Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ADMET in silico modelling: towards prediction paradise?

Key Points

  • There is an increasing need for good predictive tools of ADMET properties to serve two key aims — first, at the design stage of new compounds and compound libraries so as to reduce the risk of late-stage attrition, and second, to optimize the screening and testing by looking at only the most promising compounds.

  • We want to predict properties that provide information about dose size and dose frequency, such as oral absorption, bioavailability, brain penetration, clearance (for exposure) and volume of distribution (for frequency).

  • Two types of compuational approaches are used: molecular modelling and data modelling.

  • Molecular modelling use quantum mechanical methods to assess the potential for interaction between the small molecules under consideration and proteins known to be involved in ADME processes, such as cytochrome P450s.

  • For data modelling, quantitative structure–activity relationship (QSAR) approaches are typically applied. These use statistical tools to search for correlations between a given property and a set of molecular and structural descriptors of the molecules in question.

  • Good predictive models for ADMET parameters depend crucially on selecting the right mathematical approach, the right molecular descriptors for the particular ADMET endpoint, and a sufficiently large set of experimental data relating to this endpoint for the validation of the model.

  • This article describes recent advances in the prediction of physicochemical properties relevant to ADME (such as lipophilicity), ADME properties themselves (such as absorption), and toxicity issues (such as drug–drug interactions).

  • In the next 10 years or so, the degree of automation in traditional drug metabolism departments will continue to increase and fully automated medium- and high-throughput in vitro assays will be used alongside in silico modelling and data interpretation.

Abstract

Following studies in the late 1990s that indicated that poor pharmacokinetics and toxicity were important causes of costly late-stage failures in drug development, it has become widely appreciated that these areas should be considered as early as possible in the drug discovery process. However, in recent years, combinatorial chemistry and high-throughput screening have significantly increased the number of compounds for which early data on absorption, distribution, metabolism, excretion (ADME) and toxicity (T) are needed, which has in turn driven the development of a variety of medium and high-throughput in vitro ADMET screens. Here, we describe how in silico approaches will further increase our ability to predict and model the most relevant pharmacokinetic, metabolic and toxicity endpoints, thereby accelerating the drug discovery process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An analysis of the main reasons for attrition in drug development1.
Figure 2: Model of the CYP2D6 metabolizing enzyme87.
Figure 3: An analysis of the crucial ADME processes for which predictive models are available or are being developed11.
Figure 4: Towards prediction paradise.
Figure 5: The evolution of drug discovery and the changing role of ADME studies.

References

  1. Kennedy, T. Managing the drug discovery/development interface. Drug Disc. Today 2, 436–444 (1997).

    Article  Google Scholar 

  2. Van de Waterbeemd, H. High-throughput and in silico techniques in drug metabolism and pharmacokinetics. Curr. Opin. Drug Disc. Dev. 5, 33–43 (2002).

    CAS  Google Scholar 

  3. Sadowski, J. & Kubinyi, H. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41, 3325–3329 (1998).

    Article  CAS  Google Scholar 

  4. Anzali, S., Barnickel, G., Cezanne, B., Krug, M., Filimonov, D. & Poroikov, V. Discriminating between drugs and nondrugs by prediction of activity spectra for substances (PASS). J. Med. Chem. 44, 2432–2437 (2001).

    Article  CAS  Google Scholar 

  5. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Del. Revs. 23, 3–25 (1997). Paper introducing Lipinski's rule-of–5.

    Article  CAS  Google Scholar 

  6. Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2001).

    Article  Google Scholar 

  7. Van de Waterbeemd, H., Smith, D. A., Beaumont, K. & Walker, D. K. Property-based design: Optimisation of drug absorption and pharmacokinetics. J. Med. Chem. 44, 1313–1333 (2001).

    Article  CAS  Google Scholar 

  8. Johnson, M. A. & Maggiora, G. M. Concepts and Applications of Molecular Similarity Analysis (Wiley Interscience, New York, 1990).

    Google Scholar 

  9. Raevsky, O. A., Trepalin, S. V., Trepalina, H. P., Gerasimenko, V. A. & Raevskaja, O. E. SLIPPER-2001 —Software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity. J. Chem. Inf. Comput. Sci. 42, 540–549 (2002)

    Article  CAS  Google Scholar 

  10. Janssen, D. The power of prediction. Drug Disc. 38–40 (January 2002).

  11. Carlson, T. J. & Segall, M. D. Predictive, computational models of ADME properties. Curr. Drug Disc. 34–36 (March 2002)

  12. Podlogar, B. L., Muegge, I. & Brice, L. J. Computational methods to estimate drug development parameters. Curr. Opin. Drug Disc. Dev. 4, 102–109 (2001).

    CAS  Google Scholar 

  13. Ekins, S., Waller, C. L., Swaan, P. W., Cruciani, G., Wrighton, S. A. & Wikel, J. H. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44, 251–272 (2001). Excellent summary of in silico ADME and tables with references to data sets for permeability/absorption, brain penetration, P-gp, clearance and bioavailability.

    Article  Google Scholar 

  14. Ekins, S. & Wrighton, S. A. Application of in silico approaches to predicting drug–drug interactions. J. Pharmacol. Toxicol. Methods 45, 65–69 (2001).

    Article  CAS  Google Scholar 

  15. Rodrigues, A. D., Winchell, G. A. & Dobrinska, M. R. Use of in vitro drug metabolism data to evaluate metabolic drug–drug interactions in man: the need for quantitative databases. J. Clin. Pharmacol. 41, 368–373 (2001)

    Article  CAS  Google Scholar 

  16. Bachman, K. A. & Ghosh, R. The use of in vitro methods to predict in vivo pharmacokinetics and drug interactions. Curr. Drug Metab. 2, 299–314 (2001).

    Article  Google Scholar 

  17. Beresford, A. P., Selick, H. E. & Tarbit, M. H. The emerging importance of predictive ADME simulation in drug discovery. Drug Disc. Today 7, 109–116 (2002).

    Article  CAS  Google Scholar 

  18. Guner, O. (ed). Pharmacophore Perception, Development and Use in Drug Design (IUL Biotechnology Series, 2000)

    Google Scholar 

  19. Van de Waterbeemd, H. & Rose, S. In The Practice of Medicinal Chemistry 2nd (ed Wermuth, L. G.) 1367–1385 (Academic Press, 2003).

    Google Scholar 

  20. Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors (Wiley–VCH, Weinheim, 2000).

    Book  Google Scholar 

  21. Cruciani, G., Crivori, P., Carrupt, P. A. & Testa, B. Molecular fields in quantitative structure–permeation relationships: The VolSurf approach. Theochem. 503, 17–30 (2000)

    Article  CAS  Google Scholar 

  22. Buchwald, P. & Bodor, N. Computer-aided drug design: the role of quantitative structure–property, structure–activity and structure–metabolism relationships (QSPR, QSAR, QSMR). Drug Future 27, 577–588 (2002).

    Article  CAS  Google Scholar 

  23. Van de Waterbeemd, H., Smith, D. A. & Jones, B. C. Lipophilicity in PK design: methyl, ethyl, futile. J. Comput. Aid. Mol. Des. 15, 273–286 (2001).

    Article  CAS  Google Scholar 

  24. Van de Waterbeemd, H. In Pharmacokinetic Challenges in Drug Discovery (Eds) 213–234 (Ernst-Schering Research Foundation Workshop Series No. 37, Springer, 2001).

    Google Scholar 

  25. Walther, B., Vis, P. & Taylor, A. In: Lipophilicity in Drug Action and Toxicology (eds Pliska. V., Testa, B., Van de Waterbeemd, H.) 253–261 (VCH, Weinheim, 1996).

    Google Scholar 

  26. Bevan, C. D. & Lloyd, R. S. A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. 72, 1781–1787 (2000).

    Article  CAS  Google Scholar 

  27. Jorgensen, W. L. & Duffy, E. M. Prediction of drug solubility from structure. Adv. Drug Del. Rev. 54, 355–366 (2002).

    Article  CAS  Google Scholar 

  28. Bergstrom, C. A. S., Norinder, U., Luthman, K. & Artursson, P. Experimental and computational screening models for prediction of aqueous drug solubility. Pharm. Res. 19, 182–188 (2002).

    Article  CAS  Google Scholar 

  29. Hilal, S. H., Karickhoff, S. W. & Carreira, L. A. A rigorous test for SPARC's chemical reactivity models: estimation of more than 4300 ionization pKas. Quant. Struct.-Act. Relat. 14, 348–355 (1995).

    Article  CAS  Google Scholar 

  30. Raevsky, O. A., Fetisov, V. I., Trepalina, E. P., McFarland, J. W. & Schaper, K. -J. Quantitative estimation of drug absorption in humans for passively transported compounds on the basis of their physico-chemical parameters. Quant. Struct.-Act. Relat. 19, 366–374 (2000).

    Article  CAS  Google Scholar 

  31. Stenberg, P., Norinder, U., Luthman, K. & Artursson, P. Experimental and computational screening models for the prediction of intestinal drug absorption. J. Med. Chem. 44, 1927–1937 (2001).

    Article  CAS  Google Scholar 

  32. Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 (2000).

    Article  CAS  Google Scholar 

  33. Kulkarni, A., Yi, H. & Hopfinger, A. J. Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J. Chem. Inf. Comput. Sci. 42, 331–342 (2002).

    Article  CAS  Google Scholar 

  34. Cummins, C. L., Jacobsen, W. & Benet, L. Z. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300, 1036–1045 (2002).

    Article  CAS  Google Scholar 

  35. Gumbleton, M. & Audus, K. L. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci, 90, 1681–1698 (2001).

    Article  CAS  Google Scholar 

  36. Zhao, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Boutina, D., Beck, G., Sherborne, B., Cooper, I. & Platts, J. A. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90, 749–784 (2001). Key reference for oral absorption data of 169 compounds.

    Article  CAS  Google Scholar 

  37. Van de Waterbeemd, H. Quantitative structure-absorption relationships. In: Pharmacokinetic Optimization in Drug Research: Biological, Physicochemical and Computational Strategies, Testa, B., Van de Waterbeemd, H., Folkers, G. & Guy, R. (Eds), Verlag HCA, Zurich (2001), pp. 499–511.

    Chapter  Google Scholar 

  38. Norinder, U. & Österberg, T. Theoretical calculation and prediction of drug transport processes using simple parameters and partial least squares projections to latent structures (PLS) statistics. The use of electrotopological state indices. J. Pharm. Sci. 90, 1076–1085 (2001).

    Article  CAS  Google Scholar 

  39. Yu, L. X., Gatlin, L. & Amidon, G. L. Predicting oral drug absorption in humans. Drugs Pharm. Sci. 102 (Transport Processes in Pharmaceutical Systems), 377–409 (2000).

    CAS  Google Scholar 

  40. Ho, N. F. H., Raub, T. J., Burton, P. S., Barsuhn, C. L., Adson, A., Audus, K. L. & Borchardt, R. T. Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers. Drugs Pharm. Sci. 102 (Transport Processes in Pharmaceutical Systems), 219–316 (2000).

    CAS  Google Scholar 

  41. Agatonovic-Kustrin, S., Beresford, R. & Yusof, A. P. M. Theoretically-derived molecular descriptors important in human intestinal absorption. J. Pharm. Biomed. Anal. 25, 227–237 (2001).

    Article  CAS  Google Scholar 

  42. Fu, X. C., Liang, W. Q. & Yu, Q. S. Correlation of drug absorption with molecular charge distribution. Pharmazie 56, 267–268 (2001).

    CAS  Google Scholar 

  43. Agoram, B., Woltosz, W. S. & Bolger, M. B. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Del. Rev. 90, S41–S67 (2001).

    Article  Google Scholar 

  44. Norris, D. A., Leesman, G. D., Sinko, P. J. & Grass, G. M. Development of predictive pharmacokinetic simulation models for drug discovery. J. Contr. Rel. 65, 55–62 (2000).

    Article  CAS  Google Scholar 

  45. Parrott, N. & Lavé, T. Prediction of intestinal absorption: comparative assessment of GastroPlus and iDEA. Eur. J. Pharm. Sci. 17, 51–61 (2002)

    Article  CAS  Google Scholar 

  46. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W. & Kopple, K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002)

    Article  CAS  Google Scholar 

  47. Yoshida, F. & Topliss, J. G. QSAR model for drug human oral bioavailability, J. Med. Chem. 43, 2575–2585 (2000). Good reference for data on bioavailability of more than 200 compounds.

    Article  CAS  Google Scholar 

  48. Andrews, C. W., Bennett, L. & Yu, L. X. Predicting human oral bioavailability of a compound: development of a novel quantitative structure-bioavailability relationship. Pharm. Res. 17, 639–644 (2000)

    Article  CAS  Google Scholar 

  49. Bains, W., Gilbert, R., Sviridenko, L., Gascon, J. -M., Scoffin, R., Birchall, K., Harvey, I. & Caldwell, J. Evolutionary computational methods to predict oral bioavailability QSPRs. Curr. Opin. Drug Disc. Dev. 5, 44–51 (2002)

    CAS  Google Scholar 

  50. Pintore, M., Van de Waterbeemd, H., Piclin, N. & Chrétien, J. R., Prediction of oral bioavailability by adaptive fuzzy partitioning, Eur. J. Med. Chem. (in the press).

  51. Mandagere, A. K., Thompson, T. N. & Hwang, K. K. A graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. J. Med. Chem. 45, 304–311 (2002)

    Article  CAS  Google Scholar 

  52. De Lange, E. C. M. & Danhof, M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting. Clin. Pharmacokinet. 41, 691–703 (2002).

    Article  CAS  Google Scholar 

  53. Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R. & Raevsky O. A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 6, 151–165 (1998). Discussion of the critical physicochemical properties required for brain penetration.

    Article  CAS  Google Scholar 

  54. Clark, D. E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci. 88, 815–821 (1999).

    Article  CAS  Google Scholar 

  55. Feher, M., Sourial, E. & Schmidt, J. M. A simple model for the prediction of blood-brain partitioning. Int. J. Pharmaceut. 201, 239–247 (2000).

    Article  CAS  Google Scholar 

  56. Crivori, P., Cruciani, G., Carrupt, P. A. & Testa, B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 43, 2204–2216 (2000).

    Article  CAS  Google Scholar 

  57. Ooms, F., Weber, P., Carrupt, P. A. & Testa, B. A simple model to predict blood-brain barrier permeation from 3D molecular fields. Biochim. Biophys. Acta 1587, 118–125 (2002).

    Article  CAS  Google Scholar 

  58. Kaznessis, Y. N., Snow, M. E. & Blankley, C. J. Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water. J. Comput. Aid. Mol. Des. 15, 697–708 (2001).

    Article  CAS  Google Scholar 

  59. Rose, K., Hall, L. H. & Kier, L. B. Modeling blood-brain barrier partitioning using the electrotopological state. J. Chem. Inf. Comput. Sci. 42, 651–666 (2002).

    Article  CAS  Google Scholar 

  60. Abraham, M. H. & Platts, J. A. Physicochemical factors that influence brain uptake. Blood-Brain Barrier Drug Delivery CNS, 9–32 (2000).

  61. Ayrton, A. & Morgan, P. The role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 31, 469–497 (2001).

    Article  CAS  Google Scholar 

  62. Van Asperen, J., Mayer, U., Van Tellingen, O. & Beijnen, J. H. The functional role of P-glycoprotein in the blood-brain barrier. J. Pharm. Sci. 86, 881–884 (1997).

    Article  CAS  Google Scholar 

  63. Wiese, M. & Pajeva, I. K. Structure-activity relationships of multidrug resistance reversers. Curr. Med. Chem. 8, 685–713 (2001).

    Article  CAS  Google Scholar 

  64. Penzotti, J. E., Lamb, M. L., Evensen, E. & Grootenhuis, P. D. J. A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. J. Med. Chem. 45, 1737–1740 (2002).

    Article  CAS  Google Scholar 

  65. Seelig, A. A general pattern for substrate recognition by P-glycoprotein. Eur. J. Biochem. 251, 252–261 (1998).

    Article  CAS  Google Scholar 

  66. Seelig, A. & Landwojtowicz, E. Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur. J. Pharm. Sci. 12, 31–40 (2000).

    Article  CAS  Google Scholar 

  67. Seelig, A., Blatter, X. L. & Wohnsland, F. Substrate recognition by p-glycoprotein and the multidrug resistance-associated protein MRP1: a comparison. Int. J. Clin. Pharmacol. Ther. 38, 111–121 (2000).

    Article  CAS  Google Scholar 

  68. Österberg, Th. & Norinder, U. Theoretical calculation and prediction of P-glycoprotein-interacting drugs using MolSurf parametrization and PLS statistics. Eur. J. Pharm. Sci. 10, 295–303 (2000).

    Article  Google Scholar 

  69. Pajeva, I. K. & Wiese, M. Human P-glycoprotein pseudoreceptor modeling: 3D-QSAR study on thioxanthene type multidrug resistance modulators. Quant. Struct. Act. Relat. 20, 130–138 (2001).

    Article  CAS  Google Scholar 

  70. Pajeva, I. K. & Wiese, M. Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: Explanation of structural variety (Hypothesis). J. Med. Chem. 45, 5671–5686 (2002).

    Article  CAS  Google Scholar 

  71. Ekins, S., Kim, R. B., Leake, B. F., Dantzig, A. H., Schuetz, E. G., Lan, L. -B., Yasuda, K., Shepard, R. L., Winter, M. A., Scheutz, J. D., Wikel, J. H. & Wrighton, S. A. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol. Pharmacol. 61, 964–973 (2002).

    Article  CAS  Google Scholar 

  72. Goh, L. -B., Spears, K. J., Yao, D., Ayrton, A., Morgan, P., Wolf, C. R. & Friedberg, T. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem. Pharmacol. 64, 1569–1578 (2002).

    Article  CAS  Google Scholar 

  73. Zhang, E. Y., Phelps, M. A., Cheng C., Ekins, S. & Swaan, P. W. Modeling of active transport systems. Adv. Drug Del. Revs. 54, 329–354 (2002)

    Article  CAS  Google Scholar 

  74. Pugh, W. J., Degim, I. T. & Hadgraft, J. Epidermal permeability-penetrant structure relationships. 4. QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge. Int. J. Pharm. 197, 203–211 (2000).

    Article  CAS  Google Scholar 

  75. Ghafourian, T. & Fooladi, S. The effect of structural QSAR parameters on skin penetration. Int. J. Pharm. 217, 1–11 (2001).

    Article  CAS  Google Scholar 

  76. Smith, D. A., Van de Waterbeemd, H. & Walker, D. K. Pharmacokinetics and Metabolism in Drug Design, (Wiley–VCH, Weinheim, Germany, 2001).

    Book  Google Scholar 

  77. Colmenarejo, G., Alvarez-Pedraglio, A. & Lavandera, J. -L. Chemoinformatic models to predict binding affinities to human serum albumin. J. Med. Chem. 44, 4370–4378 (2001).

    Article  CAS  Google Scholar 

  78. Saiakhov, R. D., Stefan, L. R. & Klopman, G. Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs. Perspec. Drug Disc. Des. 19, 133–155 (2000).

    Article  CAS  Google Scholar 

  79. Kratochwil, N. A., Huber, W., Müller, F., Kansy, M. & Gerber, P. Predicting plasmas protein binding of drugs: A new approach. Biochem. Pharmacol. 64, 1355–1374 (2002).

    Article  CAS  Google Scholar 

  80. Lombardo, F., Obach, R. S., Shalaeva, M. Y. & Gao, F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J. Med. Chem. 45, 2867–2876 (2002).

    Article  CAS  Google Scholar 

  81. Van de Graaf, P. H., Nilsson, J., Van Schaick, E. A. & Danhof, M. Multivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A1 receptor agonists in rat. J. Pharm. Sci. 88, 306–312 (1999).

    Article  Google Scholar 

  82. Schneider, G., Coassolo, P. & Lavé, T. Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. J. Med. Chem. 42, 5072–5076 (1999).

    Article  CAS  Google Scholar 

  83. Qui–ones, C., Caceres, J., Stud, M. & Martinez, A. Prediction of drug half-life values of antihistamines based on the CODES/neural network model. Quant. Struct.-Act. Relat. 19, 448–454 (2000).

    Article  Google Scholar 

  84. Poulin, P. & Theil, F. P. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J. Pharm. Sci. 89, 16–35 (2000).

    Article  CAS  Google Scholar 

  85. Poulin, P., Schoenlein, K. & Theil, F. P. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J. Pharm. Sci. 90, 436–447 (2001).

    Article  CAS  Google Scholar 

  86. Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Wikel, J. H. & Wrighton, S. A. Three- and four-dimensional quantitative structure-activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab. Dispos. 28, 994–1002 (2000).

    CAS  Google Scholar 

  87. De Groot, M., Ackland, M. J., Horne, V. A., Alex, A. & Jones, B. C. Novel approach to predicting P450-mediated drug metabolism: Development of a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. 42, 1515–1524 (1999).

    Article  CAS  Google Scholar 

  88. Ekins, S., De Groot, M. & Jones, J. P. Pharmacophore and three-dimensional quantitative structure-activity relationship methods for modelling cytochrome P450 active sites. Drug Metab. Dispos. 29, 936–944 (2001).

    CAS  Google Scholar 

  89. Zuegge, J., Fechner, U., Roche, O., Parratt, N. J., Engkvist, O. & Schneider, G. A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries, Quant. Struct. Act. Relat. 21, 249–256 (2002).

    Article  CAS  Google Scholar 

  90. Higgins, L., Korzekwa, K. R., Rao, S., Shou, M. & Jones, J. P. An assessment of the reaction energetics for cytochrome P450-mediated reactions. Arch Biochem Biophys 385, 220–230 (2001).

    Article  CAS  Google Scholar 

  91. Langowski, J. & Long, A. Computer systems for the prediction of xenobiotic metabolism. Adv. Drug Delivery Rev. 54, 407–415 (2002).

    Article  CAS  Google Scholar 

  92. Ehrhardt, P. W. (Ed): Drug Metabolism Databases and High–Throughput Testing During Drug Design and Development (IUPAC, Blackwell Science, Malden, Massachussetts, 1999).

    Google Scholar 

  93. Richard, A. M. & Benigni R. AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR and QSAR Environ. Res. 13, 1–19 (2002).

    Article  CAS  Google Scholar 

  94. Greene, N., Computer systems for the prediction of toxicity: an update. Adv. Drug Deliv. Rev. 54, 417–431 (2002).

    Article  CAS  Google Scholar 

  95. Durham, S. K. & Pearl, G. M. Computational methods to predict drug safety liabilities. Drug Disc. Dev. 4, 110–115 (2001).

    CAS  Google Scholar 

  96. Roche, O., Trube, G., Zuegge, J., Pflimlin, P., Alanine, A. & Schneider, G. A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. ChemBioChem 3, 455–459 (2002).

    Article  CAS  Google Scholar 

  97. Cavalli, A., Poluzzi, E., De Ponti, F. & Recanatini, M. Toward a pharmacophore for drugs inducing long QT syndrome: Insights from a CoMFA study of HERG K+ channel blockers. J. Med. Chem, 45, 3844–3853 (2002).

    Article  CAS  Google Scholar 

  98. Fischer, H., Kansy, M., Potthast, M. & Csato, M. Prediction of in vitro phospholipidosis of drugs by means of their amphiphilic properties. In: Rational Approaches to Drug Design (eds. Höltje, H.-D. & Sippl, W.) 286–289 (Prous Science, Barcelona, 2001).

    Google Scholar 

  99. Bonnabry, P., Sievering, J., Leemann, Th. & Dayer, P. Quantitative drug interactions prediction system (Q-DIPS). Clin. Pharmacokinet. 40, 631–640 (2001)

    Article  CAS  Google Scholar 

  100. Willson, T. M. & Kliewer, S. A. PXR, CAR and drug metabolism. Nature Rev. Drug Disc. 1, 259–266 (2002).

    Article  CAS  Google Scholar 

  101. Farr–Jones, S., Computational methods to predict ADME/tox properties for drug discovery, Decision Resources Inc. November 28 (2001).

  102. Clark, D. E. & Grootenhuis, P. D. J. Progress in computational methods for the prediction of ADMET properties. Curr. Opin. Drug Disc. Dev. 5, 382–390 (2002).

    CAS  Google Scholar 

  103. Smith, D. A. Hello Drug Discovery, I am from Insilico, take me to your president. Drug Disc. Today 7, 1080–1081 (2002).

    Article  Google Scholar 

  104. Anderson, R. J. 20/20 Vision: A brave new world of drug development. Curr. Drug Disc. 25–29 (August 2002).

  105. Sietsema, W. K. The absolute oral bioavailability of selected drugs. Int. J. Clin. Pharmacol. Ther. Toxicol. 27, 179–211 (1989).

    CAS  Google Scholar 

  106. Thummel, K. E. & Shen, D. D. In Goodman & Gilman's The Pharmacological Basis of Therapeutics (eds Hardman, J. G. & Limbird, L. E.) 1917–2023 (McGraw-Hill, New York, 2001). Good reference for pharmacokinetic data of over 300 marketed drugs.

    Google Scholar 

  107. Sakaeda, T., Okamura, N., Nagata, S., Yagami, T., Horinouchi, M., Okumura, K., Yamashita, F. & Hashida M. Molecular and pharmacokinetic properties of 222 commercially available oral drugs in humans. Biol. Pharm. Bull. 24, 935–940 (2001).

    Article  CAS  Google Scholar 

  108. Van de Waterbeemd, H. & De Groot, M., Can the Internet help to meet the challenges in ADME and e-ADME? SAR QSAR Environ. Res. 13, 391–401 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Don Walker for helpful comments in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han van de Waterbeemd.

Related links

Related links

DATABASES

LocusLink

CYP3A4

CYP2C9

CYP2D6

CYP2C19

P-glycoprotein

FURTHER INFORMATION

Glossary of Terms Used in Medicinal Chemistry

The QSAR and Modelling Society

UK QSAR and Chemoinformatics Discussion Group

Glossary

DESCRIPTOR

A structural or physicochemical property of a molecule or part of a molecule. Examples include log P, molecular mass and polar surface area.

PHARMACOPHORE

A pharmacophore is the ensemble of steric and electronic features that are necessary to ensure the optimal supramolecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

TRAINING

The building of a model using part of the data (that is, the training set), followed by validation of the model using the rest of the data (that is, the validation set). Finally, the model is tested using compounds (the test set) not used for training and validation.

MULTIVARIATE ANALYSIS

A subset of statistical techniques that can deal with larger sets of molecular descriptors that is aimed at finding relationships or patterns in data sets. Examples include multiple linear regression (MLR) and partial least squares (PLS).

NEURAL NETWORKS

Neural networks are computational models that are based on the principles of the functioning of the brain. They can be used to model nonlinear relationships between dependent (biological endpoint to be predicted) and independent (molecular and structural descriptors) variables. Examples include back-propagation and self-organising maps (SOM; also called Kohonen neural networks).

RECURSIVE PARTITIONING OR DECISION TREES

A supervised learning method producing a tree-structured series of rules to predict a particular property using a set of molecular descriptors as input.

THREE-DIMENSIONAL-QSAR

A technique that uses the three-dimensional molecular structures to derive a quantitative relationship between a biological property and properties derived from these three-dimensional structures, for example, related to their size and electrostatic fields.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Waterbeemd, H., Gifford, E. ADMET in silico modelling: towards prediction paradise?. Nat Rev Drug Discov 2, 192–204 (2003). https://doi.org/10.1038/nrd1032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing