Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of pegylation on pharmaceuticals

Key Points

  • Polypeptides that are being discovered by the biotechnology industry hold great promise as new drug candidates to target specific disease symptoms.

  • However, polypeptide drugs are rapidly degraded by proteolytic enzymes and neutralized by antibodies, among other shortcomings. This reduces their half-life and circulation time, thereby limiting their therapeutic effectiveness.

  • Pegylation of polypeptide drugs protects them and improves their pharmacodynamic and pharmacokinetic profiles.

  • The pegylation process attaches repeating units of polyethylene glycol (PEG) to a polypeptide drug. For the past 30 years, scientists have improved various chemistries to build PEG polymers and attach them to a polypeptide drug of choice.

  • Among the first pegylated drugs approved by the FDA in the early 1990s were pegaspargase for leukemia and pegademase for severe combined immunodeficiency disorder. More recently, pegylated drugs for the treatment of hepatitis C, acromegaly, rheumatoid arthritis, neutropenia, various cancers, wound healing, and other disorders either have been approved or are undergoing clinical trials.

  • Researchers will continue to perfect the chemistries employed in pegylation to develop more polypeptide therapeutic products.

Abstract

Protein and peptide drugs hold great promise as therapeutic agents. However, many are degraded by proteolytic enzymes, can be rapidly cleared by the kidneys, generate neutralizing antibodies and have a short circulating half-life. Pegylation, the process by which polyethylene glycol chains are attached to protein and peptide drugs, can overcome these and other shortcomings. By increasing the molecular mass of proteins and peptides and shielding them from proteolytic enzymes, pegylation improves pharmacokinetics. This article will review how PEGylation can result in drugs that are often more effective and safer, and which show improved patient convenience and compliance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural formulae of polyethylene glycol (PEG) molecules.
Figure 2: Method for the activation of PEG molecules.
Figure 3: Reductive amination using PEG–propionaldehyde.
Figure 4: Pharmacokinetic profiles for interferon (IFN)-α2a and 40 kDa polyethylene glycol (PEG)–IFN-α2a.

Similar content being viewed by others

References

  1. Clark, A. Formulation of proteins and peptides for inhalation. Drug Deliv. Syst. Sci. (In the press).

  2. Roberts, M. J., Bentley, M. D. & Harris, J. M. Chemistry for peptide and protein PEGylation. Adv. Drug Delivery Rev. 54, 459–476 (2002). An excellent review that covers the chemistry and synthesis of first- and second-generation pegylation processes.

    Article  CAS  Google Scholar 

  3. Mateo, C. et al. Removal of amphipathic epitopes from genetically-engineered antibodies: production of modified immmunoglobulins with reduced immunogenicity. Hybridoma. 19, 436–471 (2000).

    Article  Google Scholar 

  4. Lyczak, J. B. & Morrison, S. L. Biological and pharmacokinetic properties of a novel immunoglobulin-CD4 fusion protein. Arch. Virol. 139, 189–196 (1994).

    Article  CAS  Google Scholar 

  5. Syed, S. et al. Potent antithrombin activity and delayed clearance from the circulation characterize recombinant hirudin genetically fused to albumin. Blood. 89, 3242–3252 (1997).

    Google Scholar 

  6. Allen, T. M. Liposomes: opportunities in drug development. Drugs 54 Suppl. 4, 8–14 (1997).

    Article  CAS  Google Scholar 

  7. Sebeni, J. The interaction of liposomes with the complement system. Crit. Rev. Ther. Drug Carrier Syst. 15, 57–88 (1998).

    Google Scholar 

  8. Bailon, P. & Berthold, W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm. Sci. Technol. Today 1, 352–356 (1998).

    Article  CAS  Google Scholar 

  9. Zaplinsky, S. Harris, J. M. In Chemistry and Biological Applications of Polyethylene Glycol (American Chemical Society Symposium Series 680) 1–15 (San Francisco, 1997).

    Google Scholar 

  10. Gabizon, A. & Martin, F. Polyethylene glycol-coated liposomal doxorubicin. Drugs 54 Suppl. 4, 15–21 (1997).

    Article  CAS  Google Scholar 

  11. Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of polyethylene glycol with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83, 601–606 (1994).

    Article  CAS  Google Scholar 

  12. Working, P. K. et al. In Chemistry and Biological Applications of Polyethylene Glycol (American Chemical Society Symposium Series 680) 45–57 (San Francisco, 1997).

    Book  Google Scholar 

  13. Richter, A. W. & Akerblom, E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethyleneglycol modified proteins. Int. Arch. Allergy Appl. Immunol. 70, 124–131 (1983).

    Article  CAS  Google Scholar 

  14. Cheng, T. et al. Acclerated clearance of polethylene glycol modified proteins by anti-polyethylene glycol IgM. Bioconjug. Chem. 10, 520–528 (1999).

    Article  CAS  Google Scholar 

  15. Davis, F. F. et al. Enzyme polyethylene glycol adducts: modified enzymes with unique properties. Enzyme Eng. 4, 169–173 (1978).

    Article  CAS  Google Scholar 

  16. Davis, F. F. et al. In Peptide and Protein Drug Delivery (ed Lee, V. H. L.) 226–231 (Marcel Dekker, New York, 1990).

    Google Scholar 

  17. Nucci, M. L., Schorr, R. & Abuchowski, A. The therapeutic value of polyethylene glycol modified protein. Adv. Drug Deliv. Rev. 6, 133–151 (1991).

    Article  CAS  Google Scholar 

  18. Harris, J. M., Martin, N. E. & Modi, M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001). This article describes the pharmacodynamics and pharmacokinetics advantages of pegylation for clinical drugs.

    Article  CAS  Google Scholar 

  19. Kozlowski, A. & Harris, J. M. Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. J. Control. Release 72, 217–224 (2001). A detailed review of the pharmaceutical uses of pegylated proteins as human therapeutics.

    Article  CAS  Google Scholar 

  20. Monfardini, C. et al. A branched monomethoxypolyethylene glycol for protein modification. Bioconjug. Chem. 6, 62–69 (1995).

    Article  CAS  Google Scholar 

  21. Koslowski, A., Charles, S. A. & Harris, J. M. Development of pegylated interferons for the treatment of chronic hepatitis C. BioDrugs 15, 419–429 (2001). A detailed discussion of the clinical development of pegylated interferon for treating hepatitis C.

    Article  Google Scholar 

  22. Katre, N. V. The conjugation of proteins with polyethylene glycol and other polymers: altering properties of proteins to enhance their therapeutic potential. Adv. Drug Deliv. Rev. 10, 91–114 (1993).

    Article  CAS  Google Scholar 

  23. Zaplinsky, S. & Lee, C. In Polyethylene Glycol Chemistry: Biotechnical and Biomedical Applications (ed Harris, J. M.) 347–370 (Plenum Press, NewYork, 1992).

    Google Scholar 

  24. Kinstler, O. B. et al. Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm. Res. 13, 996–1002 (1996).

    Article  CAS  Google Scholar 

  25. Zaplinsky, S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev. 16, 157–182 (1995).

    Article  Google Scholar 

  26. Harris, J. M. Synthesis of polyethylene glycol derivatives. J. Macromol. Sci. Rev. C25, 325–373 (1985).

    Article  CAS  Google Scholar 

  27. Dust, J. M, Fang, Z. H. & Harris, J. M. Proton NMR characteristics of polyethylene glycol and derivatives. Macromolecules 23, 3742–3746 (1990).

    Article  CAS  Google Scholar 

  28. Bentley, M. D. & Harris, J. M. Polyethylene glycol aldehyde hydrates and related polymers and applications in modifying. US Patent 5, 990, 237 (1999).

  29. Goodson, R. J. & Katre, N. V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8, 343–346 (1990).

    CAS  Google Scholar 

  30. El Tayar, N. et al. Polyo-IFN-β conjugates. WO 99/55377 (1999).

  31. Zaplinsky, S. et al. New detachable polyethylene glycol conjugates:Cysteine-cleavable lipopolymers regenerating natural phospholipid. Bioconjug. Chem. 10, 703–710 (1999).

    Article  Google Scholar 

  32. Yokoyama, M. et al. Synthesis of polyethylene oxide with heterobifunctional reactive groups at its terminals by an anionic inititator. Bioconjug. Chem. 3, 275–276 (1992).

    Article  CAS  Google Scholar 

  33. Bentley, M. D., Harris, J. M. & Kozlowski, A. Heterobifunctional polyethylene glycol derivatives and methods for their preparation. WO 126692A1 (2001).

  34. Yamasaki, N., Matsuo, A. & Isobe, H. Novel polyethylene glycol derivatives for modification of proteins. Agric. Biol. Chem. 52, 2125–2127 (1988).

    CAS  Google Scholar 

  35. Veronese, F. M. & Caliceti, P. Branched and linear polyethylene glycol influence of the polymer structure on enzymological, pharmacokinetic and immunological properties of protein conjugates. J. Bioact. Compat. Polym. 12, 196–207 (1997).

    Article  CAS  Google Scholar 

  36. Hershfield, M. S. PEG-ADA replacement therapy for adenosine deaminase deficiency. Clin. Immunol. Immunopathol. 76, S228–232 (1995)

    Article  CAS  Google Scholar 

  37. Burnham N. L. Polymers for delivering peptides and proteins. Am. J. Hosp. Pharm. 51, 210–218 (1994).

    CAS  Google Scholar 

  38. Hillman, B. C. & Sorensen, R. U. Management options: SCIDS with adenosine deaminase deficiency. Ann. Allergy 72, 395–404 (1994).

    Google Scholar 

  39. Hershfield, M. S. In Polyethylene Glycol Chemistry: Biotechnical and Biomedical Applications (ed Harris, J. M.) 145–154 (Plenum Press, NewYork, 1992).

    Google Scholar 

  40. Keating, M. J. et al. L-asparaginase and PEG asparaginase — past, present, and future. Leuk. Lymphoma 10, 153–157 (1993).

    Article  Google Scholar 

  41. Holle, L. M. Pegasparagase: an alternative. Ann. Pharmacother. 3, 616–624 (1997).

    Article  Google Scholar 

  42. Physicians' Desk Reference, 53 edition 2600–2601 (Thomson PDR, Montvale, New Jersey, 1999).

  43. Liang, J. T. et al. Pathogenesis, natural history, treatment and prevention of hepatitis C. Ann. Intern. Med. 132, 296–305 (2000).

    Article  CAS  Google Scholar 

  44. Grace, M. et al. Structural and biologic characterization of pegylated recombinant IFN-α2b. J. Interferon. Cytokine. Res. 21, 1103–1115 (2001).

    Article  CAS  Google Scholar 

  45. Glue, P. et al. PEG-interferon-α2b: pharmacokinetics, pharmacodynamics, safety and preliminary efficacy data. Hepatology 30, 189A (1999).

    Google Scholar 

  46. Linday, K. L. et al. A randomized double-blind trial comparing pegylated interferon α-2b to interferon α-2b as initial treatment for chronic hepatitis C. Hepatology 34, 395–403 (2001).

    Article  Google Scholar 

  47. O'Brien, C. et al. A double-blind, mult-icenter randomized, parallel dose-comparison study of six regimens of 5kD linear peginterferon α-2a compared with Roferon-A in patients with chronic hepatitis C. Antivir. Ther. 4, 15 (1999).

    Google Scholar 

  48. Bailon, P. et al. Pharmacological properties of five polyethylene glycol conjugates of interferon α-2a. Antivir. Ther. 4, 27 (1999).

    Google Scholar 

  49. Algranati, N. E., Sy, S. & Modi, M. A branched methoxy 40 kDa polyethylene glycol moiety optimizes the pharmacokinetics of PEG–IFN. Hepatology 30, 190A (1999).

    Google Scholar 

  50. Zeuzem, S. et al. Peginterferon α-2a in patients with chronic hepatitis C. N. Engl. J. Med. 343, 1666–1672 (2000).

    Article  CAS  Google Scholar 

  51. Heathcote, E. J. et al. Peginterferon α-2a in patients with chronic hepatitis C and cirrhosis. N. Engl. J. Med. 343, 1673–1680 (2000).

    Article  CAS  Google Scholar 

  52. Liang, J. T. et al. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann. Intern. Med. 132, 296–305 (2000).

    Article  CAS  Google Scholar 

  53. McHutchinson, J. G. et al. Interferon α-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N. Engl. J. Med. 339, 1485–1492 (1998).

    Article  Google Scholar 

  54. Poynard, T. et al. Randomized trial of interferon α-2b plus ribavirin for 48 weeks versus interferon α-2b placebo for treatment of chronic infection with hepatitis C virus. Lancet 352, 1426–1432 (1998).

    Article  CAS  Google Scholar 

  55. Sulkowski, M. S. et al. Pegylated interferon α-2a and ribavirin combination therapy for chronic hepatitis C. Gastroenterology 118, 950 (2000).

    Article  Google Scholar 

  56. Manns, M. P. et al. Peginterferon α-2b plus ribavirin compared to interferon α-2b plus ribavirin for the treatment of chronic hepatitis C. Lancet 358, 958–965 (2001).

    Article  CAS  Google Scholar 

  57. Fried, M. W. et al. Peginterferon α-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347, 975–982 (2002).

    Article  CAS  Google Scholar 

  58. Drake W. M. et al. Successful treatment of resistant acromegaly with a growth hormone receptor antagonist. Eur. J. Endocrinol. 145, 451–456 (2001).

    Article  CAS  Google Scholar 

  59. Van der Lely, A. J. et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet 358, 1754–1759 (2001).

    Article  CAS  Google Scholar 

  60. Edwards, C. K. PEGylated recombinant human soluble tumor necrosis factor receptor type I. Ann. Rheum. Dis. 58, 173–181 (1999).

    Article  Google Scholar 

  61. Moreland, L. W. et al. Phase I/II trial of recombinant methionyl human tumor necrosis factor binding protein PEGylated dimer in patients with active refractory rheumatoid arthritis. J. Rheumatol. 27, 601–609 (2000).

    CAS  Google Scholar 

  62. Choy E. H. et al. Efficacy of a novel pegylated humanized anti-tnf fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded randomized dose-escalating trial. Rheumatology 41, 1133–1137 (2002).

    Article  CAS  Google Scholar 

  63. Crawford, J. Clinical uses of pegylated pharmaceuticals in oncology. Cancer Treat. Rev. 28, 7–11 (2002).

    Article  Google Scholar 

  64. Bence, A. K. & Adams, V. R. Pegfilgrastim: a new therapy to prevent neutropenic fever. J. Am. Pharm. Assoc. (Wash) 42, 806–808 (2002).

    Article  Google Scholar 

  65. Gordon, A. N. et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J. Clin. Oncol. 19, 3312–3322 (2001).

    Article  CAS  Google Scholar 

  66. Park, J. W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4, 95–99 (2002).

    Article  CAS  Google Scholar 

  67. Zhao, X. & Harris, M. J. Novel degradable polyethylene glycol hydrogels for controlled release of protein. J. Pharm. Sci. 87, 1450–1458 (1998).

    Article  CAS  Google Scholar 

  68. Gillinov, A. M. & Lytle, B. W. A novel synthetic sealant to treat air leaks at cardiac reoperation. J. Card. Surg. 16, 255–257 (2001). An overview of the synthesis, characterization and potential uses of pegylated hydrogels

    Article  CAS  Google Scholar 

  69. Wain, J. C. et al. Trial of a novel synthetic sealant in preventing air leaks after lung resection. Ann. Thorac. Surg. 71, 1623–1628 (2001).

    Article  CAS  Google Scholar 

  70. Ferland, R., Mulani, D. & Campbell, P. K. Evaluation of a sprayable polyethylene gylcol adhesion barrier in a porcine efficacy model. Human Reprod. 16, 2718–2723 (2001).

    Article  CAS  Google Scholar 

  71. Hinds, K. D. & Skim, S. W. Effects of PEG conjugation on insulin properties. Adv. Drug Deliv. Rev. 54, 505–530 (2002).

    Article  CAS  Google Scholar 

  72. Weir, A. N. et al. Formatting antibody fragments to mediate specific therapeutic functions. Biochem. Soc. Trans. 30, 512–516 (2002)

    Article  CAS  Google Scholar 

  73. Rocca, M. et al. Pathophysiological and histomorphological evaluation of polyacryloylmorpholine vs polyethylene glycol modified superoxide dismutase in a rat model of ischemia/reperfusion injury. Int. J. Artif. Organs. 19, 730–734 (1996).

    Article  CAS  Google Scholar 

  74. Calvo, P. et al. Long-circulating pegylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res. 18, 1157–1165 (2001).

    Article  CAS  Google Scholar 

  75. Shi, N. et al. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18, 1091–1095 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerGov

Acute lymphoblastic leukemia

chronic lymphocytic leukemia

chronic mylogenous leukemia

Online Mendelian Inheritance in Man

Crohn's disease

rheumatoid arthritis

FURTHER INFORMATION

Blood–brain barrier

Glossary

HALF-LIFE

The amount of time it takes for one-half of a drug dose to be lost through biological processes.

SHELF LIFE

The amount of time a stored drug retains its activity.

LIPOSOME

Phospholipid capsules that protect enclosed drugs from degradation.

RETICULOENDOTHELIAL SYSTEM

A community of phagocytic cells of the body, located primarily in the spleen, liver and lymph nodes, that protect against infection.

COMPLEMENT

A complex series of blood proteins whose actions augment the work of antibodies to destroy bacteria, produce inflammation and regulate immune reactions.

PHARMACOKINETICS

The movement of drugs throughout the body, including their absorption, distribution, metabolism and excretion, and the mathematical models that describe these actions.

PHARMACODYNAMICS

Changes in measurable clinical parameters related to a drug, such as increase in antitumour activity, decrease in nausea, or decrease in viral load.

DIOL

PEG with two terminal hydroxyl groups that lead to crosslinking and loss of activity.

THIOL

An–SH group.

HETEROBIFUNCTIONAL

PEGs with two different terminal groups, making them capable of performing different functions.

ACROMEGALY

A disease characterized by abnormal enlargement of the skull, jaw, hands and feet, which is caused by excessive secretion of growth hormone by the pituary gland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J., Chess, R. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2, 214–221 (2003). https://doi.org/10.1038/nrd1033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing