Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Osteoarthritis — an untreatable disease?

Key Points

  • Osteoarthritis (OA) is a painful, complex disease that affects millions of people worldwide. There is currently no disease-modifying therapy for OA, and existing drugs to treat symptoms of OA are largely ineffective. The lack of a validated animal model and the multifactorial nature of the disease make the discovery and development of new drugs even more challenging.

  • OA is a disease of the whole joint that involves many pathophysiological processes that arise from a dysregulation in the function of cytokines and growth factors, prostaglandins, cartilage matrix fragments, neuropeptides, reactive oxygen intermediates, proteolytic enzymes and protease inhibitors. Dysregulation of these factors sets in motion a cycle of degeneration of cartilage, bone, ligaments and synovium that coincides with an inflammatory response and peripheral and central nervous system sensitization.

  • Current treatments for OA include acetaminophen, non-steroidal anti-inflammatories, cyclooxygenase 2 (COX2) inhibitors, and intra-articular hyaluronic acid or steroid injections. However, disease-modifying efficacy has not been demonstrated for any of these drugs. These drugs are only moderately effective, leaving the patients with a substantial pain burden and often gastrointestinal side effects after chronic administration.

  • Disease-modifying drugs currently in various stages of clinical development include inhibitors against matrix metalloproteinases, interleukin-1β-convertase (ICE) and cathepsin K, and the nutraceutical glucosamine. Inhibitors against lipoxygenase and COX2, as well as nitric oxide analgesics and novel NSAIDS, are being tested in the clinic for the symptomatic treatment of OA.

  • The complex pathology of OA calls for a systems biology approach to dissecting the molecular pathways of disease initiation and progression, and to this end much effort is now focused on identifying and validating biomarkers and disease models for OA.


Osteoarthritis is a painful and disabling disease that affects millions of patients. Its aetiology is largely unknown, but is most likely multi-factorial. Osteoarthritis poses a dilemma: it often begins attacking different joint tissues long before middle age, but cannot be diagnosed until it becomes symptomatic decades later, at which point structural alterations are already quite advanced. In this review, osteoarthritis is considered as a disease of the whole joint that may result from multiple pathophysiological mechanisms, one of which is the dysregulation of lipid homeostasis. No proven disease-modifying therapy exists for osteoarthritis and current treatment options for chronic osteoarthritic pain are insufficient, but new pharmacotherapeutic options are emerging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Common target sites for osteoarthritis.
Figure 2: Articular structures that are affected in osteoarthritis.
Figure 3: Current osteoarthritis treatment options.
Figure 4: Vicious cycle of osteoarthritis.
Figure 5: Targets for the development of disease- (a) or symptom-modifying (b) drugs for osteoarthritis.


  1. 1

    Harris, E. D. Jr. The Bone and Joint decade: a catalyst for progress. Arthritis Rheum 44, 1969–1970 (2004).

    Article  Google Scholar 

  2. 2

    WHO Scientific group. The burden of musculoskeletal conditions at the start of the new millennium. World Health Organ Tech. Rep. Ser. 919, 1–218 (2003). The tremendous challenge of the disease is summarized in this report of the epidemiology of musculoskeletal diseases.

  3. 3

    Merx, H. et al. International variation in hip replacement rates. Ann. Rheum. Dis. 62, 222–226 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    NIH Consensus Statement on Total Knee Replacement December 8–10, 2003. J. Bone Joint Surg. Am. 86, 1328–1335 (2004).

  5. 5

    Kean, W. F., Kean, R. & Buchanan, W. W. Osteoarthritis: symptoms, signs and source of pain. Inflammo-pharmacology 12, 3–31 (2004).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Badley, E. M. & Wang, P. P. Arthritis and the aging population: projections of arthritis prevalence in Canada 1991 to 2031. J. Rheumatol. 25, 138–144 (1998).

    CAS  PubMed  Google Scholar 

  7. 7

    Decision Resources, Inc. Osteoarthritis: Immune and Inflammatory Disorders Study (Decision Resources, Inc., Waltham, Massachusetts, 2004).

  8. 8

    Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27, 1513–1517 (2000).

    CAS  PubMed  Google Scholar 

  9. 9

    Flower, R. J. The development of COX2 inhibitors. Nature Rev. Drug. Discov. 2, 179–191 (2003). A comprehensive review of COX2 inhibitor development.

    CAS  Article  Google Scholar 

  10. 10

    Topol, E. J. Failing the public health — Rofecoxib, Merck, and the FDA. N. Engl. J. Med. 351, 1707–1711 (2004).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Petit-Zeman, S. Characteristics of COX 2 inhibitors questioned. Nature Rev. Drug. Discov. 3, 726–727 (2004). This paper and reference10 provide evidence that the safety of COX2 inhibitors will be re-evaluated.

    CAS  Article  Google Scholar 

  12. 12

    Felson, D. T. An update on the pathogenesis and epidemiology of osteoarthritis. Radiol. Clin. N. Am. 42, 1–9 (2004).

    PubMed  Article  Google Scholar 

  13. 13

    Spector, T. D. & MacGregor, A. J. Risk factors for osteoarthritis: genetics. Osteoarthr. Cartil. 12, S39–S44 (2004).

    PubMed  Article  Google Scholar 

  14. 14

    Richette, P. & Bardin, T. Structure-modifying agents for osteoarthritis: an update. Joint Bone Spine 71, 18–23 (2004).

    PubMed  Article  Google Scholar 

  15. 15

    Jordan, K. M. et al. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann. Rheum. Dis. 62, 1145–1155 (2003). Recent clinical recommendations issued by an osteoarthritis task force.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Zhang, W., Jones, A. & Doherty, M. Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 63, 901–907 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Neame, R., Zhang, W. & Doherty, M. A historic issue of the Annals: three papers examine paracetamol in osteoarthritis. Ann. Rheum. Dis. 63, 897–900 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Lee, C., Straus, W. L., Balshaw, R., Barlas, S., Vogel, S. & Schnitzer, T. J. A comparison of the efficacy and safety of nonsteroidal antiinflammatory agents versus acetaminophen in the treatment of osteoarthritis: a meta-analysis. Arthritis Rheum. 51, 746–754 (2004).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Ann. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Samad, T. A. et al. Interleukin-1β-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Watson, M. C., Brookes, S. T., Kirwan, J. R. & Faulkner, A. in The Cochrane Library, Issue 1 10.1002/14651858.CD000142 (Update Software Ltd, Oxford, 2003).

    Google Scholar 

  22. 22

    Warner, T. D. et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc. Natl Acad. Sci. USA 96, 7563–7568 (1999).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Bensen, W. G. et al. Treatment of osteoarthritis with celecoxib, a cyclooxygenase-2 inhibitor: a randomized controlled trial. Mayo Clin. Proc. 74, 1095–1105 (1999).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Day, R. et al. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. Rofecoxib/Ibuprofen Comparator Study Group. Arch. Intern. Med. 160, 1781–1787 (2000).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    McAlindon, T. E., LaValley, M. P., Gulin, J. P. & Felson, D. T. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 283, 1469–1475 (2000).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Zerkak, D. & Dougados, M. The use of glucosamine therapy in osteoarthritis. Curr. Pain Headache Rep. 8, 507–511 (2004).

    PubMed  Article  Google Scholar 

  27. 27

    Chard, J & Dieppe, P. Glucosamine for osteoarthritis: magic, hype, or confusion? It's probably safe — but there's no good evidence that it works. BMJ 322, 1439–1440 (2001). This paper questions the validity of glucosamine as a treatment for OA.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Biggee, B. A. & McAlindon, T. Glucosamine for osteoarthritis: part I, review of the clinical evidence. Med. Health RI 87, 176–179 (2004).

    Google Scholar 

  29. 29

    Lin, J., Zhang, W., Jones, A. & Doherty, M. Efficacy of topical non-steroidal anti-inflammatory drugs in the treatment of osteoarthritis: meta–analysis of randomised controlled trials. BMJ 329, 324 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Mason, L., Moore, R. A., Edwards, J. E., Derry, S. & McQuay, H. J. Topical NSAIDs for chronic musculoskeletal pain: systematic review and meta-analysis. BMC Musculoskelet. Disord. 5, 28 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31

    Ayral, X. Injections in the treatment of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 15, 609–626 (2001).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Gossec, L. & Dougados, M. Intra-articular treatments in osteoarthritis: from the symptomatic to the structure modifying. Ann. Rheum. Dis. 63, 478–482 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Creamer, P. Intra-articular corticosteroid treatment in osteoarthritis. Curr. Opin. Rheumatol. 11, 417–421 (1999).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Lohmander, L. S. et al. Intra-articular hyaluronan injections in the treatment of osteoarthritis of the knee: a randomised, double blind, placebo controlled multicentre trial. Hyaluronan Multicentre Trial Group. Ann. Rheum. Dis. 55, 424–431 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Brandt, K. D., Smith, G. N. Jr & Simon, L. S. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: what is the evidence? Arthritis Rheum. 43, 1192–1203 (2000).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Lo, G. H., LaValley, M., McAlindon, T. & Felson, D. T. Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA. 290, 3115–3221 (2003).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Berenbaum, F. Signaling transduction. Curr. Opin. Rheumatol. 16, 616–622 (2004).

    PubMed  Article  Google Scholar 

  38. 38

    Haringman, J. J., Ludikhuize, J. & Tak, P. P. Chemokines in joint disease: the key to inflammation? Ann. Rheum. Dis. 63, 1186–1194 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Aigner, T. et al. Functional genomics of osteoarthritis. Pharmacogenomics 3, 635–650 (2002).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Fan, Z. et al. Regulation of anabolic and catabolic gene expression in normal and osteoarthritic adult human articular chondrocytes by osteogenic protein-1. Clin. Exp. Rheumatol. 22, 103–106 (2004).

    CAS  PubMed  Google Scholar 

  41. 41

    Sandell, L. J. & Aigner, T. Articular cartilage and changes in osteoarthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 3, 107–113 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Matsumoto, T., Gargosky, S. E., Iwasaki, K. & Rosenfeld, R. G. Identification and characterization of insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases in human synovial fluid. J. Clin. Endocrinol. Metab. 81, 150–155 (1996).

    CAS  PubMed  Google Scholar 

  43. 43

    Lajeunesse, D. The role of bone in the treatment of osteoarthritis. Osteoarthr. Cartil. 12, S34–S38 (2004).

    PubMed  Article  Google Scholar 

  44. 44

    Dumond, H. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 48, 3118–3129 (2003). A recent perspective of leptin playing an important role in OA.

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Figenschau, Y. et al. Human articular chondrocytes express functional leptin receptors. Biochem. Biophys. Res. Commun. 287, 190–197 (2001).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Lohmander, L. S., Atley, L. M., Pietka, T. A. & Eyre, D. R. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum. 48, 3130–3139 (2003).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Rudolphi, K. et al. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr. Cartil. 11, 738–746 (2003).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Zhang, X., Mao, Z. & Yu, Ch. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J. Orthop. Res. 22, 742–750 (2004).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Fuchs, S. et al. Differential induction and regulation of matrix metalloproteinases in osteoarthritic tissue and fluid synovial fibroblasts. Osteoarthr. Cartil. 12, 409–418 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Kevorkian, L. et al. Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 50, 131–141 (2004).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Francois, M. et al. Peroxisome proliferator-activated receptor-γ down regulates chondrocyte matrix meatlloproteinase-1 via a novel composite element. J. Biol. Chem. 279, 28411–28418 (2004).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Bordji, K. et al. Evidence for the presence of peroxisome proliferator-activated receptor (PPAR)α and γ and retinoid Z receptor cartilage. J. Biol. Chem. 275, 12243–12250 (2000).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Martel-Pelletier, M., Pelletier, J. P. & Fahni, H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum. 33, 155–167 (2003).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Fahmi, H., Pelletier, J. P., Mineau, F. & Martel-Pelletier, J. 15d-PGJ2 is acting as “dual agent” on the regulation of COX-2 expression in human osteoarthritic chondrocytes. Osteoarthr. Cartil. 10, 845–848 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Aupperle, K. R. et al. NF-κB regulation by I kappa B kinase in primary fibroblast-like synoviocytes. J. Immunol. 163, 427–433 (1999).

    CAS  PubMed  Google Scholar 

  56. 56

    Aupperle, K. R. et al. Expression and regulation of inducible IκB kinase (IKK-i) in human fibroblast-like synoviocytes. Cell. Immunol. 214, 54–59 (2001).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Tegeder, I. et al. Specific inhibition of IκB kinase reduces hyperalgesia in inflammatory and neuropathic pain models. J. Neurosci. 24, 1673–1645 (2004).

    Article  CAS  Google Scholar 

  58. 58

    Jobin, C. et al. Specific NF-κB blockade selectively inhibits tumour necrosis factor α-induced COX2 but not constitutive Cox-1 gene expression in HT29 cells. Immunology 95, 537–543 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Pelletier, J. -P. Rationale for the use of structure-modifying drugs and agents in the treatment of osteoarthritis. Osteoarthr. Cartil. 12 (Suppl. A), 63–68 (2003).

    Google Scholar 

  60. 60

    Buckland-Wright, C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr. Cartil. 12, (Suppl. A) 10–19 (2004).

    Article  Google Scholar 

  61. 61

    Felson, D. T. & Neogi, T. Osteoarthritis: is it a disease of cartilage or bone? Arthritis Rheum. 50, 341–344 (2004). A recent paper discussing the contribution of both cartilage and bone to the progression of the disease.

    PubMed  Article  Google Scholar 

  62. 62

    Grynpas, M. D., Alpert, B., Katz, I., Lieberman, I. & Pritzker, K. P. Subchondral bone in osteoarthritis. Calcif. Tissue Int. 49, 20–26 (1991).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50, 1193–1206 (2004).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Doschak, M. R., Wohl, G. R., Hanley, D. A., Bray, R. C. & Zernicke, R. F. Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee. J. Orthop. Res. 22, 942–948 (2004).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Myers, S. L., Brandt, K. D., Burr, D. B., O'Connor, B. L. & Albrecht, M. Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J. Rheumatol. 26, 2645–2653 (1999).

    CAS  PubMed  Google Scholar 

  66. 66

    Bingham, C. et al. Clinically significant placebo improvement occurs by 6 months and is maintained through 24 months in a study of knee OA pain and function. Osteoarthr. Cartil. 12, S132 Abs. P323 (2004).

    Google Scholar 

  67. 67

    Menkes, C. J. & Lane, N. E. Are osteophytes good or bad? Osteoarthr. Cartil. 12, S53–S54 (2004).

    PubMed  Article  Google Scholar 

  68. 68

    Uchino, M. et al. Growth factor expression in the osteophytes of the human femoral head in osteoarthritis. Clin. Orthop. 377, 119–125 (2000).

    Article  Google Scholar 

  69. 69

    Brandt, K. D. Osteophytes in osteoarthritis. Clinical aspects. Osteoarthr. Cartil. 7, 334–335 (1999).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Van Osch, G. J., Van der Kraan, P. M., Van Valburg, A. A. & Van den Berg, W. B. The relation between cartilage damage and osteophyte size in a murine model for osteoarthritis in the knee. Rheumatol. Int. 16, 115–119 (1996).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Lanyon, P., O'Reilly, S., Jones, A. & Doherty, M. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann. Rheum. Dis. 57, 595–601 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Ghosh, P. Vascular mechanisms in osteoarthritis. Best Practice Res. Clin. Rheumatol. 15, 693–710 (2001).

    CAS  Article  Google Scholar 

  73. 73

    Simkin, P. A. in Osteoarthritic Joint Pain (Novartis Foundation Symposium) 179–190 (Wiley, Chichester, 2004).

    Google Scholar 

  74. 74

    Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Ahima, R. S. & Flier, J. S. Leptin. Annu. Rev. Physiol. 62, 413–437 (2000).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Dean, G., Hoyland, J. A., Denton, J., Donn, R. P. & Freemont, A. J. Mast cells in the synovium and synovial fluid in osteoarthritis. Br. J. Rheumatol. 32, 671–675 (1993).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Lindblad, S. & Hedfors, E. Arthroscopic and immunohistologic characterization of knee joint synovitis in osteoarthritis. Arthritis Rheumatol. 30, 1081–1088 (1987).

    CAS  Article  Google Scholar 

  79. 79

    Halverson, P. B. & Derfus, B. A. Calcium crystal-induced inflammation. Curr Opin. Rheumatol. 13, 221–224 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Kato, T., Xiang, Y., Nakamura, H. & Nishioka, K. Neoantigens in osteoarthritic cartilage. Curr. Opin. Rheumatol. 16, 604–608 (2004).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Abramson, S. B. Inflammation in osteoarthritis. J. Rheumatol. Suppl. 70, 70–76 (2004).

    CAS  PubMed  Google Scholar 

  82. 82

    Poole, A. R. Biochemical/immunochemical biomarkers of osteoarthritis: utility for prediction of incident or progressive osteoarthritis. Rheum. Dis. Clin. North Am. 29, 803–818 (2003). This paper provides a classic review on biomarkers in OA.

    PubMed  Article  Google Scholar 

  83. 83

    Mapp, P. I. Innervation of the synovium. Ann. Rheum. Dis. 54, 398–403 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Opree, A. & Kress, M. Involvement of the proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J. Neurosci. 20, 6289–6293 (2000).

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Safieh-Garabedian, B., Poole, S., Allchorne, A., Winter, J. & Woolf, C. J. Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br. J. Pharmacol. 115, 1265–1275 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Woolf, C. J., Allchorne, A., Safieh-Garabedian, B. & Poole, S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor α. Br. J. Pharmacol. 121, 417–424 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Chen, X., Tanner, K. & Levine, J. D. Mechanical sensitization of cutaneous C-fiber nociceptors by prostaglandin E2 in the rat. Neurosci. Lett. 267, 105–108 (1999).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Manning, D. C., Raja, S. N., Meyer, R. A. & Campbell, J. N. Pain and hyperalgesia after intradermal injection of bradykinin in humans. Clin. Pharmacol. Ther. 50, 721–729 (1991).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Mizumura, K. Natural history of nociceptor sensitization — the search for peripheral mechanism of hyperalgesia. Pain Rev. 5, 59–82 (1998).

    CAS  Article  Google Scholar 

  90. 90

    Flechtenmacher, J. et al. Bradykinin-receptor-inhibition — a therapeutic option in osteoarthritis? Osteoarthr. Cartil. 12, S137 Abs. P332 (2004).

    Google Scholar 

  91. 91

    Saito, T. & Koshino, T. Distribution of neuropeptides in synovium of the knee with osteoarthritis. Clin. Orthop. 376, 172–182 (2000).

    Article  Google Scholar 

  92. 92

    Vilensky, J. A. & Cook, J. A. Neurogenic acceleration of osteoarthritis. Curr. Opin. Rheumatol. 10, 251–255 (1998).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Hurley, M. V., Scott, D. L., Rees, J. & Newham, D. J. Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann. Rheum. Dis. 56, 641–648 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Baker, K. & McAlindon, T. Exercise for knee osteoarthritis. Curr. Opin. Rheumatol. 12, 456–463 (2000).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Slemenda, C. et al. Quadriceps weakness and osteoarthritis of the knee. Ann. Int. Med. 127, 97–104 (1997).

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Becker, R., Berth, A., Nehring, M. & Awiszus, F. Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J. Orthop. Res. 22, 768–773 (2004).

    PubMed  Article  Google Scholar 

  97. 97

    O'Connor, B. L. & Vilensky, J. A. Peripheral and central nervous system mechanisms of joint protection. Am. J. Orthop. 32, 330–336 (2003).

    PubMed  Google Scholar 

  98. 98

    Sharma, L., Dunlop, D. D., Cahue, S., Song, J. & Hayes, K. W. Quadriceps strength and osteoarthritis progression in malaligned and lax knees. Ann. Intern. Med. 138, 613–619 (2003).

    PubMed  Article  Google Scholar 

  99. 99

    Creamer, P., Hunt, M. & Dieppe, P. Pain mechanisms in osteoarthritis of the knee: effect of intraarticular anesthetic. J. Rheumatol. 23, 1031–1036 (1996).

    CAS  PubMed  Google Scholar 

  100. 100

    Schaible, H. G., Ebersberger, A., Von Banchet, G. S. Mechanisms of pain in arthritis. Ann. NY Acad. Sci. 966, 343–354 (2002).

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Kidd, B. L. & Urban, L. A. Mechanisms of inflammatory pain. Br. J. Anaesth. 87, 3–11 (2001).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    US Department of Health and Human Services, Food and Drug Administration. Innovation and Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products [online], <> (2004).

  103. 103

    Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nature Biotechnology 22, 1253–1259 (2004).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Bonnet, C. S. & Walsh, D. A. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44, 7–16 (2005). An interesting recent review illustrating the relevance of angiogenic processes to the pathophysiology of OA.

    CAS  Article  Google Scholar 

  105. 105

    Walsh, D. A. Angiogenesis in osteoarthritis and spondylosis: successful repair with undesirable outcomes. Curr. Opin. Rheumatol. 16, 609–615 (2004).

    PubMed  Article  Google Scholar 

  106. 106

    Balint, G. & Szebenyi, B. Hereditary disorders mimicking and/or causing premature osteoarthritis. Baillieres Best. Pract. Res. Clin. Rheumatol. 14, 219–250 (2000).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Dequeker, J., Boonen, N., Aerssens, J. & Westhovens, R. Inverse relationship osteoarthritis — osteoporosis: what is the evidence? What are the consequences? Br. J. Rheumatol. 35, 813–820 (1996).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Lark, M. W. & Blake, S. M. Development of novel therapeutics to treat joint diseases — what can be learned from other diseases? Curr. Opin. Pharmacol. 4, 273–275 (2004).

    CAS  Article  Google Scholar 

  109. 109

    Aspden, R. M., Scheven, B. A. A. & Hutchison, J. D. Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism. Lancet 357, 1118–1120 (2001). One of the first publications suggesting a direct relationship between OA and metabolic disorders.

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Toda, Y. et al. Change in body fat, but not body weight or metabolic correlates of obesity, is related to symptomatic relief of obese patients with knee osteoarthritis after weight control program. J. Rheumatol. 25, 2181–2186 (1998).

    CAS  PubMed  Google Scholar 

  111. 111

    Gimble, J. M. & Nuttall, M. E. Bone and fat. Endocrine 23, 183–188 (2004)

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Loeser, R. F. Systemic and local regulation of articular cartilage metabolism: where does leptin fit in the puzzle? Arthritis Rheum. 48, 3009–3012 (2003)

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Yagami, K. et al. A human chondrogenic cell line retains multi-potency that differentiates into osteoblasts and adipocytes. Bone 34, 648–655 (2004).

    CAS  PubMed  Article  Google Scholar 

  114. 114

    Henroitin, Y., Sanchez, C. & Reginster, J. Y. The inhibition of metalloproteinases to treat osteoarthritis: reality and new perspectives. Expert Opin. Ther. Patents 12, 29–43 (2002).

    Article  Google Scholar 

  115. 115

    Skiles, J. W., Gonella, N. C. & Jeng, A. Y. The design, structure and clinical update of small metalloproteinase inhibitors. Curr. Med. Chem. 11, 2911–2977 (2004).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Schnitzer, T. J. et al. TARGET Study Group. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), reduction in ulcer complications: randomised controlled trial. Lancet. 364, 665–674 (2004).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Brune, K. Safety of anti-inflammatory treatment — new ways of thinking. Rheumatology (Oxford). 43 S16–S20 (2004).

    Article  CAS  Google Scholar 

  118. 118

    Ding, C & Cicuttini, F. Licofelone (Merckle). IDrugs 6, 802–808 (2003).

    CAS  PubMed  Google Scholar 

  119. 119

    Wallace, J. L. & Del Soldato, P. The therapeutic potential of NO-NSAIDs. Fundam. Clin. Pharmacol. 17, 11–20 (2003).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Whittle, B. J. Cyclooxygenase and nitric oxide systems in the gut as therapeutic targets for safer anti-inflammatory drugs. Curr. Opin. Pharmacol. 4, 538–545 (2004).

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Schnitzer, T. J., Kivitz, A. J., Lipetz, S., Sanders, N. & Hee, A. A Phase II study of the efficacy and safety of AZD3582, a CINOD, in subjects with osteoarthritis of the knee. Eur. League Against Rheumatism 2004 Conference Abs OP0016 [online], <> (2004)

  122. 122

    Garnero, P. et al. Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum. 46, 2613–2624 (2002).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Cerejo, R. et al. The association between cartilage activity measured in serum and progression of knee osteoarthritis in patients with and without evidence of generalized disease. Arthritis Rheum. 46, S144 (2002).

    Article  Google Scholar 

  124. 124

    Sharif, M. et al. Suggestion of nonlinear or phasic progression of knee osteoarthritis based on measurements of serum cartilage oligomeric matrix protein levels over five years. Arthritis Rheum. 50, 2479–2488 (2004).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discovery 3, 711–715 (2004).

    CAS  Article  Google Scholar 

Download references


We wish to thank J. Pietsch and B. Schölkens for their valuable input to the preparation of this review.

Author information



Corresponding author

Correspondence to Heike A. Wieland.

Ethics declarations

Competing interests

The authors are employees of Aventis Pharma Deutschland GmbH, a company of the Sanofi-Aventis group which is developing drugs that target osteoarthritis.

Related links

Related links


Entrez Gene


















Paget's disease

rheumatoid arthritis

Wilson's disease


National Institutes of Health (NIH)-sponsored Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT)



Inflammation of the synovium, the tissue that produces joint-lubricating fluid.


A polypeptide hormone ligand related to the family of interleukin-6 cytokines encoded by the obese (ob) gene and secreted by adipocytes.


A type of bone formation that occurs by replacement of hyaline cartilage.


Spikes of granulation and fibrous tissue reach the joint surface. The tissue undergoes endochondral ossification and penetrates the thinning cartilage, eventually exposing smooth, dense bone on the articular surface.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wieland, H., Michaelis, M., Kirschbaum, B. et al. Osteoarthritis — an untreatable disease?. Nat Rev Drug Discov 4, 331–344 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing