article  Google Scholar 

  205. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bauer, J. H., Goupil, S., Garber, G. B. & Helfand, S. L. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 101, 12980–12985 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Goldberg, D. M. et al. A global survey of trans-resveratrol concentrations in commercial wines. Am. J. Enol. Vitic. 46, 159–165 (1995).

    CAS  Google Scholar 

  208. Careri, M., Corradini, C., Elviri, L., Nicoletti, I. & Zagnoni, I. Liquid chromatography-electrospray tandem mass spectrometry of cis-resveratrol and trans-resveratrol: development, validation, and application of the method to red wine, grape, and winemaking byproducts. J. Agric. Food Chem. 52, 6868–6874 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Kiraly-Veghely, Z., Tyihak, E., Albert, L., Nemeth, Z. I. & Katay, G. Identification and measurement of resveratrol and formaldehyde in parts of white and blue grape berries. Acta Biol. Hung. 49, 281–289 (1998).

    CAS  PubMed  Google Scholar 

  210. Ribeiro de Lima, M. T. et al. Determination of stilbenes (trans-astringin, cis- and trans-piceid, and cis- and trans-resveratrol) in Portuguese wines. J. Agric. Food Chem. 47, 2666–2670 (1999).

    Article  CAS  PubMed  Google Scholar 

  211. Burns, J., Yokota, T., Ashihara, H., Lean, M. E. & Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 50, 3337–3340 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Mark, L., Nikfardjam, M. S., Avar, P. & Ohmacht, R. A validated HPLC method for the quantitative analysis of trans-resveratrol and trans-piceid in Hungarian wines. J. Chromatogr. Sci. 43, 445–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Vitrac, X. et al. Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, ɛ-viniferin) in Brazilian wines. J. Agric. Food Chem. 53, 5664–5669 (2005).

    Article  CAS  PubMed  Google Scholar 

  214. Soleas, G. J. et al. A derivatized gas chromatographic-mass spectrometric method for the analysis of both isomers of resveratrol in juice and wine. Am. J. Enol. Vitic. 46, 346–352 (1995).

    CAS  Google Scholar 

  215. Creasy, L. L. & Coffee, M. Phytoalexin production potential of grape berries. J. Am. Soc. Hortic. Sci. 113, 230–234 (1988).

    CAS  Google Scholar 

  216. Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J. & Ballington, J. R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 52, 4713–4719 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Romero-Perez, A. I., Lamuela-Raventos, R. M., Andres-Lacueva, C. & de La Torre-Boronat, M. C. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J. Agric. Food Chem. 49, 210–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Romero-Perez, A. I., Ibern-Gomez, M., Lamuela-Raventos, R. M. & de La Torre-Boronat, M. C. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 47, 1533–1536 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. Wang, Y., Catana, F., Yang, Y., Roderick, R. & van Breemen, R. B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 50, 431–435 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. Lyons, M. M. et al. Resveratrol in raw and baked blueberries and bilberries. J. Agric. Food Chem. 51, 5867–5870 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. Sanders, T. H., McMichael, R. W. Jr & Hendrix, K. W. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 48, 1243–1246 (2000).

    Article  CAS  PubMed  Google Scholar 

  222. Tokusoglu, O., Unal, M. K. & Yemis, F. Determination of the phytoalexin resveratrol (3,5,4′-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). J. Agric. Food Chem. 53, 5003–5009 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Sobolev, V. S. & Cole, R. J. trans-Resveratrol content in commercial peanuts and peanut products. J. Agric. Food Chem. 47, 1435–1439 (1999).

    Article  CAS  PubMed  Google Scholar 

  224. Ibern-Gomez, M., Roig-Perez, S., Lamuela-Raventos, R. M. & de la Torre-Boronat, M. C. Resveratrol and piceid levels in natural and blended peanut butters. J. Agric. Food Chem. 48, 6352–6354 (2000).

    Article  CAS  PubMed  Google Scholar 

  225. Ingham, J. L. 3,5,4′-Trihydroxystilbene as a phytoalexin from groundnuts (Arachis hypogaea). Phytochemistry 15, 1791–1793 (1976).

    Article  CAS  Google Scholar 

  226. Matsuda, H. et al. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg. Med. Chem. Lett. 10, 323–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Callemien, D., Jerkovic, V., Rozenberg, R. & Collin, S. Hop as an interesting source of resveratrol for brewers: optimization of the extraction and quantitative study by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. J. Agric. Food Chem. 53, 424–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  228. Jerkovic, V., Callemien, D. & Collin, S. Determination of stilbenes in hop pellets from different cultivars. J. Agric. Food Chem. 53, 4202–4206 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. Ali, Z. et al. Phenolic constituents of Gnetum klossii. J. Nat. Prod. 66, 558–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  230. Aaviksaar, A. et al. Hydroxystilbenes in the roots of Rheum rhaponticum. Proc. Estonian Acad. Sci. Chem. 52, 99–107 (2003).

    CAS  Google Scholar 

  231. Olas, B., Wachowicz, B., Stochmal, A. & Oleszek, W. Anti-platelet effects of different phenolic compounds from Yucca schidigera Roezl. bark. Platelets 13, 167–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Chen, R. S., Wu, P. L. & Chiou, R. Y. Peanut roots as a source of resveratrol. J. Agric. Food Chem. 50, 1665–1667 (2002).

    Article  CAS  PubMed  Google Scholar 

  233. Powell, R. G., TePaske, M. R., Plattner, R. D., White, J. F. & Clement, S. L. Isolation of resveratrol from Festuca versuta and evidence for the widespread occurrence of this stilbene in the Poaceae. Phytochemistry 35, 335–338 (1994).

    Article  CAS  Google Scholar 

  234. Kumar, R. J., Jyostna, D., Krupadanam, G. L. D. & Srimannarayana, G. Phenanthrene and stilbenes from Pterolobium hexapetullum. Phytochemistry 27, 3625–3626 (1988).

    Article  CAS  Google Scholar 

  235. Rolfs, C. & Kindl, H. Two different constitutive enzymes in cultured cells of Picea excelsa. Plant Physiol. 75, 489–492 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Hathaway, D. W. & Seakins, J. W. T. Hydroxystilbenes of Eucalyptus wandoo. Biochem. J. 72, 369–374 (1959).

    Article  Google Scholar 

  237. Deshpande, V. H., Srinivasan, R. & Rao, A. V. Wood phenolics of Morus species. IV. Phenolics of the heartwood of five Morus species. Indian J. Chem. 13, 453–457 (1975).

    CAS  Google Scholar 

  238. Anjaneyulu, A. S. R. et al. A new dibenzo (2,3-6,7) oxepin derivative from Bauhinia racemosa. Tetrahedron 40, 4245–4252 (1984).

    Article  CAS  Google Scholar 

  239. Cantos, E., Garcia-Viguera, C., de Pascual-Teresa, S. & Tomas-Barberan, F. A. Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J. Agric. Food Chem. 48, 4606–4612 (2000).

    Article  CAS  PubMed  Google Scholar 

  240. Cantos, E., Espin, J. C. & Tomas-Barberan, F. A. Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new 'functional' fruit? J. Agric. Food Chem. 49, 5052–5058 (2001).

    Article  CAS  PubMed  Google Scholar 

  241. Cantos, E., Espin, J. C. & Tomas-Barberan, F. A. Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses. J. Agric. Food Chem. 50, 6322–6329 (2002).

    Article  CAS  PubMed  Google Scholar 

  242. Juan, M. E., Buenafuente, J., Casals, I. & Planas, J. M. Plasmatic levels of trans-resveratrol in rats. Food Res. Int. 35, 195–199 (2002).

    Article  CAS  Google Scholar 

  243. Meng, X., Maliakal, P., Lu, H., Lee, M. J. & Yang, C. S. Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. J. Agric. Food Chem. 52, 935–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  244. Juan, M. E., Lamuela-Raventos, R. M., de la Torre-Boronat, M. C. & Planas, J. M. Determination of trans-resveratrol in plasma by HPLC. Anal. Chem. 71, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  245. Yu, C. et al. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 19, 1907–1914 (2002).

    Article  CAS  PubMed  Google Scholar 

  246. Goldberg, D. M., Yan, J. & Soleas, G. J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 36, 79–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  247. Bertelli, A. A., Giovannini, L., Stradi, R., Bertelli, A. & Tillement, J. P. Plasma, urine and tissue levels of trans- and cis-resveratrol (3,4′,5-trihydroxystilbene) after short-term or prolonged administration of red wine to rats. Int. J. Tissue React. 18, 67–71 (1996).

    CAS  PubMed  Google Scholar 

  248. Bertelli, A., Bertelli, A. A., Gozzini, A. & Giovannini, L. Plasma and tissue resveratrol concentrations and pharmacological activity. Drugs Exp. Clin. Res. 24, 133–138 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sinclair.

Ethics declarations

Competing interests

D.A.S. and J.A.B. are inventors on provisional patents for the use of resveratrol in treating age-associated diseases.

D.A.S. is a co-founder of and consultant to Sirtris, a company whose goal is to treat diseases of ageing by activating sirtuins.

Research in the laboratory of D.A.S. is not funded by industry.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Phase I trials at the National Cancer Institute

Phase I trials at the Universities of Michigan and Leicester

Colon cancer trial at the University of California Irvine

Phase I trials at the Institute for Human Virology

Glossary

Phytoalexin

A toxic compound produced by higher plants in response to infection or other stresses, such as nutrient deprivation.

Caloric restriction

A reduction of calorie intake (typically by 30–40% in rodents) to a level that does not cause malnutritionand that has been shown to increase lifespan and stress-resistance in multiple species.

Sirtuin

A member of the family of NAD+-dependent deacetylases named after the Saccharomyces cerevisiae silent information regulator 2 (Sir2) protein (class III histone deacetylases).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baur, J., Sinclair, D. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5, 493–506 (2006). https://doi.org/10.1038/nrd2060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing