Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue microarrays in drug discovery

Key Points

  • The need to analyse large numbers of clinically well-defined tissue specimens constitutes a major bottleneck in target validation.

  • The tissue microarray (TMA) technology allows the simultaneous analysis of thousands of tissue samples in a single experiment. TMAs are, therefore, cost efficient and offer an unprecedented degree of standardization because all tissue samples are subjected to exactly the same experimental conditions and batches of reagents.

  • TMAs can be made from virtually all kinds of diseased and non-diseased tissues, including formalin-fixed and fresh frozen tissues, xenograft tissues and cell lines.

  • Numerous in situ analysis methods can be used on TMA sections, including immunohistochemistry, fluorescence in situ hybridization (FISH) and RNA in situ hybridization.

  • Despite the small size of arrayed samples (diameter 0.6 mm), TMA studies provide highly representative information of the donor tissues.

  • TMAs accelerate the process of drug discovery at several key steps, including validation of drug targets and determination of their molecular epidemiology, estimation of potential treatment-related side effects and the development of diagnostic assays.

  • The TMA format is optimally suited for the storage and economical follow-up analysis of limited tissue resources, for example, tissues collected from clinical studies.

  • Automation of the reading of stained TMA sections, and standards for TMA database development and management, will be key issues in the future.

Abstract

Advances in molecular methods have massively facilitated the discovery of potential molecular targets for gene-specific therapy. Accelerated lead discovery has at the same time generated a massive demand for thorough validation of such putative targets. Very often human tissue analysis is needed for this purpose. However, the need to analyse large numbers of well-characterized human tissues constitutes a major bottleneck in drug discovery and development. Traditional tissue analysis in a slide-by-slide manner is slow, expensive and difficult to standardize. In addition, precious specimens, such as tissue samples from clinical studies, are usually exhausted after a few analyses. The tissue microarray technology overcomes these shortcomings as it allows the simultaneous analysis of up to 1,000 minute tissue samples in a single experiment. This article will review how high-throughput tissue microarray analyses can dramatically facilitate translational research at several different levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Application of the TMA technology in lead discovery and validation.
Figure 2: TMA manufacturing and applications.
Figure 3: Representativity of TMAs.
Figure 4: Comparison of p53 data obtained from TMAs and whole sections.
Figure 5: Associations of gene overexpression with patient survival as determined on a breast cancer TMA composed of >2,000 tumours with clinical follow-up information.
Figure 6: Automated versus manual TMA analysis.

Similar content being viewed by others

References

  1. Goldstine, J., Seligson, D. B., Beizai, P., Miyata, H. & Vinters, H. V. Tissue microarrays in the study of non-neoplastic disease of the nervous system. J. Neuropathol. Exp. Neurol. 61, 653–662 (2002).

    PubMed  Google Scholar 

  2. Bubendorf, L. et al. Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res. 59, 803–806 (1999).

    CAS  PubMed  Google Scholar 

  3. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of hundreds of specimens. Nature Med. 4, 844–847 (1998). Initial publication of the TMA technology.

    CAS  PubMed  Google Scholar 

  4. Fejzo, M. S. & Slamon, D. J. Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am. J. Pathol. 159, 1645–1650 (2001). Describes TMAs from frozen tissue samples.

    CAS  Google Scholar 

  5. Simon, R. & Sauter, G. Tissue microarrays for miniaturized high-throughput molecular profiling of tumors. Exp. Hematol. 30, 1365–1372 (2002).

    CAS  PubMed  Google Scholar 

  6. Gancberg, D. et al. Reliability of the tissue microarray based FISH for evaluation of the HER-2 oncogene in breast carcinoma. J. Clin. Pathol. 55, 315–317 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Camp, R. L., Charette, L. A. & Rimm, D. L. Validation of tissue microarray technology in breast carcinoma. Lab. Invest. 80, 1943–1949 (2000). An early TMA-validation study.

    CAS  PubMed  Google Scholar 

  8. Rimm, D. L. et al. Tissue microarray: a new technology for amplification of tissue resources. Cancer J. 7, 24–31 (2001).

    CAS  PubMed  Google Scholar 

  9. Gancberg, D. et al. Evaluation of HER-2/NEU protein expression in breast cancer by immunohistochemistry: an interlaboratory study assessing the reproducibility of HER-2/NEU testing. Breast Cancer Res. Treat. 74, 113–120 (2002).

    CAS  PubMed  Google Scholar 

  10. Ginestier, C. et al. Distinct and complementary information provided by use of tissue and DNA microarrays in the study of breast tumor markers. Am. J. Pathol. 161, 1223–1233 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Torhorst, J. et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am. J. Pathol. 159, 2249–2256 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hendriks, Y. et al. Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am. J. Pathol. 162, 469–477 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernebro, E., Dictor, M., Bendahl, P. O., Ferno, M. & Nilbert, M. Evaluation of the tissue microarray technique for immunohistochemical analysis in rectal cancer. Arch. Pathol. Lab. Med. 126, 702–705 (2002).

    PubMed  Google Scholar 

  14. Mucci, N. R., Akdas, G., Manely, S. & Rubin, M. A. Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum. Pathol. 31, 406–414 (2000).

    CAS  PubMed  Google Scholar 

  15. Rubin, M. A., Dunn, R., Strawderman, M. & Pienta, K. J. Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am. J. Surg. Pathol. 26, 312–319 (2002). Illustrates that four punches per tissue sample provide optimal representativity.

    PubMed  Google Scholar 

  16. Merseburger, A. S. et al. Limitations of tissue microarrays in the evaluation of focal alterations of bcl-2 and p53 in whole mount derived prostate tissues. Oncol. Rep. 10, 223–228 (2003).

    CAS  PubMed  Google Scholar 

  17. Gulmann, C., Butler, D., Kay, E., Grace, A. & Leader, M. Biopsy of a biopsy: validation of immunoprofiling in gastric cancer biopsy tissue microarrays. Histopathology 42, 70–76 (2003).

    CAS  PubMed  Google Scholar 

  18. Moch, H. et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am. J. Pathol. 154, 981–986 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nocito, A. et al. Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J. Pathol. 194, 349–357 (2001).

    CAS  PubMed  Google Scholar 

  20. Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60, 6617–6622 (2000).

    CAS  PubMed  Google Scholar 

  21. Engellau, J. et al. Tissue microarray technique in soft tissue sarcoma: immunohistochemical Ki-67 expression in malignant fibrous histiocytoma. Appl. Immunohistochem. Mol. Morphol. 9, 358–363 (2001).

    CAS  PubMed  Google Scholar 

  22. Hoos, A. et al. Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am. J. Pathol. 158, 1245–1251 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rassidakis, G. Z. et al. Apoptotic rate in peripheral T-cell lymphomas. A study using a tissue microarray with validation on full tissue sections. Am. J. Clin. Pathol. 118, 328–334 (2002).

    PubMed  Google Scholar 

  24. Garcia, J. F. et al. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 101, 681–689 (2003). Reports TMA of Hodgkin's lymphoma samples.

    CAS  PubMed  Google Scholar 

  25. Hedvat, C. V. et al. Application of tissue microarray technology to the study of non-Hodgkin's and Hodgkin's lymphoma. Hum. Pathol. 33, 968–974 (2002). Describes TMA of Hodgkin's lymphoma samples.

    PubMed  Google Scholar 

  26. Tzankov, A. et al. High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin's lymphoma indicates overexpression of cyclin E1. J. Pathol. 199, 201–207 (2003). An analysis of TMA of Hodgkin's lymphoma samples.

    CAS  PubMed  Google Scholar 

  27. Torhorst, J. et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am. J. Pathol. 159, 2249–2256 (2001). Reports TMA evaluation of known prognostic factors (ER,PR) in breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barlund, M. et al. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J. Natl Cancer Inst. 92, 1252–1259 (2000). This study combines cDNA and TMA technologies.

    CAS  PubMed  Google Scholar 

  29. Hoos, A. et al. High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas. Cancer 92, 869–874 (2001).

    CAS  PubMed  Google Scholar 

  30. Hoos, A. et al. Clinical significance of molecular expression profiles of Hurthle cell tumors of the thyroid gland analyzed via tissue microarrays. Am. J. Pathol. 160, 175–183 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bubendorf, L. et al. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J. Natl Cancer Inst. 91, 1758–1764 (1999). Describes a combination of cDNA and TMA technologies.

    CAS  PubMed  Google Scholar 

  32. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    CAS  PubMed  Google Scholar 

  33. Porkka, K., Saramaki, O., Tanner, M. & Visakorpi, T. Amplification and overexpression of Elongin C gene discovered in prostate cancer by cDNA microarrays. Lab. Invest. 82, 629–637 (2002).

    CAS  PubMed  Google Scholar 

  34. Mousses, S. et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 62, 1256–1260 (2002).

    CAS  PubMed  Google Scholar 

  35. Xin, W., Rhodes, D. R., Ingold, C., Chinnaiyan, A. M. & Rubin, M. A. Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am. J. Pathol. 162, 255–261 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Otsuka, M. et al. Differential expression of the L-plastin gene in human colorectal cancer progression and metastasis. Biochem. Biophys. Res. Commun. 289, 876–881 (2001).

    CAS  PubMed  Google Scholar 

  37. Nielsen, T. O. et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359, 1301–1307 (2002).

    CAS  PubMed  Google Scholar 

  38. Allander, S. V. et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am. J. Pathol. 161, 1587–1595 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wasenius, V. M. et al. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin. Cancer Res. 9, 68–75 (2003).

    CAS  PubMed  Google Scholar 

  40. Oka, T. et al. Reduction of hematopoietic cell-specific tyrosine phosphatase SHP-1 gene expression in natural killer cell lymphoma and various types of lymphomas/ leukemias: combination analysis with cDNA expression array and tissue microarray. Am. J. Pathol. 159, 1495–1505 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Heiskanen, M. et al. CGH, cDNA and tissue microarray analyses implicate FGFR2 amplification in a small subset of breast tumors. Anal. Cell. Pathol. 22, 229–234 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hyman, E. et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 62, 6240–6245 (2002). CGH on cDNA microarrays.

    CAS  PubMed  Google Scholar 

  43. Richter, J. et al. High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am. J. Pathol. 157, 787–794 (2000). Describes an example of a prognosis TMA.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Simon, R. et al. High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res. 61, 4514–4519 (2001).

    CAS  PubMed  Google Scholar 

  45. Simon, R. et al. Amplification pattern of 12q13–q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21, 2476–2483 (2002). Amplicon mapping using different TMAs.

    CAS  PubMed  Google Scholar 

  46. Kocher, T. et al. Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: a tissue microarray study. Int. J. Cancer 100, 702–705 (2002).

    CAS  PubMed  Google Scholar 

  47. Park, S. Y., Kim, H. S., Hong, E. K. & Kim, W. H. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum. Pathol. 33, 1078–1085 (2002).

    CAS  PubMed  Google Scholar 

  48. Saramaki, O. et al. Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am. J. Pathol. 159, 2089–2094 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Skacel, M. et al. Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray. Hum. Pathol. 32, 1392–1397 (2001).

    CAS  PubMed  Google Scholar 

  50. Rubin, M. A. et al. E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum. Pathol. 32, 690–697 (2001).

    CAS  PubMed  Google Scholar 

  51. Fuller, C. E., Wang, H., Zhang, W., Fuller, G. N. & Perry, A. High-throughput molecular profiling of high-grade astrocytomas: the utility of fluorescence in situ hybridization on tissue microarrays (TMA-FISH). J. Neuropathol. Exp. Neurol. 61, 1078–1084 (2002).

    CAS  PubMed  Google Scholar 

  52. Ristimaki, A. et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 62, 632–635 (2002).

    CAS  PubMed  Google Scholar 

  53. Miettinen, H. E. et al. High topoisomerase II α expression associates with high proliferation rate and and poor prognosis in oligodendrogliomas. Neuropathol. Appl. Neurobiol. 26, 504–512 (2000).

    CAS  PubMed  Google Scholar 

  54. Wang, Y. et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 95, 2346–2352 (2002).

    CAS  PubMed  Google Scholar 

  55. Simon, R. et al. Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J. Natl Cancer Inst. 93, 1141–1146 (2001). This paper provides an example of a metastasis TMA.

    CAS  PubMed  Google Scholar 

  56. Maloney, D. G. et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 (1997).

    CAS  PubMed  Google Scholar 

  57. Rao, J., Seligson, D. & Hemstreet, G. P. Protein expression analysis using quantitative fluorescence image analysis on tissue microarray slides. Biotechniques 32, 924–926, 928–930, 932 (2002).

    CAS  PubMed  Google Scholar 

  58. Camp, R. L., Chung, G. G. & Rimm, D. L. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nature Med. 8, 1323–1327 (2002). Describes an automated TMA analysis using fluorescent dyes.

    CAS  PubMed  Google Scholar 

  59. Haedicke, W., Popper, H. H., Buck, C. R. & Zatloukal, K. Automated evaluation and normalization of immunohistochemistry on tissue microarrays with a DNA microarray scanner. Biotechniques 35, 164–168 (2003). Report of an automated TMA analysis.

    CAS  PubMed  Google Scholar 

  60. Liu, C. L. et al. Software tools for high-throughput analysis and archiving of immunohistochemistry staining data obtained with tissue microarrays. Am. J. Pathol. 161, 1557–1565 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Berman, J. J., Edgerton, M. E. & Friedman, B. A. The tissue microarray data exchange specification: A community-based, open source tool for sharing tissue microarray data. BMC Med. Inform. Decis. Mak. 3, 5 (2003).

    PubMed  PubMed Central  Google Scholar 

  62. Schraml, P. et al. Tissue microarrays for gene amplification surveys in many different tumor types. Clin. Cancer Res. 5, 1966–1975 (1999). Provides an example of a multitumour TMA.

    CAS  PubMed  Google Scholar 

  63. Sauer, T., Wiedswang, G., Boudjema, G., Christensen, H. & Karesen, R. Assessment of HER-2/neu overexpression and/or gene amplification in breast carcinomas: should in situ hybridization be the method of choice? APMIS 111, 444–450 (2003).

    CAS  PubMed  Google Scholar 

  64. Zhang, D., Salto-Tellez, M., Do, E., Putti, T. C. & Koay, E. S. Evaluation of HER-2/neu oncogene status in breast tumors on tissue microarrays. Hum. Pathol. 34, 362–368 (2003).

    CAS  PubMed  Google Scholar 

  65. Latta, E. K., Tjan, S., Parkes, R. K. & O'Malley, F. P. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod. Pathol. 15, 1318–1325 (2002).

    CAS  PubMed  Google Scholar 

  66. Bozzetti, C. et al. HER-2/neu amplification detected by fluorescence in situ hybridization in fine needle aspirates from primary breast cancer. Ann. Oncol. 13, 1398–1403 (2002).

    CAS  PubMed  Google Scholar 

  67. Tsuda, H. et al. Detection of HER-2/neu (c-erb B-2) DNA amplification in primary breast carcinoma. Interobserver reproducibility and correlation with immunohistochemical HER-2 overexpression. Cancer 92, 2965–2974 (2001).

    CAS  PubMed  Google Scholar 

  68. Riou, G. et al. c-erbB-2 (HER-2/neu) gene amplification is a better indicator of poor prognosis than protein over-expression in operable breast-cancer patients. Int. J. Cancer 95, 266–270 (2001).

    CAS  PubMed  Google Scholar 

  69. Chen, Y., Dong, J. & Li, C. Amplification and overexpression of c-erbB2 in human breast cancer. Zhonghua Zhong Liu Za Zhi 17, 16–19 (1995).

    CAS  PubMed  Google Scholar 

  70. Hubbard, A. L., Doris, C. P., Thompson, A. M., Chetty, U. & Anderson, T. J. Critical determination of the frequency of c-erbB-2 amplification in breast cancer. Br. J. Cancer 70, 434–439 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pechoux, C., Chardonnet, Y. & Noel, P. Immunohistochemical studies on c-erbB-2 oncoprotein expression in paraffin embedded tissues in invasive and non-invasive human breast lesions. Anticancer Res. 14, 1343–1360 (1994).

    CAS  PubMed  Google Scholar 

  72. Bermont, L., Algros, M. P., Baron, M. H. & Adessi, G. L. Relevance of p185 HER-2/neu oncoprotein quantification in human primary breast carcinoma. Breast Cancer Res. Treat. 63, 163–169 (2000).

    CAS  PubMed  Google Scholar 

  73. Knyazev, P. G., Imyanitov, E. N., Chernitca, O. I., Nikiforova, I. F. & Hanson, K. P. Amplification of ERBB-2 (HER-2/NEU) oncogene in different neoplasms of patients from USSR. Oncology 49, 162–165 (1992).

    CAS  PubMed  Google Scholar 

  74. Fajac, A. et al. c-erbB2 gene amplification and protein expression in ovarian epithelial tumors: evaluation of their respective prognostic significance by multivariate analysis. Int. J. Cancer 64, 146–151 (1995).

    CAS  PubMed  Google Scholar 

  75. Fan, Q. B. et al. Amplification of the C-erbB-2(HER-2/neu) proto-oncogene in ovarian carcinomas. Chin. Med. J. (Engl) 107, 589–593 (1994).

    CAS  Google Scholar 

  76. Hou, Y., Wang, M. & Liu, W. Study of the amplification and expression of c-erbB2 oncogene in epithelial ovarian tumors. Zhonghua Zhong Liu Za Zhi 18, 426–428 (1996).

    CAS  PubMed  Google Scholar 

  77. Anreder, M. B., Freeman, S. M., Merogi, A., Halabi, S. & Marrogi, A. J. p53, c-erbB2, and PCNA status in benign, proliferative and malignant ovarian surface epithelial neoplasms: a study of 75 cases. Arch. Pathol. Lab. Med. 123, 310–316 (1999).

    CAS  PubMed  Google Scholar 

  78. Berchuck, A. et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50, 4087–4091 (1990).

    CAS  PubMed  Google Scholar 

  79. Huettner, P. C. et al. Neu oncogene expression in ovarian tumors: a quantitative study. Mod. Pathol. 5, 250–256 (1992).

    CAS  PubMed  Google Scholar 

  80. Yazici, H., Dolapcioglu, K., Buyru, F. & Dalay, N. Utility of c-erbB-2 expression in tissue and sera of ovarian cancer patients. Cancer Invest. 18, 110–114 (2000).

    CAS  PubMed  Google Scholar 

  81. Haldane, J. S., Hird, V., Hughes, C. M. & Gullick, W. J. c-erbB-2 oncogene expression in ovarian cancer. J. Pathol. 162, 231–237 (1990).

    CAS  PubMed  Google Scholar 

  82. Wang, D. P. et al. Immunohistochemical localization of c-erbB-2 protein and epidermal growth factor receptor in normal surface epithelium, surface inclusion cysts, and common epithelial tumours of the ovary. Virchows Arch. A Pathol. Anat. Histopathol. 421, 393–400 (1992).

    CAS  PubMed  Google Scholar 

  83. Ross, J. S. et al. HER-2/neu oncogene amplification by fluorescence in situ hybridization in epithelial tumors of the ovary. Am. J. Clin. Pathol. 111, 311–316 (1999).

    CAS  PubMed  Google Scholar 

  84. Wang, Y. P., Chen, S. Q. & Xue, K. X. Amplification of C-erB-2 oncogene in colon carcinomas. Zhonghua Yi Xue Za Zhi 74, 536–538, 582 (1994).

    CAS  PubMed  Google Scholar 

  85. Nathanson, D. R. et al. HER 2/neu expression and gene amplification in colon cancer. Int. J. Cancer 105, 796–802 (2003).

    CAS  PubMed  Google Scholar 

  86. McKay, J. A. et al. c-erbB-2 is not a major factor in the development of colorectal cancer. Br. J. Cancer 86, 568–573 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dursun, A., Poyraz, A., Suer, O., Sezer, C. & Akyol, G. Expression of Bcl-2 and c-ErbB-2 in colorectal neoplasia. Pathol. Oncol. Res. 7, 24–27 (2001).

    CAS  PubMed  Google Scholar 

  88. Ross, J. S. & McKenna, B. J. The HER-2/neu oncogene in tumors of the gastrointestinal tract. Cancer Invest. 19, 554–568 (2001).

    CAS  PubMed  Google Scholar 

  89. Esteller, M., Garcia, A., Martinez i Palones, J. M., Cabero, A. & Reventos, J. Detection of c-erbB-2/neu and fibroblast growth factor-3/INT-2 but not epidermal growth factor receptor gene amplification in endometrial cancer by differential polymerase chain reaction. Cancer 75, 2139–2146 (1995).

    CAS  PubMed  Google Scholar 

  90. Czerwenka, K., Lu, Y. & Heuss, F. Amplification and expression of the c-erbB-2 oncogene in normal, hyperplastic, and malignant endometria. Int. J. Gynecol. Pathol. 14, 98–106 (1995).

    CAS  PubMed  Google Scholar 

  91. Halperin, R. et al. Comparative immunohistochemical study of endometrioid and serous papillary carcinoma of endometrium. Eur. J. Gynaecol. Oncol. 22, 122–126 (2001).

    CAS  PubMed  Google Scholar 

  92. Ioffe, O. B., Papadimitriou, J. C. & Drachenberg, C. B. Correlation of proliferation indices, apoptosis, and related oncogene expression (bcl-2 and c-erbB-2) and p53 in proliferative, hyperplastic, and malignant endometrium. Hum. Pathol. 29, 1150–1159 (1998).

    CAS  PubMed  Google Scholar 

  93. Miyazaki, M. Immunohistochemical study of PCNA, p53 gene product and c-erbB-2 gene product in endometrial carcinoma. Nippon Sanka Fujinka Gakkai Zasshi 48, 269–276 (1996).

    CAS  PubMed  Google Scholar 

  94. Rolitsky, C. D., Theil, K. S., McGaughy, V. R., Copeland, L. J. & Niemann, T. H. HER-2/neu amplification and overexpression in endometrial carcinoma. Int. J. Gynecol. Pathol. 18, 138–143 (1999).

    CAS  PubMed  Google Scholar 

  95. Wang, D. et al. Expression of c-erbB-2 protein and epidermal growth receptor in endometrial carcinomas. Correlation with clinicopathologic and sex steroid receptor status. Cancer 72, 2628–2637 (1993).

    CAS  PubMed  Google Scholar 

  96. Pinto-de-Sousa, J. et al. c-erb B-2 expression is associated with tumor location and venous invasion and influences survival of patients with gastric carcinoma. Int. J. Surg. Pathol. 10, 247–256 (2002).

    CAS  PubMed  Google Scholar 

  97. Kameda, T. et al. Expression of ERBB2 in human gastric carcinomas: relationship between p185ERBB2 expression and the gene amplification. Cancer Res. 50, 8002–8009 (1990).

    CAS  PubMed  Google Scholar 

  98. Ranzani, G. N. et al. Heterogeneous protooncogene amplification correlates with tumor progression and presence of metastases in gastric cancer patients. Cancer Res. 50, 7811–7814 (1990).

    CAS  PubMed  Google Scholar 

  99. Tsujino, T. et al. Alterations of oncogenes in metastatic tumours of human gastric carcinomas. Br. J. Cancer 62, 226–230 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee, K. E. et al. Prognostic significance of p53, nm23, PCNA and c-erbB-2 in gastric cancer. Jpn J. Clin. Oncol. 33, 173–179 (2003).

    PubMed  Google Scholar 

  101. Wang, Y. L., Sheu, B. S., Yang, H. B., Lin, P. W. & Chang, Y. C. Overexpression of c-erb-B2 proteins in tumor and non-tumor parts of gastric adenocarcinoma — emphasis on its relation to H. pylori infection and clinicohistological characteristics. Hepatogastroenterology 49, 1172–1176 (2002).

    CAS  PubMed  Google Scholar 

  102. Takehana, T. et al. Status of c-erbB-2 in gastric adenocarcinoma: a comparative study of immunohistochemistry, fluorescence in situ hybridization and enzyme-linked immuno-sorbent assay. Int. J. Cancer 98, 833–837 (2002).

    CAS  PubMed  Google Scholar 

  103. Suzuki, T. et al. Growth of human gastric carcinomas and expression of epidermal growth factor, transforming growth factor-α, epidermal growth factor receptor and p185c-erbB-2. Oncology 52, 385–391 (1995).

    CAS  PubMed  Google Scholar 

  104. Yan, J. et al. Absence of evidence for HER2 amplification in nasopharyngeal carcinoma. Cancer Genet. Cytogenet. 132, 116–119 (2002).

    CAS  PubMed  Google Scholar 

  105. Khan, A. J. et al. Characterization of the HER-2/neu oncogene by immunohistochemical and fluorescence in situ hybridization analysis in oral and oropharyngeal squamous cell carcinoma. Clin. Cancer Res. 8, 540–548 (2002).

    CAS  PubMed  Google Scholar 

  106. Leonard, J. H., Kearsley, J. H., Chenevix-Trench, G. & Hayward, N. K. Analysis of gene amplification in head-and-neck squamous-cell carcinoma. Int. J. Cancer 48, 511–515 (1991).

    CAS  PubMed  Google Scholar 

  107. Merritt, W. D., Weissler, M. C., Turk, B. F. & Gilmer, T. M. Oncogene amplification in squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg. 116, 1394–1398 (1990).

    CAS  PubMed  Google Scholar 

  108. Beckhardt, R. N. et al. HER-2/neu oncogene characterization in head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 121, 1265–1270 (1995).

    CAS  PubMed  Google Scholar 

  109. Yazici, H., Altun, M., Alatli, C., Dogan, O. & Dalay, N. c-erbB-2 gene amplification in nasopharyngeal carcinoma. Cancer Invest. 18, 6–10 (2000).

    CAS  PubMed  Google Scholar 

  110. Cho, K. J., Khang, S. K., Koh, J. S., Chung, J. H. & Lee, S. S. Sebaceous carcinoma of the eyelids: frequent expression of c-erbB-2 oncoprotein. J. Korean Med. Sci. 15, 545–550 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shnayder, Y. et al. Adhesion molecules as prognostic factors in nasopharyngeal carcinoma. Laryngoscope 111, 1842–1846 (2001).

    CAS  PubMed  Google Scholar 

  112. Skalova, A., Starek, Kucerova, V., Szepe, P. & Plank, L. Salivary duct carcinoma — a highly aggressive salivary gland tumor with HER-2/neu oncoprotein overexpression. Pathol. Res. Pract. 197, 621–626 (2001).

    CAS  PubMed  Google Scholar 

  113. Shiraishi, M., Noguchi, M., Shimosato, Y. & Sekiya, T. Amplification of protooncogenes in surgical specimens of human lung carcinomas. Cancer Res. 49, 6474–6479 (1989).

    CAS  PubMed  Google Scholar 

  114. Bongiorno, P. F. et al. Alterations of K-ras, p53, and erbB-2/neu in human lung adenocarcinomas. J. Thorac. Cardiovasc. Surg. 107, 590–595 (1994).

    CAS  PubMed  Google Scholar 

  115. Han, H. et al. Prognostic value of immunohistochemical expressions of p53, HER-2/neu, and bcl-2 in stage I non-small-cell lung cancer. Hum. Pathol. 33, 105–110 (2002).

    CAS  PubMed  Google Scholar 

  116. Nakamura, H. et al. Correlation between encoded protein overexpression and copy number of the HER2 gene with survival in non-small cell lung cancer. Int. J. Cancer 103, 61–66 (2003).

    CAS  PubMed  Google Scholar 

  117. Hirsch, F. R. et al. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br. J. Cancer 86, 1449–1456 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hirashima, N., Takahashi, W., Yoshii, S., Yamane, T. & Ooi, A. Protein overexpression and gene amplification of c-erb B-2 in pulmonary carcinomas: a comparative immuno-histochemical and fluorescence in situ hybridization study. Mod. Pathol. 14, 556–562 (2001).

    CAS  PubMed  Google Scholar 

  119. Cox, G. et al. Herceptest: HER2 expression and gene amplification in non-small cell lung cancer. Int. J. Cancer 92, 480–483 (2001).

    CAS  PubMed  Google Scholar 

  120. Reinmuth, N. et al. Ploidy, expression of erbB1, erbB2, P53 and amplification of erbB1, erbB2 and erbB3 in non-small cell lung cancer. Eur. Respir. J. 16, 991–996 (2000).

    CAS  PubMed  Google Scholar 

  121. Brabender, J. et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin. Cancer Res. 7, 1850–1855 (2001).

    CAS  PubMed  Google Scholar 

  122. Schneider, P. M. et al. Multiple molecular marker testing (p53, C-Ki-ras, c-erbB-2) improves estimation of prognosis in potentially curative resected non-small cell lung cancer. Br. J. Cancer 83, 473–479 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fournier, G. et al. Gene amplifications in advanced-stage human prostate cancer. Urol. Res. 22, 343–347 (1995).

    CAS  PubMed  Google Scholar 

  124. Latil, A. et al. Oncogene amplifications in early-stage human prostate carcinomas. Int. J. Cancer 59, 637–638 (1994).

    CAS  PubMed  Google Scholar 

  125. Ross, J. S. et al. HER-2/neu gene amplification status in prostate cancer by fluorescence in situ hybridization. Hum. Pathol. 28, 827–833 (1997).

    CAS  PubMed  Google Scholar 

  126. Sanchez, K. M. et al. Evaluation of HER-2/neu expression in prostatic adenocarcinoma: a request for a standardized, organ specific methodology. Cancer 95, 1650–1655 (2002).

    PubMed  Google Scholar 

  127. Lara, P. N. et al. HER-2/neu is overexpressed infrequently in patients with prostate carcinoma. Results from the California Cancer Consortium Screening Trial. Cancer 94, 2584–2589 (2002).

    PubMed  Google Scholar 

  128. Savinainen, K. J. et al. Expression and gene copy number analysis of ERBB2 oncogene in prostate cancer. Am. J. Pathol. 160, 339–345 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, H. L., Gandour-Edwards, R., Lara, P. N., Jr., de Vere White, R. & LaSalle, J. M. Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J. 7, 395–403 (2001).

    CAS  PubMed  Google Scholar 

  130. Osman, I. et al. HER-2/neu (p185neu) protein expression in the natural or treated history of prostate cancer. Clin. Cancer Res. 7, 2643–2647 (2001).

    CAS  PubMed  Google Scholar 

  131. Gu, K., Mes-Masson, A. M., Gauthier, J. & Saad, F. Overexpression of her-2/neu in human prostate cancer and benign hyperplasia. Cancer Lett. 99, 185–189 (1996).

    CAS  PubMed  Google Scholar 

  132. Shi, Y. et al. Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J. Urol. 166, 1514–1519 (2001).

    CAS  PubMed  Google Scholar 

  133. McCann, A., Dervan, P. A., Johnston, P. A., Gullick, W. J. & Carney, D. N. c-erbB-2 oncoprotein expression in primary human tumors. Cancer 65, 88–92 (1990).

    CAS  PubMed  Google Scholar 

  134. Kruger, S. et al. Overexpression of c-erbB-2 oncoprotein in muscle-invasive bladder carcinoma: relationship with gene amplification, clinicopathological parameters and prognostic outcome. Int. J. Oncol. 21, 981–987 (2002).

    PubMed  Google Scholar 

  135. Mellon, J. K. et al. C-erbB-2 in bladder cancer: molecular biology, correlation with epidermal growth factor receptors and prognostic value. J. Urol. 155, 321–326 (1996).

    CAS  PubMed  Google Scholar 

  136. Sauter, G. et al. DNA aberrations in urinary bladder cancer detected by flow cytometry and FISH. Urol. Res. 25, S37–S44 (1997).

    CAS  PubMed  Google Scholar 

  137. Gorgoulis, V. G., Barbatis, C., Poulias, I. & Karameris, A. M. Molecular and immunohistochemical evaluation of epidermal growth factor receptor and c-erb-B-2 gene product in transitional cell carcinomas of the urinary bladder: a study in Greek patients. Mod. Pathol. 8, 758–764 (1995).

    CAS  PubMed  Google Scholar 

  138. Orlando, C. et al. Detection of c-erbB-2 amplification in transitional cell bladder carcinoma using competitive PCR technique. J. Urol. 156, 2089–2093 (1996).

    CAS  PubMed  Google Scholar 

  139. Simon, R. et al. HER-2 and TOP2A co-amplification in urinary bladder cancer. Int. J. Cancer 107, 764–772 (2003).

    CAS  PubMed  Google Scholar 

  140. Zhau, H. E. et al. Amplification and expression of the c-erb B-2/neu proto-oncogene in human bladder cancer. Mol. Carcinog. 3, 254–257 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Sauter.

Ethics declarations

Competing interests

Guido Sauter has a patent application on the use of tissue microarrays.

Related links

Related links

DATABASES

LocusLink

AIB1

c-MYC

COX2

cyclin-dependent kinase-4

Cyclin E

E-cadherin

EGFR

EIF3S3

elongin C

ERBB2

fibroblast growth factor receptor-1

hepsin

IGFBP2

keratin-7

keratin-20

MAGE-A4

MDM2

oestrogen receptor

progesterone receptor

RAF1

S100P

SHP1

topoisomerase IIα

FURTHER INFORMATION

Institute of Pathology, University Hospital Basel, Tissue Microarray Program

Genetech Inc.

National Human Genome Research Insitute's Tissue Microarray Project

http://www.nhgri.nih.gov/DIR/CGB/TMA/construction.html

Manufacturers of tissue arrayers

Chemicon

Beecher Instruments

Automated TMA analysis systems and software

Aperio Technologies

Applied Imaging

Bacus Laboratories

BioGenex

ChromaVision

Compucyte

Microbrightfield

Molecular Devices

Tissueinformatics

Trestle

Software programs for TMA image storage and retrieval

Stanford Tissue Microarray Software

Stanford Tissue Microarray Consortium Web Portal

Eisen lab

Glossary

MICROTOME

Device for cutting histological sections from tissue blocks.

IMMUNOHISTOCHEMISTRY

(IHC). Method for the in situ detection of proteins in tissues using a specific antibody coupled to a chromogenic enzyme complex. The staining allows a rough estimation of the expression level and the intracellular localization of the target protein.

FLUORESCENCE IN SITU HYBRIDIZATION (FISH).

Method for the detection of particular DNA sequences (for example, a gene) in cell nuclei, for example, in tissue sections. A fluorescence- labelled DNA fragment complementary to the target DNA sequence is used as a probe. FISH allows the determination of the exact copy number of a target gene.

RNA IN SITU HYBRIDIZATION (RNA-ISH).

Method for the detection of mRNA sequences in tissue sections. A (usually isotopic) labelled DNA or RNA fragment complementary to the target mRNA sequence is used as a probe. The signal intensity allows a rough estimation of the mRNA expression level.

KI67 LABELLING INDEX

The Ki67 labelling index is the fraction of cell nuclei positive for staining with an antibody against the Ki67 protein. The Ki67 antigen is exclusively expressed during cell cycle.

NORTHERN BLOT

Method for the detection of mRNA sequences in isolated total cellular RNA that has been separated according to the mRNA length using an isotopic labelled antisense DNA or RNA probe. The signal intensity allows a rough estimation of the mRNA expression level, whereas the signal localizations enables to estimated the target mRNA size.

PHOSPHORIMAGER

Device for visualization of radioactive signals originating from experiments such as isotopic RNA-ISH or Northern blots, comparable with a radiosensitive photographic plate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauter, G., Simon, R. & Hillan, K. Tissue microarrays in drug discovery. Nat Rev Drug Discov 2, 962–972 (2003). https://doi.org/10.1038/nrd1254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing