Abstract
Most common central nervous system disorders — such as depression, bipolar disorder and schizophrenia — seem to be polygenic in origin, and the most effective medications have exceedingly complex pharmacologies. Attempts to develop more effective treatments for diseases such as schizophrenia and depression by discovering drugs selective for single molecular targets (that is, 'magic bullets') have, not surprisingly, been largely unsuccessful. Here we propose that designing selectively non-selective drugs (that is, 'magic shotguns') that interact with several molecular targets will lead to new and more effective medications for a variety of central nervous system disorders.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Multi-target action of β-alanine protects cerebellar tissue from ischemic damage
Cell Death & Disease Open Access 29 August 2022
-
Nigratine as dual inhibitor of necroptosis and ferroptosis regulated cell death
Scientific Reports Open Access 24 March 2022
-
Update on GPCR-based targets for the development of novel antidepressants
Molecular Psychiatry Open Access 15 February 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Shorter, E. Looking backwards: a possible new path for drug discovery in psychopharmacology. Nature Rev. Drug Discov. 1, 1003–1006 (2002).
Carlsson, A. & Wong, D. T. Correction: a note on the discovery of selective serotonin reuptake inhibitors. Life Sci. 61, 1203 (1997).
Hippius, H. A historical perspective of clozapine. J. Clin. Psychiatry 60 (Suppl. 12), 22–23 (1999).
Harrison, P. J. & Owen, M. J. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361, 417–419 (2003).
Lewis, C. M. et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am. J. Hum. Genet. 73, 34–48 (2003).
Setola, V. & Roth, B. L. Why mice are neither miniature humans nor small rats: a cautionary tale involving 5-hydroxytryptamine-6 serotonin receptor species variants. Mol. Pharmacol. 64, 1277–1278 (2003).
Coyle, J. T. & Duman, R. S. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160 (2003).
Roth, B., Sheffler, D. J. & Potkin, S. Atypical antipsychotic drugs: unitary or multiple mechanisms for 'atypicality'. Clin. Neurosci. Res. (in the press).
Kane, J., Honigfield, G., Singer, J., Meltzer, H. Y. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 45, 789–796 (1988).
Meltzer, H. Y. et al. Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT). Arch. Gen. Psychiatry 60, 82–91 (2003).
Colpaert, F. C. Discovering risperidone: the LSD model of psychopathology. Nature Rev. Drug Discov. 2, 315–320 (2003).
Meltzer, H. Y., Matsubara, S. & Lee, J. -C. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J. Pharmacol. Exp. Ther. 251, 238–246 (1989).
Altar, C. A., Wasley, A. M., Neale, R. F. & Stone, G. A. Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Brain Res. Bull. 16, 517–525 (1986).
Leucht, S., Wahlbeck, K., Hamann, J. & Kissling, W. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361, 1581–1589 (2003).
Tuunainen, A., Wahlbeck, K. & Gilbody, S. Newer atypical antipsychotic medication in comparison to clozapine: a systematic review of randomized trials. Schizophr. Res. 56, 1–10 (2002).
Fontaine, K. R. et al. Estimating the consequences of anti-psychotic induced weight gain on health and mortality rate. Psychiatry Res. 101, 277–288 (2001).
Kroeze, W. K. et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28, 519–526 (2003).
Meltzer, H. Y. & McGurk, S. R. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr. Bull. 25, 233–255 (1999).
Williams, G. V., Rao, S. G. & Goldman-Rakic, P. S. The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 22, 2843–2854 (2002).
Woolley, M. L., Bentley, J. C., Sleight, A. J., Marsden, C. A. & Fone, K. C. A role for 5-HT6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology 41, 210–219 (2001).
Castner, S. A., Williams, G. V. & Goldman-Rakic, P. S. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287, 2020–2022 (2000).
Bristow, L. J. et al. Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. Trends Pharmacol. Sci. 18, 186 (1997).
Truffinet, P. et al. Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia. Am. J. Psychiatry 156, 419–425 (1999).
de Paulis, T. M-100907 (Aventis). Curr. Opin. Investig. Drugs 2, 123–132 (2001).
Meltzer, H., Arvantis, L., Bauer, D., Rein, W. & Group, M. S. A placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Arch. Gen. Psychiatry (in the press).
Rasmussen, T. et al. The muscarinic receptor agonist BuTAC, a novel potential antipsychotic, does not impair learning and memory in mouse passive avoidance. Schizophr. Res. 49, 193–201 (2001).
Clark, D. et al. Is 3-PPP a potential antip sychotic agent? Evidence from animal behavioral studies. Eur. J. Pharmacol. 83, 131–134 (1982).
Lahti, A. C. et al. Antipsychotic properties of the partial dopamine agonist (−)-3-(3-hydroxyphenyl)-N-n-propylpiperidine(preclamol) in schizophrenia. Biol. Psychiatry 43, 2–11 (1998).
Lahti, A. C., Weiler, M., Carlsson, A. & Tamminga, C. A. Effects of the D3 and autoreceptor-preferring dopamine antagonist (+)-UH232 in schizophrenia. J. Neural Transm. 105, 719–734 (1998).
Benkert, O., Muller-Siecheneder, F. & Wetzel, H. Dopamine agonists in schizophrenia: a review. Eur. Neuropsychopharmacol. 5, S43–S53 (1995).
Kikuchi, T. et al. 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-qui nolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J. Pharmacol. Exp. Ther. 274, 329–336 (1995).
Kane, J. M. et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin. Psychiatry 63, 763–771 (2002).
Inoue, T., Domae, M., Yamada, K. & Furukawa, T. Effects of the novel antipsychotic agent 7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597) on prolactin release from the rat anterior pituitary gland. J. Pharmacol. Exp. Ther. 277, 137–143 (1996).
Burris, K. D. et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J. Pharmacol. Exp. Ther. 302, 381–389 (2002).
Hemrick–Luecke, S. et al. Pharmacological activity of aripiprazole at presynaptic and postsynaptic dopamine receptors and in antipsychotic models. Proc. Soc. Neurosci. 894.9 (2002).
Lawler, C. P. et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20, 612–627 (1999).
Kenakin, T. Efficacy at G-protein-coupled receptors. Nature Rev. Drug Discov. 1, 103–110 (2002).
Roth, B. L. & Chuang, D. M. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41, 1051–1064 (1987).
Shapiro, D. A. et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28, 1400–1411 (2003).
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).
Anderson, I. M. Meta-analytical studies on new antidepressants. Br. Med. Bull. 57, 161–178 (2001).
Thase, M. E., Entsuah, A. R. & Rudolph, R. L. Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br. J. Psychiatry 178, 234–241 (2001).
Briley, M. New hope in the treatment of painful symptoms in depression. Curr. Opin. Investig. Drugs 4, 42–45 (2003).
Zubenko, G. et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am. J. Med Genet. 123B, 1–18 (2003).
Brunner, D., Nestler, E. & Leahy, E. In need of high-throughput behavioral systems. Drug Discov. Today 7, S107–S112 (2002).
Bohannon, J. Animal models. Can a mouse be standardized? Science 298, 2320–2321 (2002).
Amsterdam, J. D., Brunswick, D. J. & Hundert, M. A single-site, double-blind, placebo-controlled, dose-ranging study of YKP10A — a putative, new antidepressant. Prog. Neuropsychopharmacol. Biol. Psychiatry 26, 1333–1338 (2002).
Feighner, J. P. et al. Double-blind, placebo-controlled study of INN 00835 (netamiftide) in the treatment of outpatients with major depression. Int. Clin. Psychopharmacol. 16, 345–352 (2001).
Palfreyman, M. G. et al. Novel directions in antipsychotic target identification using gene arrays. Curr. Drug Target CNS Neurol. Disord. 1, 227–238 (2002).
Suessbrich, H., Waldegger, S., Lang, F. & Busch, A. E. Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett. 385, 77–80 (1996).
Rothman, R. B. et al. Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102, 2836–2841 (2000).
Remington, G. & Kapur, S. SB-277011 GlaxoSmithKline. Curr. Opin. Investig. Drugs 2, 946–949 (2001).
Kramer, M. S., Last, B., Getson, A. & Reines, S. A. The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch. Gen. Psychiatry 54, 567 (1997).
Gewirtz, G. R. et al. BMY14802, a σ receptor ligand for the treatment of schizophrenia. Neuropsychopharmacology 10, 37–40 (1994).
Muller, M. J. et al. Antipsychotic effects and tolerability of the sigma ligand EMD 57445 (panamesine) and its metabolites in acute schizophrenia: an open clinical trial. Psychiatry Res. 89, 275–280 (1999).
van Berckel, B. et al. Efficacy and tolerance of D-cycloserine in drug-free schizophrenic patients. Biol. Psychiatry 40, 1298 (1996).
Evins, A. E., Amico, E., Posever, T. A., Toker, R. & Goff, D. C. D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr. Res. 56, 19–23 (2002).
Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361, 799–808 (2003).
Stahl, S. M., Entsuah, R. & Rudolph, R. L. Comparative efficacy between venlafaxine and SSRIs: a pooled analysis of patients with depression. Biol. Psychiatry 52, 1166–1174 (2002).
Perez, V., Gilaberte, I., Faries, D., Alvarez, E. & Artigas, F. Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 349, 1594–1597 (1997).
Berman, R. M. et al. The use of pindolol with fluoxetine in the treatment of major depression: final results from a double-blind, placebo-controlled trial. Biol. Psychiatry 45, 1170–1177 (1999).
Nichols, D. E. Hallucinogens. Parmacol. Ther. 101, 131–181 (2004).
Kroeze, W. K., Sheffler, D. J. & Roth, B. L. G-protein-coupled receptors at a glance. J. Cell Sci. 116, 4867–4869 (2003).
Acknowledgements
Work in the authors' laboratories is supported by the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
B.L.R. is a consultant for Arena Pharmaceuticals, Bristol-Myers Squibb, Eli Lilly, Pfizer, Otsuka Pharmaceuticals, SK Corp. and Neotherapeutics. B.L.R. holds US patents on 5-HT-selective drugs.
Related links
Related links
DATABASES
LocusLink
FURTHER INFORMATION
National Institutes of Mental Health Psychoactive Drug Screening Program
Rights and permissions
About this article
Cite this article
Roth, B., Sheffler, D. & Kroeze, W. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3, 353–359 (2004). https://doi.org/10.1038/nrd1346
Issue Date:
DOI: https://doi.org/10.1038/nrd1346
This article is cited by
-
Structure-based design of a novel third-generation antipsychotic drug lead with potential antidepressant properties
Nature Neuroscience (2022)
-
Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum
Molecular Psychiatry (2022)
-
Nigratine as dual inhibitor of necroptosis and ferroptosis regulated cell death
Scientific Reports (2022)
-
Phenotypic drug discovery: recent successes, lessons learned and new directions
Nature Reviews Drug Discovery (2022)
-
Multi-target action of β-alanine protects cerebellar tissue from ischemic damage
Cell Death & Disease (2022)