Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacogenomics: bench to bedside

Key Points

  • The latter portion of the twentieth century witnessed the emergence of the concept that inheritance is a major factor responsible for variation in drug response.

  • Once that principle had been established, the question immediately arose of the best way by which to translate this information to the bedside.

  • Here, after reviewing the process by which the disciplines of pharmacogenetics and pharmacogenomics have developed, we turn to challenges associated with the 'translation' of these disciplines from the research laboratory to the bedside, with the eventual goal of truly individualized drug therapy. These can be split into four major categories:

  • Pharmacogenomic science: Pharmacogenomics is moving beyond single-gene effects to study the effects of inheritance on pharmacokinetic and pharmacodynamic pathways involving multiple gene products. This type of study will require a large number of subjects and multi-disciplinary teams of investigators with complementary expertise, as well as the ability to genotype a very large number of polymorphisms or haplotypes.

  • Translational incentives: Successful translation of pharmacogenomics into the clinic will require the creation of positive incentives that will stimulate research funding agencies, academic centres, the pharmaceutical industry and drug regulatory agencies to work together to achieve translation.

  • Healthcare professional education: The translation of pharmacogenomics to the bedside will require the education of physicians and other healthcare professionals in clinical genomic science generally, and in its application to therapeutics in particular.

  • Patience acceptance: Patients will also have to become informed with regard to the application of genomics to drug selection and dosage. In addition, an effort will have to be made to keep patient expectations of pharmacogenomics realistic. Finally, patients must be assured that the confidentiality of their genomic information will be protected.

Abstract

Pharmacogenetics is the study of the role of inheritance in inter-individual variation in drug response. Since its origins in the mid-twentieth century, a major driving force in pharmacogenetics research has been the promise of individualized drug therapy to maximize drug efficacy and minimize drug toxicity. In recent years, the convergence of advances in pharmacogenetics with rapid developments in human genomics has resulted in the evolution of pharmacogenetics into pharmacogenomics, and led to increasing enthusiasm for the 'translation' of this evolving discipline into clinical practice. Here, we briefly summarize the development of pharmacogenetics and pharmacogenomics, and then discuss the key factors that have had an influence on — and will continue to affect — the translation of pharmacogenomics from the research bench to the bedside, highlighting the challenges that need to be addressed to achieve this goal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classic pharmacogenetic traits: inherited variation in N-acetylation.
Figure 2: Classic pharmacogenetic traits: the thiopurine S-methyltransferase polymorphism.
Figure 3: Classic pharmacogenetic traits: polymorphisms in cytochrome P450 2D6.
Figure 4: Schematic representation of pharmacogenomic 'players' and their relationships.
Figure 5: An example initiative to facilitate the translation of pharmacogenetics: the Pharmacogenetics Research Network.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Weinshilboum, R. M. The therapeutic revolution. Clin. Pharmacol. Ther. 42, 481–484 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Hardman, J. G., Limbird, L. E. & Gilman, A. G. The Pharmacological Basis of Therapeutics (McGraw–Hill Medical, New York, 2001).

    Google Scholar 

  5. Kalow, W. Pharmacogenetics: Heredity and the Response to Drugs (W. B. Saunders Co., Philadelphia and London, 1962). This book was the first monograph devoted entirely to pharmacogenetics; Kalow pioneered studies of the butyrylcholinesterase genetic polymorphism.

    Google Scholar 

  6. Weber, W. W. Pharmacogenetics (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  7. Price Evans, D. A. Genetic Factors in Drug Therapy: Clinical and Molecular Pharmacogenetics (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  8. Vesell, E. S. & Page, J. G. Genetic control of dicumarol levels in man. J. Clin. Invest. 47, 2657–2663 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vesell, E. S. & Page, J. G. Genetic control of drug levels in man: antipyrine. Science 161, 72–73 (1968).

    Article  CAS  PubMed  Google Scholar 

  10. Wilkinson, G. R. in The Pharmacological Basis of Therapeutics (eds. Hardman, J. G., Limbird, L. E. & Gilman, A. G.) 3–29 (McGraw–Hill Medical, New York, 2001).

    Google Scholar 

  11. Price Evans, D. A. in Pharmacogenetics of Drug Metabolism. International Encyclopedia of Pharmacology and Therapeutics Vol. 34 (ed. Kalow, W.) 95–178 (Pergamon, New York, 1992).

    Google Scholar 

  12. Timbrell, J. A., Harland, S. J. & Facchini, V. Polymorphic acetylation of hydralazine. Clin. Pharmacol. Ther. 28, 350–355 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Reidenberg, M. M., Drayer, D. E., Levy, M. & Warner, H. Polymorphic acetylation of procainamide in man. Clin. Pharmacol. Ther. 17, 722–730 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Drayer, D. E. & Reidenberg, M. M. Clinical consequences of polymorphic acetylation of basic drugs. Clin. Pharmacol. Ther. 22, 251–258 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Price Evans, D. A., Manley, K. A. & McKusick, V. A. Genetic control of isoniazid metabolism in man. BMJ 2, 485–491 (1960).

    Article  Google Scholar 

  16. Weinshilboum, R. M. & Sladek, S. L. Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 32, 651–662 (1980). This population and family study was the original description of the thiopurine S-methyltransferase genetic polymorphism that influences thiopurine drug toxicity and efficacy.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinshilboum, R. M., Otterness, D. M. & Szumlanski, C. L. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu. Rev. Pharmacol. Toxicol. 39, 19–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Mahgoub, A., Idle, J. R., Dring, L. G., Lancaster, R. & Smith, R. L. Polymorphic hydroxylation of debrisoquine in man. Lancet 2, 584–586 (1977). This population and family study was the original description of the cytochrome P450 (CYP) 2D6 genetic polymorphism, with debrisoquine as the probe drug.

    Article  CAS  PubMed  Google Scholar 

  19. Kroemer, H. K. & Eichelbaum, M. 'It's the genes, stupid'. Molecular bases and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sci. 56, 2285–2298 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Bertilsson, L. et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin. Pharmacol. Ther. 51, 388–397 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez, F. J. et al. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus of chromosome 22. Genomics 2, 174–179 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Ingelman-Sundberg, M. & Evans, W. Unraveling the functional genomics of the human CYP2D6 gene locus. Pharmacogenetics 11, 553–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Johansson, I. et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl Acad. Sci. USA 90, 11825–11829 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aklillu, E. et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in the Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J. Pharmacol. Exp. Ther. 278, 441–446 (1996).

    CAS  PubMed  Google Scholar 

  25. US Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research & Center for Devices and Radiological Health. 'Draft' Guidance for Industry: Pharmacogenomics Data Submissions. (November 2003).

  26. Eichelbaum, M., Spannbrucker, N., Steincke, B. & Dengler, H. J. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16, 183–187 (1979). This study describes the discovery of the CYP2D6 polymorphism using sparteine rather than debrisoquine as a probe drug (see reference 18). Only later was it realized that these two drugs had identified a genetic polymorphism for the same drug-metabolizing enzyme.

    Article  CAS  PubMed  Google Scholar 

  27. Lennard, L., Van Loon, J. A. & Weinshilboum, R. M. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin. Pharmacol. Ther. 46, 149–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Weinshilboum, R. Inheritance and drug response. N. Engl. J. Med. 348, 529–537 (2003).

    Article  PubMed  Google Scholar 

  29. Schütz, E., Gummert, J., Mohr, F. & Oellerich, M. Azathioprine–induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet. 341, 436 (1993).

    Article  PubMed  Google Scholar 

  30. Fenech, A. & Hall, I. P. Pharmacogenetics of asthma. Br J Clin Pharmacol. 53, 3–15 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drazen, J. M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet. 22, 168–170 (1999). This paper describes the clinical importance of a VNTR in the promoter of the gene encoding 5-lipoxygenase, a target for leukotriene inhibitors that are used in the treatment of asthma.

    Article  CAS  PubMed  Google Scholar 

  32. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004). This recent report, and the reference that follows describe genetic variation in a drug target, the EGFR receptor, that influences response to treatment with the anticancer drug gefitinib.

    Article  CAS  PubMed  Google Scholar 

  33. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Roses, A. D. Genome-based pharmacogenetics and the pharmaceutical industry. Nature Rev. Drug Discov. 1, 541–549 (2002).

    Article  CAS  Google Scholar 

  35. Goldstein, D. B., Tate, S. K. & Sisodiya, S. M. Pharmacogenetics goes genomic. Nature Rev. Genet. 4, 937–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Collins, F. S. Shattuck lecture — medical and societal consequences of the Human Genome Project. N. Engl. J. Med. 341, 28–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Nebert, D. W., Jorge-Nebert, L. & Vesell, E. S. Pharmacogenomics and 'individualized drug therapy': high expectations and disappointing achievements. Am. J. Pharmacogenomics 3, 361–370 (2003).

    Article  PubMed  Google Scholar 

  38. Consortium, T. I. H. The International HapMap Project. Nature 426, 789–796 (2003).

    Article  Google Scholar 

  39. Bader, J. The relative power of SNPs and haplotypes as genetic markers for association tests. Pharmacogenomics 2, 11–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Zerhouni, E. The NIH Roadmap. Science 302, 63–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Klein, T. E. & Altman, R. B. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Pharmacogenomics J. 4, 1 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Service, R. F. Surviving the blockbuster syndrome. Science 303, 1796–1799 (2004).

    Article  PubMed  Google Scholar 

  43. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Eisenhauer, E. A. From the molecule to the clinic — inhibiting HER2 to treat breast cancer. N. Engl. J. Med. 344, 841–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Salerno, R. A. & Lesko, L. J. Pharmacogenomic data: FDA voluntary and required submission guidance. Pharmacogenomics 5, 503–505 (2004).

    Article  PubMed  Google Scholar 

  46. Leighton, J. K. et al. Pharmacogenomic data submissions to the FDA: non-clinical case studies. Pharmacogenomics 5, 507–511 (2004).

    Article  PubMed  Google Scholar 

  47. Ruano, G. et al. Pharmacogenomic data submissions to the FDA: clinical pharmacology case studies. Pharmacogenomics 5, 513–517 (2004).

    Article  PubMed  Google Scholar 

  48. Trepicchio, W. L. et al. Pharmacogenomic data submissions to the FDA: clinical case studies. Pharmacogenomics 5, 519–524 (2004).

    Article  PubMed  Google Scholar 

  49. Bosma, P. J. et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N. Engl. J. Med. 333, 1171–1175 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Bosma, P. J. Inherited disorders of bilirubin metabolism. J. Hepatol. 38, 107–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Monaghan, G., Ryan, M., Seddon, R., Hume, R. & Burchell, B. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet 347, 578–581 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Innocenti, F. & Ratain, M. J. 'Irinogenetics' and UGT1A: from genotypes to haplotypes. Clin. Pharmacol. Ther. 75, 495–500 (2004).

    Article  PubMed  Google Scholar 

  53. Guttmacher, A. E., Collins, F. S. & Drazen, J. M. Genomic Medicine (Johns Hopkins Univ. Press, Baltimore, 2004).

    Google Scholar 

  54. Terreri, A. & Spelsberg, T. C. Primer on Medical Genomics (Mayo Foundation for Medical Education, Rochester, 2004).

    Google Scholar 

  55. Guttmacher, A. E. & Collins, F. S. Welcome to the genomic era. N. Engl. J. Med. 349, 996–998 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Clayton, E. W. Ethical, legal, and social implications of genomic medicine. N. Engl. J. Med. 349, 562–569 (2003).

    Article  PubMed  Google Scholar 

  57. Remy, C. N. Metabolism of thiopyrimidines and thiopurines: S-methylation with S- adenosylmethionine transmethylase and catabolism in mammalian tissue. J. Biol. Chem. 238, 1078–1084 (1963).

    CAS  PubMed  Google Scholar 

  58. Woodson, L. C. & Weinshilboum, R. M. Human kidney thiopurine methyltransferase: purification and biochemical properties. Biochem. Pharmacol. 32, 819–826 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Lennard, L. The clinical pharmacology of 6 mercaptopurine. Eur. J. Clin. Pharmacol. 43, 329–339 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Szumlanski, C. et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 15, 17–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Schaeffeler, E. et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14, 407–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Collie-Duguid, E. S. et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9, 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, L., Sullivan, W., Toft, D. & Weinshilboum, R. Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics 13, 555–564 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Tai, H. -L., Krynetski, E. Y., Schuetz, E. G., Yanishevski, Y. & Evans, W. E. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl Acad. Sci. USA 94, 6444–6449 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woodson, L. C., Dunnette, J. H. & Weinshilboum, R. M. Pharmacogenetics of human thiopurine methyltransferase: kidney erythrocyte correlation and immunotitration studies. J. Pharmacol. Exp. Ther. 222, 174–181 (1982).

    CAS  PubMed  Google Scholar 

  66. Weinshilboum, R. & Wang, L. Pharmacogenetics: inherited variation in amino acid sequence and altered protein quantity. Clin. Pharmacol. Ther. 75, 253–258 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Mortimer, O. et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin. Pharmacol. Ther. 47, 27–35 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Sindrup, S. H. & Brosen, K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 5, 335–346 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Perry Jr, H. M., Tan, E. M., Carmody, S. & Sakamoto, A. Relationship of acetyl transferase activity to antinuclear antibodies and toxic symptoms to hypertensive patients treated with hydralazine. J. Lab. Clin. Med. 76, 1140125 (1970).

    Google Scholar 

  70. Woosley, R. L. et al. Effect of acetylator phenotype on the rate at which procainamide induces antinuclear and the lupus syndrome. N. Engl. J. Med. 298, 1157–1159 (1978).

    Article  CAS  PubMed  Google Scholar 

  71. Cascorbi, I., Brockmoller, J., Mrozikiewicz, P. M., Muller, A. & Roots, I. Arylamine N-acetyltransferase activity in man. Drug Metab. Rev. 31, 489–502 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Wussow for her assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Weinshilboum.

Ethics declarations

Competing interests

R.W. has either provided consulting services or presented seminars at Abbott Laboratories, Bristol-Myers Squibb, Eli Lilly, Johnson & Johnson, Roche and Merck, Inc. All fees and honoraria for these services and/or seminars were paid to Mayo Foundation. In addition, R.W. currently holds a peer-reviewed grant from Eli Lilly.

Related links

Related links

DATABASES

Entrez Gene

ALOX5

CYP2D6

EGFR

ERBB2

NAT2

TPMT

UGT1A1

Online Mendelian Inheritance in Man

Gilbert's syndrome

inflammatory bowel disease

National Cancer Institute Cancer List

Acute lymphoblastic leukaemia of childhood

FURTHER INFORMATION

Pharmacogenetics Research Network

Pharmacogenetics and Pharmacogenomics KnowledgeBase

Glossary

DEBRISOQUINE

An antihypertensive drug that is metabolized by cytochrome P450 2D6.

ALLELES

Different versions of the same gene.

VARIABLE NUMBER OF TANDEM REPEATS

A tandemly repeated DNA sequence with a variable number of repeats.

PRO-DRUG

A pharmacologically inactive compound that is converted to the active form of the drug by endogenous enzymes or metabolism.

HAPLOTYPE

A combination of alleles or sequence variations on the same chromosome.

POWER CALCULATIONS

A statistical calculation of the ability of an experiment to avoid false positive and/or negative results.

TATA BOX

DNA sequence motif of importance for transcription initiation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinshilboum, R., Wang, L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov 3, 739–748 (2004). https://doi.org/10.1038/nrd1497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing