Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances with liposomes as pharmaceutical carriers

Key Points

  • Liposomes — nano-sized phospholipid bubbles — have attracted much attention as potential drug carriers. Liposomes are easy to prepare, highly biocompatible and can be loaded with a broad variety of drugs, DNA and diagnostic agents. Their in vivo properties are easy to control. Many liposomal drugs are currently under development and some of them are already approved for clinical use.

  • Liposomes have been targeted to specific tissues by attaching specific ligands to their surface. Long-circulating liposomes have also been prepared by grafting the liposome surface with certain chemically and biologically inert synthetic polymers. Current liposomal preparation can combine longevity and targetability.

  • Various strategies have been developed to load liposomes with various biologically active substances including proteins (enzymes), peptides and DNA. Their in vivo properties, as well as their pharmacokinetics, have been investigated in many models. Drugs incorporated into liposomes do not provoke undesirable toxic or immune responses and are not inactivated by biological surroundings.

  • Currently used ligands for liposome targeting include antibodies and their fragments, folate, transferrin and certain peptides. Liposomes can be made stimuli-sensitive — that is, capable of releasing their contents at abnormal pH values and temperatures characteristic of pathological sites, such as cancers, in the body.

  • Liposomal drugs can be administered via different routes, including parenteral and oral administration, used in topical applications and can be delivered to the lungs using liposomal aerosols. Liposomes are also effective immunological adjuvants for protein and peptide antigens and are widely used in experimental immunology and for vaccine preparation.

  • New-generation liposomes have been proposed for the treatment of various diseases, including cancer. They are used as carriers of the agents used in photo-dynamic therapy, and the delivery of haemoglobin and bio-energic substrates. Liposomes are prepared possessing magnetic properties and ability to penetrate cell membranes and deliver their loads into cell cytoplasm.

Abstract

Liposomes — microscopic phospholipid bubbles with a bilayered membrane structure — have received a lot of attention during the past 30 years as pharmaceutical carriers of great potential. More recently, many new developments have been seen in the area of liposomal drugs — from clinically approved products to new experimental applications, with gene delivery and cancer therapy still being the principal areas of interest. For further successful development of this field, promising trends must be identified and exploited, albeit with a clear understanding of the limitations of these approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of liposomes.
Figure 2: Chemical reactions to attach various ligands (antibodies) to the liposome surface (all these reactions can be used to directly attach ligands to the liposome surface or to attach ligands to liposomes via the PEG spacer).
Figure 3: Liposome-cell interaction.
Figure 4: Fusogenic and stimuli-sensitive liposomes.
Figure 5: Liposomes in diagnostic imaging.
Figure 6: Cytoskeleton-specific immunoliposomes for drug and DNA delivery.

Similar content being viewed by others

References

  1. Symon, Z. et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 86, 72–78 (1999).

    CAS  PubMed  Google Scholar 

  2. Perez, A. T., Domenech, G. H., Frankel, C. & Vogel, C. L. Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest. 20 (Suppl. 2), 22–29 (2002).

    CAS  PubMed  Google Scholar 

  3. O'Shaughnessy, J. A. Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin. Breast Cancer 4, 318–328 (2003).

    CAS  PubMed  Google Scholar 

  4. Schwonzen, M., Kurbacher, C. M. & Mallmann, P. Liposomal doxorubicin and weekly paclitaxel in the treatment of metastatic breast cancer. Anticancer Drugs 11, 681–685 (2000).

    CAS  PubMed  Google Scholar 

  5. Goncalves, A. et al. Phase I study of pegylated liposomal doxorubicin (Caelyx) in combination with carboplatin in patients with advanced solid tumors. Anticancer Res. 23, 3543–3548 (2003).

    CAS  PubMed  Google Scholar 

  6. Harrington, K. J. et al. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur. J. Cancer 37, 2015–2022 (2001).

    CAS  PubMed  Google Scholar 

  7. Johnston, S. R. & Gore, M. E. Caelyx: phase II studies in ovarian cancer. Eur. J. Cancer 37 (Suppl. 9), S8–S14 (2001).

    CAS  PubMed  Google Scholar 

  8. Schmidinger, M. et al. Pilot study with pegylated liposomal doxorubicin for advanced or unresectable hepatocellular carcinoma. Br. J. Cancer 85, 1850–1852 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wollina, U. et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer 98, 993–1001 (2003).

    CAS  PubMed  Google Scholar 

  10. Skubitz, K. M. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest. 21, 167–176 (2003).

    CAS  PubMed  Google Scholar 

  11. Seiden, M. V. et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol. Oncol. 93, 229–232 (2004).

    CAS  PubMed  Google Scholar 

  12. Sundar, S. et al. Single-dose liposomal amphotericin B in the treatment of visceral leishmaniasis in India: a multicenter study. Clin. Infect. Dis. 37, 800–804 (2003).

    CAS  PubMed  Google Scholar 

  13. Grant, G. J. et al. A novel liposomal bupivacaine formulation to produce ultralong-acting analgesia. Anesthesiology. 101, 133–137 (2004).

    CAS  PubMed  Google Scholar 

  14. Torchilin, V. P. Liposomes as targetable drug carriers. CRC Crit. Rev. Ther. Drug Carrier Syst. 1, 65–115 (1985).

    Google Scholar 

  15. Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–238 (1990). The first paper on PEGylated long-circulated liposomes.

    CAS  PubMed  Google Scholar 

  16. Blume, G. & Cevc, G. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim. Biophys. Acta 1146, 157–168 (1993).

    CAS  PubMed  Google Scholar 

  17. Gabizon, A. A. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest. 19, 424–436 (2001).

    CAS  PubMed  Google Scholar 

  18. Stealth® Liposomes, Chapter 19 (eds Martin, F. & Lasic, D.) 225–237 (CRC Press, Boca Raton, 1995).

  19. Torchilin, V. P. et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Act., 1195, 11–20 (1994).

    CAS  Google Scholar 

  20. Torchilin, V. P. & Trubetskoy, V. S. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16, 141–155 (1995).

    CAS  Google Scholar 

  21. Allen, T. M. & Hansen, C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta 1068, 133–141 (1991).

    CAS  PubMed  Google Scholar 

  22. Maeda, H., Sawa, T. & Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74, 47–61 (2001). One of the key publications on the mechanism and significance of the enhanced permeability and retention (EPR) effect.

    CAS  PubMed  Google Scholar 

  23. Zalipsky, S., Qazen, M., Walker, J. A., Mullah, N., Quinn, Y. P. & Huang, S. K. New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug. Chem. 10, 703–707 (1999).

    CAS  PubMed  Google Scholar 

  24. Woodle, M. C. Controlling liposome blood clearance by surface-grafted polymers. Adv. Drug Deliv. Rev. 32, 139–152 (1998).

    CAS  PubMed  Google Scholar 

  25. Whiteman, K. R., Subr, V., Ulbrich, K. & Torchilin, V. P. Poly(HPMA)-coated liposomes demonstrate prolonged circulation in mice. J. Liposome Res. 11, 153–164 (2001).

    CAS  PubMed  Google Scholar 

  26. Torchilin, V. P. et al. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials. 22, 3035–3044 (2001).

    CAS  PubMed  Google Scholar 

  27. Metselaar, J. M. et al. A novel family of l-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem. 14, 1156–1164 (2003).

    CAS  PubMed  Google Scholar 

  28. Takeuchi, H., Kojima, H., Yamamoto, H. & Kawashima, Y. Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J. Control. Release 75, 83–91 (2001).

    CAS  PubMed  Google Scholar 

  29. Levchenko, T. S., Rammohan, R., Lukyanov, A. N., Whiteman, K. R. & Torchilin, V. P. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm. 240, 95–102 (2002).

    CAS  PubMed  Google Scholar 

  30. Gabizon, A. Emerging role of liposomal drug carrier systems in cancer chemotherapy. J. Liposome Res. 13, 17–20 (2003).

    PubMed  Google Scholar 

  31. Cattel, L., Ceruti, M. & Dosio, F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori 89, 237–249 (2003).

    CAS  PubMed  Google Scholar 

  32. Bakker-Woudenberg, I. A. Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci. Int. J. Antimicrob. Agents. 19, 299–311 (2002).

    CAS  PubMed  Google Scholar 

  33. Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003).

    CAS  PubMed  Google Scholar 

  34. Torchilin, V. P. et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J. 6, 2716–2719 (1992).

    CAS  PubMed  Google Scholar 

  35. Blume, G. et al. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of polymeric chains combines effective target binding with long circulation times. Biochim. Biophys. Acta 1149, 180–184 (1993). A good paper on long-circulating immunoliposomes with specific ligands attached to distant termini of liposome-grafted polymeric chains.

    CAS  PubMed  Google Scholar 

  36. Abra, R. M. et al. The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J. Liposome Res. 12, 1–3 (2002).

    CAS  PubMed  Google Scholar 

  37. Torchilin, V. P. et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta 1511, 397–411 (2001).

    CAS  PubMed  Google Scholar 

  38. Torchilin, V. P. & Klibanov, A. L. in Phospholipid Handbook (ed. Cevc, G.) 293–321 (Marcel Dekker, New York, 1993).

    Google Scholar 

  39. Torchilin, V. P., Weissig, V., Martin, F. J. & Heath, T. D. in Liposomes: Practical Approach (eds Torchilin, V. P. & Weissig, V.) 193–229 (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  40. Klibanov, A. L., Torchilin, V. P. & Zalipsky, S. in Liposomes: Practical Approach (eds Torchilin, V. P. & Weissig, V.) 231–265 (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  41. Sapra, P. & Allen, T. M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 62, 7190–7194 (2002).

    CAS  PubMed  Google Scholar 

  42. Park, J. W. et al. Tumor targeting using anti-HER2 immunoliposomes. J. Control. Release 74, 95–113 (2001).

    CAS  PubMed  Google Scholar 

  43. Kamps, J. A. et al. Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. J. Drug Targ. 8, 235–245 (2000).

    CAS  Google Scholar 

  44. Lukyanov, A. N., Elbayoumi, T. A., Chakilam, A. R. & Torchilin, V. P. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J. Control. Release 100, 135–144 (2004).

    CAS  PubMed  Google Scholar 

  45. Raffaghello, L. et al. Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma. Cancer Lett. 197, 151–155 (2003).

    CAS  PubMed  Google Scholar 

  46. Mastrobattista, E. et al. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J. Biol. Chem. 277, 27135–27143 (2002).

    CAS  PubMed  Google Scholar 

  47. Leamon, C. P. & Low, P. S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl Acad. Sci. USA 88, 5572–5576 (1991). A key paper on folate-mediated delivery.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, R. J. & Low, P. S. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 269, 3198–3204 (1994).

    CAS  PubMed  Google Scholar 

  49. Lu, Y. & Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54, 675–693 (2002). Provides a review on folate-targeted liposomes.

    CAS  PubMed  Google Scholar 

  50. Gabizon, A., Shmeeda, H., Horowitz, A. T. & Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv. Drug Deliv. Rev. 56, 1177–1192 (2004). This paper considers liposomal systems with folate attached via PEG spacer.

    CAS  PubMed  Google Scholar 

  51. Ni, S., Stephenson, S. M. & Lee, R. J. Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res. 22, 2131–2135 (2002).

    CAS  PubMed  Google Scholar 

  52. Pan, X. Q., Wang, H. & Lee, R. J. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm. Res. 20, 417–422 (2003).

    CAS  PubMed  Google Scholar 

  53. Pan, X. Q. et al. Strategy for the treatment of acute myelogenous leukemia based on folate receptor β-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100, 594–602 (2002).

    CAS  PubMed  Google Scholar 

  54. Stephenson, S. M. et al. Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res. 23, 3341–3345 (2003).

    CAS  PubMed  Google Scholar 

  55. Lu, Y. & Low, P. S. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol. Immunother. 51, 153–162 (2002).

    CAS  PubMed  Google Scholar 

  56. Reddy, J. A. et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther. 9, 1542–1550 (2002).

    CAS  PubMed  Google Scholar 

  57. Leamon, C. P., Cooper, S. R. & Hardee, G. E. Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug. Chem. 14, 738–747 (2003).

    CAS  PubMed  Google Scholar 

  58. Hatakeyama, H., Akita, H., Maruyama, K., Suhara, T. & Harashima, H. Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int. J. Pharm. 281, 25–33 (2004).

    CAS  PubMed  Google Scholar 

  59. Ishida, O. et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm. Res. 18, 1042–1048 (2001).

    Google Scholar 

  60. Derycke, A. S. & De Witte, P. A. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int. J. Oncol. 20, 181–187 (2002).

    CAS  PubMed  Google Scholar 

  61. Gijsens, A. et al. Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferring conjugated PEG-liposomes. Int. J. Cancer 101, 78–85 (2002).

    CAS  PubMed  Google Scholar 

  62. Iinuma, H. et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer 99, 130–137 (2002).

    CAS  PubMed  Google Scholar 

  63. Eavarone, D. A., Yu, X. & Bellamkonda, R. V. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J. Biomed. Mater. Res. 51, 10–14 (2000).

    CAS  PubMed  Google Scholar 

  64. Omori, N. et al. Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol. Res. 25, 275–279 (2003).

    CAS  PubMed  Google Scholar 

  65. Joshee, N., Bastola, D. R. & Cheng, P. W. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum. Gene Ther. 13, 1991–2004 (2002).

    CAS  PubMed  Google Scholar 

  66. Xu, L. et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther. 1, 337–346 (2002).

    CAS  PubMed  Google Scholar 

  67. Tan, P. H. et al. Antibody targeted gene transfer to endothelium. J. Gene Med. 5, 311–323 (2003).

    CAS  PubMed  Google Scholar 

  68. Huwyler, J., Wu, D. & Pardridge, W. M. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl Acad. Sci. USA 93, 14164–14169 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Drummond, D. C., Hong, K., Park, J. W. & Benz, C. C. & Kirpotin DB. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm. 60, 285–332 (2000).

    CAS  PubMed  Google Scholar 

  70. Dagar, S., Krishnadas, A., Rubinstein, I., Blend, M. J. & Onyuksel, H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J. Control. Release 91, 123–133 (2003).

    CAS  PubMed  Google Scholar 

  71. Schiffelers, R. M. et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control. Release 91, 115–122 (2003).

    CAS  PubMed  Google Scholar 

  72. Lestini, B. J. et al. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J. Control. Release 78, 235–247 (2002).

    CAS  PubMed  Google Scholar 

  73. Asai, T. et al. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett. 520, 167–170 (2002).

    CAS  PubMed  Google Scholar 

  74. Mamot, C. et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. 63, 3154–3161 (2003).

    CAS  PubMed  Google Scholar 

  75. Peer, D. & Margalit, R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer 108, 780–789 (2004).

    CAS  PubMed  Google Scholar 

  76. Matsuda, I., Konno, H., Tanaka, T. & Nakamura, S. Antimetastatic effect of hepatotropic liposomal adriamycin on human metastatic liver tumors. Surg. Today. 31, 414–420 (2001).

    CAS  PubMed  Google Scholar 

  77. Hashida, M., Nishikawa, M., Yamashita, F. & Takakura, Y. Cell-specific delivery of genes with glycosylated carriers. Adv. Drug Deliv. Rev. 52, 187–196 (2001). Good review on gene delivery by glycosylated carriers including liposomes.

    CAS  PubMed  Google Scholar 

  78. Lee, C. M. et al. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res. 62, 4282–4288 (2002).

    CAS  PubMed  Google Scholar 

  79. Tu, R., Mohanty, K. & Tirrell, M. Liposomal targeting through peptide-amphiphile functionalization. Pharm. Rev. 7, 36–41 (2004)

    CAS  Google Scholar 

  80. Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N. & de Lima, M. C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev. 56, 947–965 (2004).

    CAS  PubMed  Google Scholar 

  81. Fattal, E., Couvreur, P. & Dubernet, C. 'Smart' delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Deliv. Rev. 56, 931–46 (2004).

    Google Scholar 

  82. Sudimack, J. J., Guo, W., Tjarks, W. & Lee, R. J. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim. Biophys. Acta 1564, 31–37 (2002).

    CAS  PubMed  Google Scholar 

  83. Asokan, A & Cho, M. J. Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim. Biophys. Acta 1611, 151–160 (2003).

    CAS  PubMed  Google Scholar 

  84. Roux, E., Passirani, C., Scheffold, S., Benoit, J. P. & Leroux, J. C. Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J. Control. Release 94, 447–451 (2004).

    CAS  PubMed  Google Scholar 

  85. Turk, M. J., Reddy, J. A., Chmielewski, J. A. & Low, P. S. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta 1559, 56–68 (2002).

    CAS  PubMed  Google Scholar 

  86. Kakudo, T. et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry. 43, 5618–5628 (2004). Interesting paper on the combination of transferrin targeting and pH-sensitivity.

    CAS  PubMed  Google Scholar 

  87. Shi, G., Guo, W., Stephenson, S. M. & Lee, R. J. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release 80, 309–319 (2002).

    CAS  PubMed  Google Scholar 

  88. Torchilin, V. P. Immobilized Enzymes in Medicine (Springer–Verlag, Berlin, 1991).

    Google Scholar 

  89. Gaspar, M. M., Perez-Soler, R. & Cruz, M. E. Biological characterization of l-asparaginase liposomal formulations. Cancer Chemother. Pharmacol. 38, 373–377 (1996).

    CAS  PubMed  Google Scholar 

  90. Stanimirovic, D. B., Markovic, M., Micic, D. V., Spatz, M. & Mrsulja, B. B. Liposome-entrapped superoxide dismutase reduces ischemia/reperfusion 'oxidative stress' in gerbil brain. Neurochem. Res. 19, 1473–1478 (1994).

    CAS  PubMed  Google Scholar 

  91. Lo, Y.-I., Tsai, J.-C. & Kuo, J.-H. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release 94, 259– (2004).

    CAS  PubMed  Google Scholar 

  92. Heeremans, J. L. et al. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA, Thromb. Haemost. 73, 488–494 (1995).

    CAS  PubMed  Google Scholar 

  93. Rubas, W. et al. Treatment of Murine L1210 lymphoid leukemia and melanoma bl6 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int. J. Cancer 37, 149–154 (1986).

    CAS  PubMed  Google Scholar 

  94. Fonseca, M. J., Jagtenberg, J. C., Haisma, H. J. & Storm, G. Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm. Res. 20, 423–428 (2003).

    CAS  PubMed  Google Scholar 

  95. Iwanaga, K. et al. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome's surface on the GI transport of insulin. J. Pharm. Sci. 88, 248–52 (1999).

    CAS  PubMed  Google Scholar 

  96. Kisel, M. A. et al. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in rat. Int. J. Pharm. 216, 105–114 (2001).

    CAS  PubMed  Google Scholar 

  97. Kim, A., Yun, M. O., Oh, Y. K., Ahn, W. S. & Kim, C. K. Phospholipid deformable vesicles for buccal delivery of insulin. Chem. Phar. Bull. (Tokyo) 50, 749–751 (2002).

    Google Scholar 

  98. Kim, A., Yun, M. O., Oh, Y. K., Ahn, W. S. & Kim, C. K. Pharmacodynamics of insulin in polyethylene glycol-coated liposomes, Int. J. Pharm. 180, 75–81 (1999).

    CAS  PubMed  Google Scholar 

  99. Kanaoka, E. et al. A novel and simple type of liposome carrier for recombinant interleukin-2. J. Pharm. Pharmacol. 53, 295–302 (2001).

    CAS  PubMed  Google Scholar 

  100. Opanasopit, P. et al. Inhibition of liver metastasis by targeting immunomodulators using mannosylated liposome carriers. J. Control. Release 80, 283–294 (2002).

    CAS  PubMed  Google Scholar 

  101. Li. H., Song, J. H., Park, J. S. & Han, K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int. J. Pharm. 258, 11–19 (2003).

    CAS  PubMed  Google Scholar 

  102. Postma, N. S., Crommelin, D. J., Eling, W. M. & Zuidema, J. Treatment with liposome-bound recombinant human tumor necrosis factor-α suppresses parasitemia and protects against Plasmodium berghei k173-induced experimental cerebral malaria in mice. J. Pharmacol. Exp. Ther. 288, 114–120 (1999).

    CAS  PubMed  Google Scholar 

  103. van Slooten, M. L. et al. Liposomes containing interferon-γ as adjuvant in tumor cell vaccines. Pharm. Res. 17, 42–48 (2000).

    CAS  PubMed  Google Scholar 

  104. Lange, C. F., Hancock, R. E., Samuel, J. & Finlay, W. H. In vitro aerosol delivery and regional airway surface liquid concentration of a liposomal cationic peptide. J. Pharm. Sci. 90, 1647–1657 (2001).

    CAS  PubMed  Google Scholar 

  105. Felgner, P. L. & Ringold, G. M. Cationic liposome-mediated transfection. Nature 337, 387–388 (1989). A key publication on transfection with cationic lipids.

    CAS  PubMed  Google Scholar 

  106. Safinya, C. R. Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Curr. Opin. Struct. Biol. 11, 440–448 (2001).

    CAS  PubMed  Google Scholar 

  107. Lasic, D. D., Vallner, J. J. & Working, P. K. Sterically stabilized liposomes in cancer therapy and gene delivery. Curr. Opin. Mol. Ther. 1, 177–185 (1999).

    CAS  PubMed  Google Scholar 

  108. Matsuura, M. et al. Polycation liposome-mediated gene transfer in vivo. Biochim. Biophys. Acta 1612, 136–143 (2003).

    CAS  PubMed  Google Scholar 

  109. Templeton, N. S. Cationic liposome-mediated gene delivery in vivo. Biosci. Rep. 22, 283–295 (2002).

    CAS  PubMed  Google Scholar 

  110. Audouy, S. A., de Leij, L. F., Hoekstra, D. & Molema, G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm. Res. 19, 1599–1605 (2002).

    CAS  PubMed  Google Scholar 

  111. Brignole, C. et al. Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Lett. 197, 231–235 (2003).

    CAS  PubMed  Google Scholar 

  112. Sioud, M. & Sorensen, D. R. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225 (2003).

    CAS  PubMed  Google Scholar 

  113. Rogers, J. A. & Anderson, K. E. The potential of liposomes in oral drug delivery. CRC Crit. Rev. Ther. Drug Carrier Syst. 15, 421–480 (1998).

    CAS  Google Scholar 

  114. Chen, H., Torchilin, V. & Langer, R. Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13, 1378–1383 (1996).

    CAS  PubMed  Google Scholar 

  115. Wu, Z. H., Ping, Q. N., Wei, Y. & Lai, J. M. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol. Sin. 25, 966–972 (2004).

    CAS  PubMed  Google Scholar 

  116. Taira, M. C., Chiaramoni, N. S., Pecuch, K. M. & Alonso-Romanowski, S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 11, 123–128 (2004).

    CAS  PubMed  Google Scholar 

  117. Li, H., Song, J. H., Park, J. S. & Han, K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int. J. Pharm. 258, 11–19 (2003).

    CAS  PubMed  Google Scholar 

  118. Yamabe, K., Kato, Y., Onishi, H. & Machida, Y. Potentiality of double liposomes containing salmon calcitonin as an oral dosage form. J. Control. Release 89, 429–436 (2003).

    CAS  PubMed  Google Scholar 

  119. Minato, S., Iwanaga, K., Kakemi, M., Yamashita, S. & Oku, N. Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity. J. Control. Release 89, 189–197 (2003).

    CAS  PubMed  Google Scholar 

  120. Xing, L., Dawei, C., Liping, X. & Rongqing, Z. Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J. Control. Release 93, 293–300 (2003).

    PubMed  Google Scholar 

  121. van Winden, E. C. Freezy-drying of liposomes: theory and practice. Meth. Enzymol. 367, 99–110 (2003).

    CAS  Google Scholar 

  122. Koshkina, N. V., Golunski, E., Roberts, L. E., Gilbert, B. E. & Knight, V. Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. J. Aerosol Med. 17, 7–14 (2004).

    CAS  PubMed  Google Scholar 

  123. Lo, Y. L., Tsai, J. C. & Kuo, J. H. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release 94, 259–272 (2004).

    CAS  PubMed  Google Scholar 

  124. Vyas, S. P., Kannan, M. E., Jain, S., Mishra, V. & Singh, P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm. 269, 37–49 (2004).

    CAS  PubMed  Google Scholar 

  125. Konduri, K. S. et al. Efficacy of liposomal budesonide in experimental asthma. J. Allergy Clin. Immunol. 111, 321–327 (2003).

    CAS  PubMed  Google Scholar 

  126. Gilbert, B. E., Seryshev, A., Knight, V. & Brayton, C. 9-nitrocamptothecin liposome aerosol: lack of subacute toxicity in dogs. Inhal. Toxicol. 14, 185–197 (2002).

    CAS  PubMed  Google Scholar 

  127. Koshkina, N. V. et al. 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin. Cancer Res. 6, 2876–2880 (2000).

    CAS  PubMed  Google Scholar 

  128. Desai, T. R., Hancock, R. E. & Finlay, W. H. A facile method of delivery of liposomes by nebulization. J. Control. Release 84, 69–78 (2002). An interesting paper on liposome nebulization.

    CAS  PubMed  Google Scholar 

  129. Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 56, 675–711 (2004). An important review on transdermal delivery of drug carriers including liposomes.

    CAS  PubMed  Google Scholar 

  130. Cevc, G. & Blume, G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim. Biophys. Acta 1514, 191–205 (2001). A key paper on transferosomes.

    CAS  PubMed  Google Scholar 

  131. Honeywell-Nguyen, P. L., Frederik, P. M., Bomans, P. H., Junginger, H. E. & Bouwstra, J. A. Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: characterization and in vitro transport studies. Pharm. Res. 19, 991–997 (2002).

    CAS  PubMed  Google Scholar 

  132. Vutla, N. B., Betageri, G. V. & Banga, A. K. Transdermal iontophoretic delivery of enkephalin formulated in liposomes. J. Pharm. Sci. 85, 5–8 (1996).

    CAS  PubMed  Google Scholar 

  133. Oussoren, C. & Storm, G. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Deliv. Rev. 50, 143–156 (2001). Provides a good review of the lymphatic delivery of liposomes.

    CAS  PubMed  Google Scholar 

  134. Phillips, W. T., Klipper, R. & Goins, B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J. Pharmacol. Exp. Ther. 295, 309–313 (2000).

    CAS  PubMed  Google Scholar 

  135. Kim, C. K. & Ham, J. H. Lymphatic delivery and pharmacokinetics of methotrexate to rats. J. Microencapsul. 12, 437–446 (1995).

    CAS  PubMed  Google Scholar 

  136. Fujimoto, Y., Okuhata, Y., Tyngi, S., Namba, Y. & Oku, N. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol. Pharm. Bull. 23, 97–100 (2000).

    CAS  PubMed  Google Scholar 

  137. Goldberg, S. N. et al. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology. 222, 797–804 (2002).

    PubMed  Google Scholar 

  138. Gregoriadis, G. in Liposomes in Drug Delivery (eds Gregoriadis, G., Florence, A. T. & Patel, H. M.) 77 (Harwood Academic, Switzerland, 1993).

    Google Scholar 

  139. Friede, M. in Liposomes as Tools in Basic Research and Industry (eds Philippot, J. R. & Schuber, F.) 189 (CRC Press, Boca Raton, 1995). References 138 and 139 provide extensive information regarding the use of liposomes as immunological adjuvants.

    Google Scholar 

  140. Guan, H. H. et al. Liposomal formulations of synthetic MUC1 peptides: effects of encapsulation versus surface display of peptides on immune responses. Bioconjug. Chem. 9, 451–458 (1998).

    CAS  PubMed  Google Scholar 

  141. Griffiths, G. D., Phillips, G. J. & Bailey, S. C. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine. 17, 2562–2568 (1999).

    CAS  PubMed  Google Scholar 

  142. Chikh, G. G., Kong, S., Bally, M. B., Meunier, J. C. & Schutze-Redelmeier, M. P. Efficient delivery of Antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells. J. Immunol. 167, 6462–6470 (2001).

    CAS  PubMed  Google Scholar 

  143. Masuda, K., Horie, K., Suzuki, R., Yoshikawa, T. & Hirano, K. Oral delivery of antigens in liposomes with some lipid compositions modulates oral tolerance to the antigens. Microbiol. Immunol. 46, 55–58 (2002).

    CAS  PubMed  Google Scholar 

  144. Rao, M. & Alving, C. R. Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. Adv. Drug Deliv. Rev. 41, 171–188 (2000).

    CAS  PubMed  Google Scholar 

  145. Chikh, G. & Schutze-Redelmeier, M. P. Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339–353 (2002).

    CAS  PubMed  Google Scholar 

  146. Copland, M. J. et al. Liposomal delivery of antigens to human dendritic cells. Vaccine 21, 883–890 (2003).

    CAS  PubMed  Google Scholar 

  147. Ludewig, B. et al. In vivo antigen loading and activation of dendritic cells via a Liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity. Vaccine 19, 23–32 (2000).

    CAS  PubMed  Google Scholar 

  148. Chikh, G. & Schutze-Redelmeier, M. P. Liposomal delivery of CTL epitopes to dendritic cells. Biosci. Rep. 22, 339–353 (2002).

    CAS  PubMed  Google Scholar 

  149. Chikh, G. G., Kong, S., Bally, M. B., Meunier, J. C. & Schutze-Redelmeier, M. P. Efficient delivery of Antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells. J. Immunol. 167, 6462–6470 (2001).

    CAS  PubMed  Google Scholar 

  150. Copland, M. J. et al. Liposomal delivery of antigen to human dendritic cells. Vaccine 21, 883–890 (2003).

    CAS  PubMed  Google Scholar 

  151. Torchilin, V. P. Liposomes as delivery agents for medical imaging. Mol. Med. Today. 2, 242–249 (1996).

    CAS  PubMed  Google Scholar 

  152. Tilcock, C. in Liposomes as Tools in Basic Research and Industry (eds Philippot, J. R. & Schuber, F.) 225–240 (CRC, Boca Raton, 1995).

    Google Scholar 

  153. Torchilin, V. P. Surface-modified liposomes in γ and MR-imaging. Adv. Drug Deliv. Rev. 24, 301–313 (1997).

    CAS  Google Scholar 

  154. Torchilin, V. P. Polymeric contrast agents for medical imaging. Current. Pharm. Biotech. 1, 183–215 (2000).

    CAS  Google Scholar 

  155. Weissig, V., Babich, J. & Torchilin, V. P. Long-circulating gadolinium-loaded liposomes: potential use for magnetic resonance imaging of the blood pool. Coll. Surf. B: Biointerfaces. 18, 293–299 (2000).

    CAS  Google Scholar 

  156. Lokling, K. E., Fossheim, S. L., Klaveness, J. & Skurtveit, R. Biodistribution of pH-responsive liposomes for MRI and a novel approach to improve the pH-responsiveness. J. Control. Release 98, 87–95 (2004).

    CAS  PubMed  Google Scholar 

  157. Vigilanti, B. L. et al. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn. Res. Med. 51, 1153–1162 (2004).

    Google Scholar 

  158. Bao, A. et al. A novel liposome radiolabeling method using 99mTc-'SNS/S' complexes: in vitro and in vivo evaluation. J. Pharm. Sci. 92, 1893–1904 (2003).

    CAS  PubMed  Google Scholar 

  159. Bao, A., Goins, B., Klipper, R., Negrete, G. & Phillips, W. T. 186Re-liposome labeling using 186Re-SNS/S complexes: in vitro stability, imaging, and biodistribution in rats. J. Nucl. Med. 44, 1992–1994 (2003).

    CAS  PubMed  Google Scholar 

  160. Sachse, A., Leike, J. U., Robling, G. L., Wagner, S. E. & Krause, W. Preparation and evaluation of lyophilized iopromide-carrying liposomes for liver tumor detection. Invest. Radiol. 28, 838–844 (1993).

    CAS  PubMed  Google Scholar 

  161. Sachse, A. et al. Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated Iopromide-carrying liposomes. Invest. Radiol. 32, 44–50 (1997).

    CAS  PubMed  Google Scholar 

  162. Dagar, S., Rubinstein, I. & Onyuksel, H. Liposomes in ultrasound and gamma-scintigraphic imaging. Meth. Enzymol. 373, 198–214 (2003).

    CAS  Google Scholar 

  163. Kaneda, Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv. Drug Deliv. Rev. 43, 197–205 (2000). Good review on virosomes.

    CAS  PubMed  Google Scholar 

  164. Sarkar, D. P., Ramani, K. & Tyagi, S. K. Targeted gene delivery by virosomes. Methods Mol. Biol. 199, 163–173 (2002).

    CAS  PubMed  Google Scholar 

  165. Cusi, M. G. et al. Efficient delivery of DNA to dendritic cells mediated by influenza virosomes. Vaccine 22, 735–739 (2004).

    PubMed  Google Scholar 

  166. Bungener, L., Huckriede, A., Wilschut, J. & Daemen, T. Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs. Biosci. Rep. 22, 323–338 (2002).

    CAS  PubMed  Google Scholar 

  167. Bungener, L. et al. Virosome-mediated delivery of protein antigens to dendritic cells. Vaccine 20, 2287–2295 (2002).

    CAS  PubMed  Google Scholar 

  168. Huckriede, A., Bungener, L., Daemen, T. & Wilschut, J. Influenza virosomes in vaccine. development. Meth. Enzymol. 373, 74–91 (2003).

    CAS  Google Scholar 

  169. Herzog, C., Metcalfe, I. C. & Schaad, U. B. Virosome influenza vaccine in children. Vaccine 20 (Suppl. 5), B24–B28 (2002).

    PubMed  Google Scholar 

  170. Usonis, V. et al. Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis A vaccine (Epaxal). Vaccine 21, 4588–4592 (2003).

    CAS  PubMed  Google Scholar 

  171. Ambrosch, F., Finkel, B., Herzog, C., Koren, A. & Kollaritsch, H. Rapid antibody response after vaccination with a virosomal hepatitis a Vaccine. Infection. 32, 149–152 (2004).

    CAS  PubMed  Google Scholar 

  172. Ruf, B. R., Colberg, K., Frick, M. & Preusche, A. Open, randomized study to compare the immunogenicity and reactogenicity of an influenza split vaccine with an MF59-adjuvanted subunit vaccine and a virosome-based subunit vaccine in elderly. Infection. 32, 191–198 (2004).

    CAS  PubMed  Google Scholar 

  173. Gluck, R., Moser, C., Metcalfe, I. C. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin. Biol. Ther. 4, 1139–1145 (2004).

    PubMed  Google Scholar 

  174. Moser, C., Metcalfe, I. C. & Viret, J. F. Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines. 2, 189–196 (2003).

    CAS  PubMed  Google Scholar 

  175. Nobuto, H. et al. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int. J. Cancer 109, 627–635 (2004).

    CAS  PubMed  Google Scholar 

  176. Kubo, T. et al. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int. J. Oncol. 18, 121–125 (2001).

    CAS  PubMed  Google Scholar 

  177. Babincova, M. et al. Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z. Naturforsch [C]. 55, 278–281 (2000).

    CAS  Google Scholar 

  178. Khaw, B. A. et al. Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction. Hybridoma. 3, 11–23 (1984).

    CAS  PubMed  Google Scholar 

  179. Khaw, B. A., Torchilin, V. P., Vural, I. & Narula, J. Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nature Med. 1, 1195–1198 (1995). Important paper on the use of cytoskeleton-specific immunoliposomes.

    CAS  PubMed  Google Scholar 

  180. Khudairi, T. & Khaw, B. A. Preservation of ischemic myocardial function and integrity with targeted cytoskeleton-specific immunoliposomes. J. Am. Coll. Cardiol. 43, 1683–1689 (2004).

    CAS  PubMed  Google Scholar 

  181. Asahi, M. et al. Antiactin-targeted immunoliposomes ameliorate tissue plasminogen activator-induced hemorrhage after focal embolic stroke. J. Cerebral Blood Flow Metab. 23, 895–899 (2003).

    CAS  Google Scholar 

  182. Khaw, B. A., daSilva, J., Vural, I., Narula, J. & Torchilin, V. P. Intracytoplasmic gene delivery for in vitro transfection with cytoskeleton-specific immunoliposomes. J. Control. Release 75, 199–210 (2001).

    CAS  PubMed  Google Scholar 

  183. Awasthi, V. D., Garcia, D., Klipper, R., Goins, B. A. & Phillips, W. T. Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J. Pharmacol. Exp. Ther. 309, 241–248 (2004).

    CAS  PubMed  Google Scholar 

  184. Sakai, H., Tomiyama, K. I., Sou, K., Takeoka, S. & Tsuchida, E. Poly(ethylene glycol)-conjugation and deoxygenation enable long-term preservation of hemoglobin-vesicles as oxygen carriers in a liquid state. Bioconjug. Chem. 11, 425–432 (2000).

    CAS  PubMed  Google Scholar 

  185. Phillips, W. T. et al. Polyethylene glycol-modified liposome-encapsulated hemoglobin: a long circulating red cell substitute. J. Pharmacol. Exp. Ther. 288, 665–670 (1999). Nice paper on liposomal haemoglobin.

    CAS  PubMed  Google Scholar 

  186. Takeoka, S., Teramura, Y., Atoji, T. & Tsuchida, E. Effect of Hb-encapsulation with vesicles on H2O2 reaction and lipid peroxidation. Bioconjug. Chem. 13, 1302–1308 (2002).

    CAS  PubMed  Google Scholar 

  187. Sakai, H. et al. Microvascular responses to hemodilution with Hb vesicles as red blood cell substitutes: influence of O2 affinity. Am. J. Physiol. 276, H553–H562 (1999).

    CAS  PubMed  Google Scholar 

  188. Sakai, H. et al. Hemoglobin-vesicles suspended in recombinant human serum albumin for resuscitation from hemorrhagic shock in anesthetized rats. Crit. Care Med. 32, 539–545 (2004).

    CAS  PubMed  Google Scholar 

  189. Shibuya-Fujiwara, N., Hirayama, F., Ogata, Y., Ikeda, H. & Ikebuchi, K. Phagocytosis in vitro of polyethylene glycol-modified liposome-encapsulated hemoglobin by human peripheral blood monocytes plus macrophages through scavenger receptors. Life Sci. 70, 291–300 (2001).

    CAS  PubMed  Google Scholar 

  190. Szebeni, J. & Alving, C. R. Complement-mediated acute effects of liposome-encapsulated hemoglobin. Artif. Cells Blood Substit. Immobil. Biotechnol. 27, 23–41 (1999). Important paper on complement activation with PEG-liposomes.

    CAS  PubMed  Google Scholar 

  191. Han, Y. Y. et al. Liposomal atp or NAD+ protects human endothelial cells from energy failure in a cell culture model of sepsis. Res. Commun. Mol. Pathol. Pharmacol. 110, 107–116 (2001).

    CAS  PubMed  Google Scholar 

  192. Laham, A. et al. Liposomally entrapped adenosine triphosphate. Improved efficiency against experimental brain ischaemia in the rat. J. Chromatogr. 440, 455–458 (1988).

    CAS  PubMed  Google Scholar 

  193. Konno, H., Matin, A. F., Maruo, Y., Nakamura, S. & Baba, S. Liposomal ATP protects the liver from injury during shock. Eur. Surg. Res. 28, 140–145 (1996).

    CAS  PubMed  Google Scholar 

  194. Neveux, N., De Bandt, J. P., Chaumeil, J. C. & Cynober, L. Hepatic preservation, liposomally entrapped adenosine triphosphate and nitric oxide production: a study of energy state and protein metabolism in the cold-stored rat liver. Scand. J. Gastroenterol. 37, 1057–1063 (2002).

    CAS  PubMed  Google Scholar 

  195. Niibori, K., Wroblewski, K. P., Yokoyama, H., Crestanello, J. A. & Whitman, G. J. Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. Biofactors 9, 307–313 (1999).

    CAS  PubMed  Google Scholar 

  196. Xu, G. X. et al. Adenosine triphosphate liposomes: encapsulation and distribution studies. Pharm. Res. 7, 553–557 (1990).

    CAS  PubMed  Google Scholar 

  197. Verma, D. D., Levchenko, T. S., Bernstein, E. & Torchilin, V. P. ATP-Loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. Transactions of the 31th Annual Meeting of the Controlled Release Society, Controlled Release Society, Abs 572 (2004).

  198. Liang, W., Levchenko, T., Khaw, B.-A. & Torchilin, V. P. ATP-containing immunoliposomes specific for cardiac myosin. Curr. Drug Deliv. 1, 1–7 (2004). The first example of ATP-containing immunoliposomes specific for hypoxic cells.

    CAS  PubMed  Google Scholar 

  199. Derycke, A. S. & de Witte, P. A. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 56, 17–30 (2004). Good review on the use of liposomes for photo-dynamic therapy.

    CAS  PubMed  Google Scholar 

  200. Takeuchi, Y. et al. Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J. Control. Release 97, 231–240 (2004).

    CAS  PubMed  Google Scholar 

  201. Ichikawa, K. et al. Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett. 205, 39–48 (2004).

    CAS  PubMed  Google Scholar 

  202. Igarashi, A. et al. Liposomal photofrin enhances therapeutic efficacy of photodynamic therapy against the human gastric cancer. Toxicol. Lett. 145, 133–141 (2003).

    CAS  PubMed  Google Scholar 

  203. Bourre, L., Thibaut, S., Fimiani, M., Ferrand, Y., Simonneaux, G. & Patrice, T. In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: interest of a DMPC liposome formulation. Pharmacol. Res. 47, 253–261 (2003).

    CAS  PubMed  Google Scholar 

  204. Jezek, P. et al. Experimental photodynamic therapy with MESO-tetrakisphenylporphyrin (TPP) in liposomes leads to disintegration of human amelanotic melanoma implanted to nude mice. Int. J. Cancer 103, 693–702 (2003).

    CAS  PubMed  Google Scholar 

  205. Frankel, A. D. & Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55, 1189–1193 (1988).

    CAS  PubMed  Google Scholar 

  206. Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducable TAT-HA fusogenic peptide enhances escape of TAT fusion proteins after lipid raft macropinocytosis. Nature Med. 10, 310–315 (2004). An important paper regarding the mechanism of transduction.

    CAS  PubMed  Google Scholar 

  207. Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A. & Wender, P. A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126, 9506–9507 (2004). An important paper regarding the mechanism of transduction.

    CAS  PubMed  Google Scholar 

  208. Torchilin, V. P., Rammohan, R., Weissig, V. & Levchenko, T. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl Acad. Sci. USA 98, 8786–8791 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Tseng, Y. L., Liu, J. J. & Hong, R. L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and TAT: a kinetic and efficacy study. Mol. Pharmacol. 62, 864–872 (2002).

    CAS  PubMed  Google Scholar 

  210. Gorodetsky, R. et al. Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini. J. Control. Release 95, 477–488 (2004).

    CAS  PubMed  Google Scholar 

  211. Torchilin, V. P. et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide–liposome–DNA complexes. Proc. Natl Acad. Sci. USA 100, 1972–1977 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Crommelin, D. J. & Storm, G. Liposomes: from the bench to the bed. J. Liposome Res. 13, 33–36 (2003).

    PubMed  Google Scholar 

  213. Gregoriadis, G. (ed.). Liposome Technology vol. 1–3 (CRC, Boca Raton, 1984).

    Google Scholar 

  214. Gregoriadis, G. (ed.). Liposomes as Drug Carriers (John Wiley & Sons, Chichester, 1988).

    Google Scholar 

  215. Lasic, D. D. Liposomes: From Physics to Applications (Elsevier, Amsterdam, 1993).

    Google Scholar 

  216. Martin, F. & Lasic, D. (eds.). Stealth Liposomes (CRC, Boca Raton, 1995).

    Google Scholar 

  217. Woodle, M.C. & Storm, G. (eds.). Long Circulating Liposomes: Old Drugs, New Therapeutics (Springer, Berlin, 1997).

    Google Scholar 

  218. Lasic, D. D. & Papahadjopoulos, D. (eds.). Medical Applications of Liposomes (Elsevier, Amsterdam, 1998).

    Google Scholar 

  219. Torchilin, V. P. & Weissig, V. (eds.). Liposomes. Practical Approach (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Antennapedia

EGF

EGFR

HER2

interleukin-2

MUC1

SOD

tissue plasminogen activator

Tf

TfR

VIP

National Cancer Institute Cancer Topics

Acute myelogenous leukaemia

Glossary

RETICULO-ENDOTHELIAL SYSTEM

The physiological system responsible for the elimination of foreign macromolecules and particles from the body; macrophages of liver, spleen and lymphatic system play a key role in this elimination.

NUCLEOSOME

Subunit of chromatin (the complex of DNA plus specialized proteins — histones — in eukaryotic cells) composed of a short length of DNA wrapped around a core of histone proteins.

GANGLIOSIDES

Glycolipids with large size molecules; usually present on the outer surface of cell membranes.

PARENTERAL

Administered by means other than through the alimentary tract (such as intramuscular or intravenous injection).

IONTOPHORESIS

A means of enhancing the flux of ionic compounds across a membrane (such as the skin) by the application of an electric current across it.

ORAL TOLERANCE

The acquisition of a specific nonresponsiveness, via oral administration, to a molecule recognized by the immune system.

GAMMA-SCINTIGRAPHY

Medical diagnostic imaging modality based on the application of γ-emitting radioactive materials, such as 99m-Tc, 111-In, 125- and 131-I, 67-Ga, and some other isotopes with variable decay times.

RELAXIVITY

The property of certain metal ions to increase proton relaxation rate (relates to magnetic resonance imaging).

VIROSOMES

Liposomes with surface-attached or membrane-incorporated fragments of the viral protein coat.

HYPOVOLEMIC

A decrease in the volume of circulating blood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torchilin, V. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4, 145–160 (2005). https://doi.org/10.1038/nrd1632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing