Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cryo-EM in drug discovery: achievements, limitations and prospects

Abstract

Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances — including the development of direct electron detectors and more effective computational image analysis techniques — are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM timeline.
Figure 2: Selected key events in the development of the three main biophysical methodologies for 3D structure determination of macromolecules for drug discovery.

Similar content being viewed by others

References

  1. von Borries, B. E. & Ruska, H. R. Bakterien und Virus in u¨bermikroskopischer Aufnahme. J. Mol. Med. 17, 921–925 (1938).

    Google Scholar 

  2. Kausche, G. A., Pfankuch, E. & Ruska, H. Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27, 292–299 (1939).

    Article  Google Scholar 

  3. Kruger, D. H., Schneck, P. & Gelderblom, H. R. Helmut Ruska and the visualisation of viruses. Lancet 355, 1713–1717 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Dubochet, J. & McDowall, A. W. Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–RP4 (1981).

    Article  Google Scholar 

  5. Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J.-C. Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237 (1982).

    Article  Google Scholar 

  6. Dubochet, J., Chang, J.-J., Freeman, R., Lepault, J. & McDowall, A. W. Frozen aqueous suspensions. Ultramicroscopy 10, 55–62 (1982).

    Article  Google Scholar 

  7. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. van Heel, M. & Frank, J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187–194 (1981).

    CAS  PubMed  Google Scholar 

  9. Frank, J., Shimkin, B. & Dowse, H. Spider—a modular software system for electron image processing. Ultramicroscopy 6, 343–357 (1981).

    Article  Google Scholar 

  10. van Heel, M. & Keegstra, W. IMAGIC: a fast, flexible and friendly image analysis software system. Ultramicroscopy 7, 113–129 (1981).

    Article  Google Scholar 

  11. Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40, 33–53 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Marabini, R. et al. Xmipp: an image processing package for electron microscopy. J. Struct. Biol. 116, 237–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  16. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Heel, M. et al. in International Tables for Crystallography, Volume F, 2nd Edition, Crystallography of Biological Macromolecules ( eds Arnold, E., Himmel, D. M. & Rossmann, M. G. ) 624–628 (Wiley, 2012).

    Book  Google Scholar 

  18. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single particle refinement in EMAN2.1. Methods 100, 25–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Grant, T. Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuhlbrandt, W. Biochemistry. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  PubMed  Google Scholar 

  23. Bai, X. C., McMullan, G. & Scheres, S. H. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Khoshouei, M., Radjainia, M., Baumeister, W. & Danev, R. Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat. Commun. 8, 16099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merk, A. et al. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165, 1698–1707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blundell, T. L. & Patel, S. High-throughput X-ray crystallography for drug discovery. Curr. Opin. Pharmacol. 4, 490–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Blundell, T. L. et al. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Phil. Trans. R. Soc. B 361, 413–423 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pellecchia, M. et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. 7, 738–745 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, H. et al. X-Ray crystallography over the past decade for novel drug discovery - where are we heading next? Expert Opin. Drug Discov. 10, 975–989 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Campbell, M. G. et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20, 1823–1828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grant, T. & Grigorieff, N. Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. J. Struct. Biol. 192, 204–208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brilot, A. F. et al. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177, 630–637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russo, C. J. & Passmore, L. A. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Russo, C. J. & Passmore, L. A. Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs. J. Struct. Biol. 187, 112–118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stark, H., Zemlin, F. & Boettcher, C. Electron radiation damage to protein crystals of bacteriorhodopsin at different temperatures. Ultramicroscopy 63, 75–79 (1996).

    Article  CAS  Google Scholar 

  37. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Reboul, C. F., Eager, M., Elmlund, D. & Elmlund, H. Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME. Protein Sci. 27, 51–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Unverdorben, P. et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc. Natl Acad. Sci. USA 111, 5544–5549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai, X. C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. Sampling the conformational space of the catalytic subunit of human gamma-secretase. eLife 4, e11182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. von Loeffelholz, O. et al. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr. Opin. Struct. Biol. 46, 140–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Tagare, H. D., Barthel, A. & Sigworth, F. J. An adaptive expectation-maximization algorithm with GPU implementation for electron cryomicroscopy. J. Struct. Biol. 171, 256–265 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Glaeser, R. M. & Hall, R. J. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys. J. 100, 2331–2337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson, R. F., Walker, M., Siebert, C. A., Muench, S. P. & Ranson, N. A. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100, 3–15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).

    Article  CAS  PubMed  Google Scholar 

  49. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Danev, R., Tegunov, D. & Baumeister, W. Using the Volta phase plate with defocus for cryo-EM single particle analysis. eLife 6, e23006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Danev, R. & Baumeister, W. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 46, 87–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, S. et al. Fabs enable single particle cryoEM studies of small proteins. Structure 20, 582–592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Y., Gonen, S., Gonen, T. & Yeates, T. O. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Proc. Natl Acad. Sci. USA 115, 3362–3367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chari, A. et al. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat. Methods 12, 859–865 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem. 357, 289–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Boivin, S., Kozak, S. & Meijers, R. Optimization of protein purification and characterization using thermofluor screens. Protein Expr. Purif. 91, 192–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Benjamin, C. J. et al. Nonfouling NTA-PEG-based TEM grid coatings for selective capture of histidine-tagged protein targets from cell lysates. Langmuir 32, 551–559 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benjamin, C. J. et al. Selective capture of histidine-tagged proteins from cell lysates using TEM grids modified with NTA-graphene oxide. Sci. Rep. 6, 32500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu, G., Li, K. & Jiang, W. Antibody-based affinity cryo-EM grid. Methods 100, 16–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu, G., Li, K., Huang, P., Jiang, X. & Jiang, W. Antibody-based affinity cryoelectron microscopy at 2.6-A resolution. Structure 24, 1984–1990 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Russo, C. J. & Passmore, L. A. Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat. Methods 11, 649–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sader, K., Stopps, M., Calder, L. J. & Rosenthal, P. B. Cryomicroscopy of radiation sensitive specimens on unmodified graphene sheets: reduction of electron-optical effects of charging. J. Struct. Biol. 183, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pantelic, R. S., Meyer, J. C., Kaiser, U., Baumeister, W. & Plitzko, J. M. Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 170, 152–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Snijder, J. et al. Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids. J. Struct. Biol. 198, 38–42 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Adrian, M., Dubochet, J., Fuller, S. D. & Harris, J. R. Cryo-negative staining. Micron 29, 145–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Heymann, J. B., Cardone, G., Winkler, D. C. & Steven, A. C. Computational resources for cryo-electron tomography in Bsoft. J. Struct. Biol. 161, 232–242 (2008).

    Article  PubMed  Google Scholar 

  68. Korinek, A., Beck, F., Baumeister, W., Nickell, S. & Plitzko, J. M. Computer controlled cryo-electron microscopy—TOM(2) a software package for high-throughput applications. J. Struct. Biol. 175, 394–405 (2011).

    Article  PubMed  Google Scholar 

  69. Coudray, N. et al. Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis. J. Struct. Biol. 173, 365–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Harris, J. R. & Adrian, M. Preparation of thin-film frozen-hydrated/vitrified biological specimens for cryoelectron microscopy. Methods Mol. Biol. 117, 31–48 (1999).

    CAS  PubMed  Google Scholar 

  71. Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feng, X. et al. A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25, 663–670 e663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berriman, J. & Unwin, N. Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Lu, Z. et al. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168, 388–395 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shaikh, T. R. et al. Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proc. Natl Acad. Sci. USA 111, 9822–9827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arnold, S. A. et al. Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. J. Struct. Biol. 197, 220–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Langmore, J. P. & Smith, M. F. Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy 46, 349–373 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Orlova, E. V. & Saibil, H. R. Structural analysis of macromolecular assemblies by electron microscopy. Chem. Rev. 111, 7710–7748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartesaghi, A. et al. 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348, 1147–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Glaeser, R. M. et al. Factors that influence the formation and stability of thin, cryo-EM specimens. Biophys. J. 110, 749–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Glaeser, R. M. & Han, B. G. Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys. Rep. 3, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Russo, C. J. & Passmore, L. A. Progress towards an optimal specimen support for electron cryomicroscopy. Curr. Opin. Struct. Biol. 37, 81–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trinick, J. & Cooper, J. Concentration of solutes during preparation of aqueous suspensions for cryo-electron microscopy. J. Microsc. 159, 215–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Egelhaaf, S. U., Schurtenberger, P. & Muller, M. New controlled environment vitrification system for cryo-transmission electron microscopy: design and application to surfactant solutions. J. Microsc. 200, 128–139 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Ge, H., Suszynski, W. J., Davis, H. T. & Scriven, L. E. New controlled environment vitrification system for preparing wet samples for cryo-SEM. J. Microsc. 229, 115–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Iancu, C. V. et al. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Resch, G. P., Brandstetter, M., Konigsmaier, L., Urban, E. & Pickl-Herk, A. M. Immersion freezing of suspended particles and cells for cryo-electron microscopy. Cold Spring Harb. Protoc. 2011, 803–814 (2011).

    PubMed  Google Scholar 

  90. Kasas, S., Dumas, G., Dietler, G., Catsicas, S. & Adrian, M. Vitrification of cryoelectron microscopy specimens revealed by high-speed photographic imaging. J. Microsc. 211, 48–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Noble, A. J. et al. Routine single particle CryoEM sample and grid characterization by tomography. bioRxiv https://doi.org/10.1101/230276 (2017).

  92. Wang, R. Y. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat. Methods 12, 335–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, N., Wang, H. & Wang, J. EMBuilder: a template matching-based automatic model-building program for high-resolution Cryo-electron microscopy maps. Sci. Rep. 7, 2664 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Singharoy, A. et al. Molecular dynamics-based refinement and validation for sub-5 A cryo-electron microscopy maps. eLife 5, e16105 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife 6, e27131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Herzik, M. A. Jr., Wu, M. & Lander, G. C. Achieving better-than-3-A resolution by single-particle cryo-EM at 200 keV. Nat. Methods 14, 1075–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bai, X. C. et al. An atomic structure of human gamma-secretase. Nature 525, 212–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paulsen, C. E., Armache, J. P., Gao, Y., Cheng, Y. & Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, J. et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature 537, 191–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Shen, H. et al. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355, eaal4326 (2017).

    Article  PubMed  CAS  Google Scholar 

  105. Du, J., Lu, W., Wu, S., Cheng, Y. & Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526, 224–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hirschi, M. et al. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature 550, 411–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, J. et al. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552, 205–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527, 64–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. des Georges, A. et al. Structural basis for gating and activation of RyR1. Cell 167, 145–157 e117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liang, Y. L. et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555, 121–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. García- Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. bioRxiv https://doi.org/10.1101/267674 (2018).

  115. Carpenter, B., Nehme, R., Warne, T., Leslie, A. G. & Tate, C. G. Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 536, 104–107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Johnson, Z. L. & Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085 e1079 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gremer, L. et al. Fibril structure of amyloid-beta(1–42) by cryo-electron microscopy. Science 358, 116–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kellogg, E. H. et al. Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-EM structures. J. Mol. Biol. 429, 633–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Long, F. et al. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. Proc. Natl Acad. Sci. USA 112, 13898–13903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ciferri, C. et al. The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody. Biochem. J. 472, 169–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, J. H., Ozorowski, G. & Ward, A. B. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351, 1043–1048 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, Q. et al. Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nat. Struct. Mol. Biol. 24, 370–378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, e03080 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  125. Wong, W. et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2, 17031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Khoshouei, M. et al. Volta phase plate cryo-EM of the small protein complex Prx3. Nat. Commun. 7, 10534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rubinstein, J. L. Cryo-EM captures the dynamics of ion channel opening. Cell 168, 341–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Stuart, D. I., Subramaniam, S. & Abrescia, N. G. The democratization of cryo-EM. Nat. Methods 13, 607–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Hauer, F. et al. GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23, 1769–1775 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Tribet, C., Audebert, R. & Popot, J. L. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl Acad. Sci. USA 93, 15047–15050 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nath, A., Atkins, W. M. & Sligar, S. G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059–2069 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Tao, H. et al. Engineered nanostructured beta-sheet peptides protect membrane proteins. Nat. Methods 10, 759–761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Scheres, S. H. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Lyumkis, D., Brilot, A. F., Theobald, D. L. & Grigorieff, N. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 183, 377–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, A. et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 4, e10180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Taylor, N. M. I. et al. Structure of the human multidrug transporter ABCG2. Nature 546, 504–509 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Oldham, M. L. et al. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529, 537–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Neumann, P., Dickmanns, A. & Ficner, R. Validating resolution revolution. Structure https://doi.org/10.1016/j.str.2018.03.004 (2018).

    Article  PubMed  CAS  Google Scholar 

  143. Penczek, P. A., Grassucci, R. A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Sigworth, F. J. A maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122, 328–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Milazzo, A. C. et al. Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. J. Struct. Biol. 176, 404–408 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Veesler, D. et al. Maximizing the potential of electron cryomicroscopy data collected using direct detectors. J. Struct. Biol. 184, 193–202 (2013).

    Article  PubMed  Google Scholar 

  148. McMullan, G., Faruqi, A. R., Clare, D. & Henderson, R. Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156–163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kuijper, M. et al. FEI's direct electron detector developments: embarking on a revolution in cryo-TEM. J. Struct. Biol. 192, 179–187 (2015).

    Article  PubMed  Google Scholar 

  150. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    Article  CAS  PubMed  Google Scholar 

  151. Matadeen, R. et al. The Escherichia coli large ribosomal subunit at 7.5 A resolution. Structure 7, 1575–1583 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Ludtke, S. J., Chen, D. H., Song, J. L., Chuang, D. T. & Chiu, W. Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl Acad. Sci. USA 105, 1867–1872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bai, X. C., Fernandez, I. S., McMullan, G. & Scheres, S. H. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Fernandez, I. S. et al. Molecular architecture of a eukaryotic translational initiation complex. Science 342, 1240585 (2013).

    Article  PubMed  CAS  Google Scholar 

  156. Fischer, N. et al. Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature 520, 567–570 (2015).

    Article  PubMed  CAS  Google Scholar 

  157. Jiang, J., Pentelute, B. L., Collier, R. J. & Zhou, Z. H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521, 545–549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Campbell, M. G., Veesler, D., Cheng, A., Potter, C. S. & Carragher, B. 2.8 A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. eLife 4, e06380 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  159. Eisenberg, D. Max Perutz's achievements: how did he do it? Protein Sci. 3, 1625–1628 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662–666 (1958).

    Article  CAS  PubMed  Google Scholar 

  161. Kendrew, J. C. et al. Structure of myoglobin: a three-dimensional fourier synthesis at 2 A. resolution. Nature 185, 422–427 (1960).

    Article  CAS  PubMed  Google Scholar 

  162. Perutz, M. F. et al. Structure of haemoglobin: a three-dimensional fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960).

    Article  CAS  PubMed  Google Scholar 

  163. Adams, M. J. et al. Structure of rhombohedral 2 zinc insulin crystals. Nature 224, 491 (1969).

    Article  CAS  Google Scholar 

  164. Protein Data Bank. Protein Data Bank. Nat. New Biol. 233, 223 (1971).

  165. Collaborative Computational Project, N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

    Article  Google Scholar 

  166. Ondetti, M. A., Rubin, B. & Cushman, D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196, 441–444 (1977).

    Article  CAS  PubMed  Google Scholar 

  167. Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318, 618–624 (1985).

    Article  CAS  PubMed  Google Scholar 

  168. Miller, M., Jaskolski, M., Rao, J. K., Leis, J. & Wlodawer, A. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337, 576–579 (1989).

    Article  CAS  PubMed  Google Scholar 

  169. Navia, M. A. et al. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337, 615–620 (1989).

    Article  CAS  PubMed  Google Scholar 

  170. Lapatto, R. et al. X-Ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. Nature 342, 299–302 (1989).

    Article  CAS  PubMed  Google Scholar 

  171. Wlodawer, A. et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245, 616–621 (1989).

    Article  CAS  PubMed  Google Scholar 

  172. Miller, M. et al. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246, 1149–1152 (1989).

    Article  CAS  PubMed  Google Scholar 

  173. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  174. Baldwin, J. J. et al. Thienothiopyran-2-sulfonamides: novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. Med. Chem. 32, 2510–2513 (1989).

    Article  CAS  PubMed  Google Scholar 

  175. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Abola, E., Kuhn, P., Earnest, T. & Stevens, R. C. Automation of X-ray crystallography. Nat. Struct. Biol. 7, S973–S977 (2000).

    Article  Google Scholar 

  178. Muchmore, S. W. et al. Automated crystal mounting and data collection for protein crystallography. Structure 8, R243–R246 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Cohen, A. E., Ellis, P. J., Miller, M. D., Deacon, A. M. & Phizackerley, R. P. An automated system to mount cryo-cooled protein crystals on a synchrotron beam line, using compact sample cassettes and a small-scale robot. J. Appl. Crystallogr. 35, 720–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Beteva, A. et al. High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. Acta Crystallogr. D Biol. Crystallogr. 62, 1162–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Cipriani, F. et al. Automation of sample mounting for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 62, 1251–1259 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Hardy, L. W. & Malikayil, A. The impact of structure-guided drug design on clinical agents. Curr. Drug Discov. 11, 15–20 (2003).

    Google Scholar 

  183. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Rasmussen, S. G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 11, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article  CAS  Google Scholar 

  188. Bloch, F., Hansen, W. W. & Packard, M. Nuclear Induction. Phys. Rev. 69, 127 (1946).

    Article  Google Scholar 

  189. Saunders, M., Wishnia, A. & Kirkwood, J. G. The nuclear magnetic resonance spectrum of ribonuclease. J. Am. Chem. Soc. 79, 3289–3290 (1957).

    Article  CAS  Google Scholar 

  190. Ernst, R. R. Sensitivity enhancement in magnetic resonance. Adv. Magn. Reson. 2, 1–135 (1966).

    Article  CAS  Google Scholar 

  191. Ernst, R. R. & Anderson, W. A. Application of fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum. 37, 93 (1966).

    Article  CAS  Google Scholar 

  192. Jeener, J. Oral presentation. Ampere International Summer School (Basko Polje, 1971).

    Google Scholar 

  193. Aue, W. P., Bartholdi, E. & Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976).

    Article  CAS  Google Scholar 

  194. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  195. Williamson, M. P., Havel, T. F. & Wuthrich, K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182, 295–315 (1985).

    Article  CAS  PubMed  Google Scholar 

  196. Oschkinat, H. et al. Three-dimensional NMR spectroscopy of a protein in solution. Nature 332, 374–376 (1988).

    Article  CAS  PubMed  Google Scholar 

  197. Vuister, G. W., Boelens, R. & Kaptein, R. Nonselective three-dimensional NMR spectroscopy. The 3D NOE-HOHAHA experiment. J. Magn. Reson. 80, 176–185 (1988).

    CAS  Google Scholar 

  198. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  199. Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed 38, 1784–1788 (1999).

    Article  CAS  Google Scholar 

  200. Hajduk, P. J. et al. NMR-based screening of proteins containing 13C-labeled methyl groups. J. Am. Chem. Soc. 122, 7898–7904 (2000).

    Article  CAS  Google Scholar 

  201. Dalvit, C. et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Jahnke, W. Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Chembiochem 3, 167–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Jahnke, W. et al. NMR reporter screening for the detection of high-affinity ligands. Angew. Chem. Int. Ed Engl. 41, 3420–3423 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Dalvit, C., Fagerness, P. E., Hadden, D. T., Sarver, R. W. & Stockman, B. J. Fluorine-NMR experiments for high-throughput screening: theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc. 125, 7696–7703 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Ludwiczek, M. L., Baminger, B. & Konrat, R. NMR probing of protein-protein interactions using reporter ligands and affinity tags. J. Am. Chem. Soc. 126, 1636–1637 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Bruker. Bruker Introduces SampleXpress(TM), a New and Easy-to-Use Autosampler that Delivers Increased Efficiency for NMR. Bruker http://ir.bruker.com/investors/press-releases/press-release-details/2010/Bruker-Introduces-SampleXpressTM-a-New-and-Easy-to-Use-Autosampler-that-Delivers-Increased-Efficiency-for-NMR/default.aspx (2010).

  207. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  PubMed  Google Scholar 

  208. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  209. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  211. Tagari, M., Newman, R., Chagoyen, M., Carazo, J. M. & Henrick, K. New electron microscopy database and deposition system. Trends Biochem. Sci. 27, 589 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Gonen, T. et al. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jiang, W. et al. Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451, 1130–1134 (2008).

    Article  CAS  PubMed  Google Scholar 

  214. Yu, X., Jin, L. & Zhou, Z. H. 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Community Research and Development Information Service. High-throughput three-dimensional electron microscopy. CORDIS https://cordis.europa.eu/project/rcn/78402_en.html (2009).

  216. Ludtke, S. J. et al. De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16, 441–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Wood, C. et al. Collaborative computational project for electron cryo-microscopy. Acta Crystallogr. D Biol. Crystallogr. 71, 123–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl Acad. Sci. USA 109, 14870–14875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Allegretti, M., Mills, D. J., McMullan, G., Kuhlbrandt, W. & Vonck, J. Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3, e01963 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tsai, K. L. et al. Mediator structure and rearrangements required for holoenzyme formation. Nature 544, 196–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Schilbach, S. et al. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 551, 204–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Nguyen, T. H. D. et al. Cryo-EM structure of the yeast U4/U6. U5 tri-snRNP at 3.7 A resolution. Nature 530, 298–302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Agafonov, D. E. et al. Molecular architecture of the human U4/U6. U5 tri-snRNP. Science 351, 1416–1420 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Plaschka, C., Lin, P. C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nature 546, 617–621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast activated spliceosome at 3.5 A resolution. Science 353, 904–911 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Rauhut, R. et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353, 1399–1405 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Galej, W. P. et al. Cryo-EM structure of the spliceosome immediately after branching. Nature 537, 197–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wan, R., Yan, C., Bai, R., Huang, G. & Shi, Y. Structure of a yeast catalytic step I spliceosome at 3.4 A resolution. Science 353, 895–904 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. Zhang, X. et al. An atomic structure of the human spliceosome. Cell 169, 918–929 e914 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  235. Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast step II catalytically activated spliceosome. Science 355, 149–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Fica, S. M. et al. Structure of a spliceosome remodelled for exon ligation. Nature 542, 377–380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wilkinson, M. E. et al. Postcatalytic spliceosome structure reveals mechanism of 3<0x0374>-splice site selection. Science 358, 1283–1288 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Liu, S. et al. Structure of the yeast spliceosomal postcatalytic P complex. Science 358, 1278–1283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Sirohi, D. et al. The 3.8 A resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yuan, S. et al. Cryo-EM structure of a herpesvirus capsid at 3.1 A. Science 360, eaao7283 (2018).

    Article  PubMed  CAS  Google Scholar 

  241. von der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J. & Raunser, S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534, 724–728 (2016).

    Article  PubMed  CAS  Google Scholar 

  242. Ballandras-Colas, A. et al. Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530, 358–361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167, 1598–1609 e1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  244. Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170, 1247–1257 e1212 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Gristick, H. B. et al. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat. Struct. Mol. Biol. 23, 906–915 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Dambacher, C. M., Worden, E. J., Herzik, M. A., Martin, A. & Lander, G. C. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5, e13027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Luan, B. et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc. Natl Acad. Sci. USA 113, 2642–2647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Huang, X., Luan, B., Wu, J. & Shi, Y. An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23, 778–785 (2016).

    Article  CAS  PubMed  Google Scholar 

  249. Fischer, N. et al. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540, 80–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Natchiar, S. K., Myasnikov, A. G., Kratzat, H., Hazemann, I. & Klaholz, B. P. Visualization of chemical modifications in the human 80S ribosome structure. Nature 551, 472–477 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Barandun, J. et al. The complete structure of the small-subunit processome. Nat. Struct. Mol. Biol. 24, 944–953 (2017).

    Article  CAS  PubMed  Google Scholar 

  252. Cheng, J., Kellner, N., Berninghausen, O., Hurt, E. & Beckmann, R. 3.2-A-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nat. Struct. Mol. Biol. 24, 954–964 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Sanghai, Z. A. et al. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 556, 126–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Passos, D. O. et al. Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355, 89–92 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bednar, J. et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol. Cell 66, 384–397.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ilangovan, A. et al. Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169, 708–721.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Chowdhury, S. et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169, 47–57.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Guo, T. W. et al. Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell 171, 414–426.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Brown, A. et al. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 24, 866–869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Casanal, A. et al. Architecture of eukaryotic mRNA 3′-end processing machinery. Science 358, 1056–1059 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Clerici, M., Faini, M., Muckenfuss, L. M., Aebersold, R. & Jinek, M. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex. Nat. Struct. Mol. Biol. 25, 135–138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Urnavicius, L. et al. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554, 202–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154–162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Bai, L., Wang, T., Zhao, G., Kovach, A. & Li, H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature 555, 328–333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Shen, K. et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 556, 64–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Zyryanova, A. F. et al. Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science 359, 1533–1536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Scapin, G. et al. Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature 556, 122–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Meyerson, J. R. et al. Structural basis of kainate subtype glutamate receptor desensitization. Nature 537, 567–571 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Matthies, D. et al. Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164, 747–756 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Whicher, J. R. & MacKinnon, R. Structure of the voltage-gated K(+) channel Eag1 reveals an alternative voltage sensing mechanism. Science 353, 664–669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Tao, X., Hite, R. K. & MacKinnon, R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541, 46–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  273. Li, M. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Lee, C. H. & MacKinnon, R. Structures of the human HCN1 hyperpolarization-activated channel. Cell 168, 111–120 e111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Basak, S. et al. Cryo-EM structure of 5-HT3A receptor in its resting conformation. Nat. Commun. 9, 514 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Zhang, Z. & Chen, J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167, 1586–1597 e1589 (2016).

    Article  CAS  PubMed  Google Scholar 

  277. Lu, W., Du, J., Goehring, A. & Gouaux, E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355, eaal3729 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Wang, W. & MacKinnon, R. Cryo-EM structure of the open human ether-a-go-go-related K+ channel hERG. Cell 169, 422–430 e410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Jackson, S. M. et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  280. Schmiege, P., Fine, M., Blobel, G. & Li, X. Human TRPML1 channel structures in open and closed conformations. Nature 550, 366–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Chen, Q. et al. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550, 415–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Winkler, P. A., Huang, Y., Sun, W., Du, J. & Lu, W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552, 200–204 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S. L. Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. eLife 6, e31054 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Deng, Z. et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol. 25, 252–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Hughes, T. E. T. et al. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat. Struct. Mol. Biol. 25, 53–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773 e711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Roh, S. H. et al. The 3.5-A CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo proton channel. Mol. Cell 69, 993–1004 e1003 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. She, J. et al. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556, 130–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Qian, P., Siebert, C. A., Wang, P., Canniffe, D. P. & Hunter, C. N. Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å. Nature 556, 203–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  291. Sun, C. et al. Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557, 123–126 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Chua, E. Y. et al. 3.9 A structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res. 44, 8013–8019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Xie, Q. et al. The 2.8 A electron microscopy structure of adeno-associated virus-DJ bound by a heparinoid pentasaccharide. Mol. Ther. Methods Clin. Dev. 5, 1–12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Shalev-Benami, M. et al. Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat. Commun. 8, 1589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Liu, Z. et al. Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit. Proc. Natl Acad. Sci. USA 113, 12174–12179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Liu, Z. et al. Determination of the ribosome structure to a resolution of 2.5 A by single-particle cryo-EM. Protein Sci. 26, 82–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  298. Banerjee, S. et al. 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Dong, Y. et al. Antibody-induced uncoating of human rhinovirus B14. Proc. Natl Acad. Sci. USA 114, 8017–8022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Golas, M. M. et al. Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. EMBO J. 28, 766–778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Sander, B., Golas, M. M., Lührmann, R. & Stark, H. An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. Structure 18, 667–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  302. Tsai, J. C. et al. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science 359, eaaq0939 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Paul Renaud, Ashwin Chari, Claudio Ciferri, Wen-ti Liu, Hervé-William Rémigy, Holger Stark or Christian Wiesmann.

Ethics declarations

Competing interests

J.-P.R. is a co-founder and shareholder of NovAliX. H.-W.R. is employed by Thermo Fisher Scientific, which manufactures electron microscopes that are used for cryo-EM. A.C. and H.S. are co-founders and stakeholders in Proteoplex GmbH.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaud, JP., Chari, A., Ciferri, C. et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov 17, 471–492 (2018). https://doi.org/10.1038/nrd.2018.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.77

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research