Innovation | Published:

Target discovery

Nature Reviews Drug Discovery volume 2, pages 831838 (2003) | Download Citation

Subjects

Abstract

Target discovery, which involves the identification and early validation of disease-modifying targets, is an essential first step in the drug discovery pipeline. Indeed, the drive to determine protein function has been stimulated, both in industry and academia, by the completion of the human genome project. In this article, we critically examine the strategies and methodologies used for both the identification and validation of disease-relevant proteins. In particular, we will examine the likely impact of recent technological advances, including genomics, proteomics, small interfering RNA and mouse knockout models, and conclude by speculating on future trends.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & A guide to drug discovery: Target selection in drug discovery. Nature Rev. Drug Discov. 2, 63–69 (2003).

  2. 2.

    & Fomivirsen. Drugs Today 37, 245–255 (2001).

  3. 3.

    & The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

  4. 4.

    Systems biology: a brief overview. Science 295, 1662–1664 (2002).

  5. 5.

    & Effects of β2-agonists on airway tone and bronchial responsiveness. J. Allergy Clin. Immunol. 110, S304–S312 (2002).

  6. 6.

    A growing network of cancer-susceptibility genes. N. Engl. J. Med. 348, 1917–1919 (2003).

  7. 7.

    , & The genetics and genomics of cancer. Nature Genet. 33, 238–244 (2003).

  8. 8.

    , , , & Mortality in relation to smoking: 40 years' observations on male British doctors. BMJ 309, 901–911 (1994).

  9. 9.

    & Inflammation and cancer. Nature 420, 860–867 (2002).

  10. 10.

    Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

  11. 11.

    & Inflammation and therapeutic vaccination in CNS diseases. Nature 420, 879–884 (2002).

  12. 12.

    Eat to live, not live to eat. Nutrition 16, 767–773 (2000).

  13. 13.

    Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nature Rev. Drug Discov. 2, 151–154 (2003).

  14. 14.

    , & Better therapeutics through microarrays. Nature Genet. 32, 547–551 (2002).

  15. 15.

    The use and analysis of microarray data. Nature Rev. Drug Discov. 1, 951–960 (2002).

  16. 16.

    Extracting functional information from microarrays: a challenge for functional genomics. Proc. Natl Acad. Sci. USA 99, 12509–12511 (2002).

  17. 17.

    From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32, 502–508 (2002).

  18. 18.

    et al. Gene expression profiling of ductal carcinomas in situ and invasive breast tumors. Anticancer Res. 23, 2043–2051 (2003).

  19. 19.

    , , , & Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

  20. 20.

    & Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

  21. 21.

    et al. Protein microarray technology. Drug Discov. Today 7, 815–822 (2002).

  22. 22.

    Is proteomics heading in the wrong direction? Nature Rev. Mol. Cell Biol. 4, 74–80 (2003).

  23. 23.

    Huntingtin in health and disease. J. Clin. Invest 111, 299–302 (2003).

  24. 24.

    & Pharmacological strategies for muscular dystrophy. Nature Rev. Drug Discov. 2, 379–390 (2003).

  25. 25.

    & Cystic fibrosis. Lancet 361, 681–689 (2003).

  26. 26.

    & Molecular medicine. The cholesterol quartet. Science 292, 1310–1312 (2001).

  27. 27.

    , & Candidate-gene approaches for studying complex genetic traits: practical considerations. Nature Rev. Genet. 3, 391–397 (2002).

  28. 28.

    , , & The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am. J. Obstet. Gynecol. 187, 1299–1312 (2002).

  29. 29.

    et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

  30. 30.

    , , & A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

  31. 31.

    Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr. Opin. Chem. Biol. 7, 91–96 (2003).

  32. 32.

    , , , & The use of retroviruses as pharmaceutical tools for target discovery and validation in the field of functional genomics. Curr. Opin. Biotechnol. 12, 613–621 (2001).

  33. 33.

    et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

  34. 34.

    et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

  35. 35.

    & Using model-system genetics for drug-based target discovery. Drug Discov. Today 6, 141–149 (2001).

  36. 36.

    et al. In vivo drug target discovery: identifying the best targets from the genome. Curr. Opin. Biotechnol. 12, 626–631 (2001).

  37. 37.

    & Phage display of antibody fragments. Curr. Protein Pept. Sci. 1, 155–169 (2000).

  38. 38.

    , & Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406 (1990).

  39. 39.

    , & Aptamers as tools for target prioritization and lead identification. Drug Discov. Today 7, 1221–1228 (2002).

  40. 40.

    & Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 41, 4503–4510 (2002).

  41. 41.

    & LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 21, 74–81 (2003).

  42. 42.

    Hammerhead ribozymes for target validation. Expert. Opin. Ther. Targets 6, 235–247 (2002).

  43. 43.

    & Designed transcription factors as tools for therapeutics and functional genomics. Biochem. Pharmacol. 64, 919–923 (2002).

  44. 44.

    Functional genomics and target validation approaches using antisense oligonucleotide technology. Curr. Opin. Biotechnol. 12, 622–625 (2001).

  45. 45.

    , & RNAi: gene-silencing in therapeutic intervention. Drug Discov. Today 7, 1040–1046 (2002).

  46. 46.

    et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

  47. 47.

    , & RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

  48. 48.

    et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

  49. 49.

    , , , & Gene silencing by adenovirus-delivered siRNA. FEBS Lett. 539, 111–114 (2003).

  50. 50.

    et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

  51. 51.

    Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13, 128–131 (2002).

  52. 52.

    , & Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54, 715–758 (2002).

  53. 53.

    & Protein transduction technology. Curr. Opin. Biotechnol. 13, 52–56 (2002).

  54. 54.

    Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587–594 (2002).

  55. 55.

    et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590 (2003).

  56. 56.

    , , , & Protein transduction domains: are they delivering? Trends Pharmacol. Sci. 24, 213–215 (2003).

  57. 57.

    , , , & Lentiviral-mediated RNA interference. Hum. Gene Ther. 13, 2197–2201 (2002).

  58. 58.

    , & Targeted adenoviral vectors. Biochim. Biophys. Acta 1575, 1–14 (2002).

  59. 59.

    & Lentiviral vectors for gene delivery into cells. DNA Cell Biol. 21, 937–951 (2002).

  60. 60.

    , & Gene delivery using herpes simplex virus vectors. DNA Cell Biol. 21, 915–936 (2002).

  61. 61.

    Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177, 437–447 (2003).

  62. 62.

    Transgenic knockouts as part of high-throughput, evidence-based target selection and validation strategies. Drug Discov. Today 6, 628–636 (2001).

  63. 63.

    , , , & Full-speed mammalian genetics: in vivo target validation in the drug discovery process. Trends Biotechnol. 20, 36–42 (2002).

  64. 64.

    & Knockouts model the 100 best-selling drugs — will they model the next 100? Nature Rev. Drug Discov. 2, 38–51 (2003).

  65. 65.

    & Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov. Today 7, 461–470 (2002).

  66. 66.

    et al. C3H apoE(−/−) mice have less atherosclerosis than C57BL apoE(−/−) mice despite having a more atherogenic serum lipid profile. Atherosclerosis 151, 389–397 (2000).

  67. 67.

    , , & Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).

  68. 68.

    , , , & Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30, 1757–1766 (2002).

Download references

Author information

Affiliations

  1. Mark A. Lindsay is at AstraZeneca Pharmaceuticals, 19F19 Alderley Park, Macclesfield, Cheshire SK10 4TG, UK. Honorary Senior Lecturer, Thoracic Medicine, National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK.  mark.lindsay@astrazeneca.com

    • Mark A. Lindsay

Authors

  1. Search for Mark A. Lindsay in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrd1202

Further reading