Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The expanding role of prodrugs in contemporary drug design and development

Abstract

Prodrugs are molecules with little or no pharmacological activity that are converted to the active parent drug in vivo by enzymatic or chemical reactions or by a combination of the two. Prodrugs have evolved from being serendipitously discovered or used as a salvage effort to being intentionally designed. Such efforts can avoid drug development challenges that limit formulation options or result in unacceptable biopharmaceutical or pharmacokinetic performance, or poor targeting. In the past 10 years, the US Food and Drug Administration has approved at least 30 prodrugs, which accounts for more than 12% of all approved small-molecule new chemical entities. In this Review, we highlight prodrug design strategies for improved formulation and pharmacokinetic and targeting properties, with a focus on the most recently marketed prodrugs. We also discuss preclinical and clinical challenges and considerations in prodrug design and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prodrug strategies for the most common functional groups on parent drugs.
Figure 2: Water-soluble prodrugs with various prodrug strategies to increase aqueous solubility.
Figure 3: Bioconversion of isavuconazonium to isavuconazole.
Figure 4: ProTide prodrugs of nucleoside monophosphate derivatives undergoing clinical trials.
Figure 5: Doxorubicin and its prodrug, aldoxorubicin.
Figure 6: Bioconversion mechanisms of capecitabine and sulfasalazine.
Figure 7: Antibody–drug conjugates.

Similar content being viewed by others

References

  1. Stella, V. J. Prodrugs: Some thoughts and current issues. J. Pharm. Sci. 99, 4755–4765 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Clas, S. D., Sanchez, R. I. & Nofsinger, R. Chemistry-enabled drug delivery (prodrugs): recent progress and challenges. Drug Discov. Today 19, 79–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Rautio, J., Kärkkäinen, J. & Sloan, K. B. Prodrugs — Recent approvals and a glimpse of the pipeline. Eur. J. Pharm. Sci. 109, 146–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Rautio, J. Prodrugs and Targeted Delivery (Wiley-VCH Verlag GmbH & Co. KGaA, 2011). This book describes the design rationale and various applications for prodrugs.

    Google Scholar 

  5. Stella, V. J. et al. Prodrugs: Challenges and Rewards Vol. 1–2 (Springer & AAPS Press, 2007). This book consists of two parts and is the most comprehensive literature source on prodrugs.

    Book  Google Scholar 

  6. Albert, A. Chemical aspects of selective toxicity. Nature 182, 421–422 (1958).

    Article  CAS  PubMed  Google Scholar 

  7. Stella, V. J. in Prodrugs: Challenges and Rewards Vol. 1 (eds Stella, V. J. et al.) 3–33 (Springer & AAPS Press, 2007).

    Book  Google Scholar 

  8. Rautio, J. in Prodrugs and Targeted Delivery (ed. Rautio, J.) 3–30 (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

    Google Scholar 

  9. Huttunen, K. M., Raunio, H. & Rautio, J. Prodrugs-from serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Rautio, J. et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7, 255–270 (2008). This is the first prodrugs Review in Nature Reviews Drug Discovery that discusses various preclinical and clinical applications of prodrugs.

    Article  CAS  PubMed  Google Scholar 

  11. Bodor, N. & Buchwald, P. Soft drug design: general principles and recent applications. Med. Res. Rev. 20, 58–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Awad, A. S. & Goldberg, M. E. Role of clevidipine butyrate in the treatment of acute hypertension in the critical care setting: a review. Vasc. Health Risk Manag. 6, 457–464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Aljuffali, I. A., Lin, C. F., Chen, C. H. & Fang, J. Y. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin. Drug Deliv. 13, 1311–1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Baltzer, B. et al. Mutual pro-drugs of beta-lactam antibiotics and beta-lactamase inhibitors. J. Antibiot. 33, 1183–1192 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Huttunen, K. M., Mähönen, N., Raunio, H. & Rautio, J. Cytochrome P450-activated prodrugs: targeted drug delivery. Curr. Med. Chem. 15, 2346–2365 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Jana, S., Mandlekar, S. & Marathe, P. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Curr. Med. Chem. 17, 3874–3908 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Ettmayer, P., Amidon, G. L., Clement, B. & Testa, B. Lessons learned from marketed and investigational prodrugs. J. Med. Chem. 47, 2393–2404 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Stella, V. J. Prodrugs as therapeutics. Expert Opin. Ther. Patents 14, 277–280 (2004).

    Article  CAS  Google Scholar 

  19. Williams, H. D. et al. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 65, 315–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Stella, V. J. & Nti-Addae, K. W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 59, 677–694 (2007). This is an excellent review describing various prodrug strategies to improve water solubility.

    Article  CAS  PubMed  Google Scholar 

  21. Hemenway, J. & Stella, V. J. in Prodrugs: Challenges and Rewards Vol. 1 (eds Stella, V. J. et al.) 217–281 (Springer & AAPS Press, 2007).

    Book  Google Scholar 

  22. Burke, J. T. et al. Pharmacokinetics of intravenous chloramphenicol sodium succinate in adult patients with normal renal and hepatic function. J. Pharmacokinet. Biopharm. 10, 601–614 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Derendorf, H., Mollmann, H., Rohdewald, P., Rehder, J. & Schmidt, E. W. Kinetics of methylprednisolone and its hemisuccinate ester. Clin. Pharmacol. Ther. 37, 502–507 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Melby, J. C. & St Cyr, M. Comparative studies on absorption and metabolic disposal of water-soluble corticosteroid esters. Metabolism 10, 75–82 (1961).

    CAS  PubMed  Google Scholar 

  25. Bentley, A. et al. The discovery and process development of a commercial route to the water soluble prodrug, fosfluconazole. Org. Process Res. Dev. 6, 109–112 (2002).

    Article  CAS  Google Scholar 

  26. Sobue, S., Sekiguchi, K., Shimatani, K. & Tan, K. Pharmacokinetics and safety of Fosfluconazole after single intravenous bolus injection in healthy male Japanese volunteers. J. Clin. Pharmacol. 44, 284–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Stella, V. J., Zygmund, J. J., Georg, I. G. & Safadi, M. S. Water-soluble prodrugs of hindered alcohols or phenols. EP1683803A1 (2005).

  28. Garnock-Jones, K. P. & Scott, L. J. Fospropofol. Drugs 70, 469–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Kumpulainen, H. et al. Synthesis, in vitro and in vivo characterization of novel ethyl dioxy phosphate prodrug of propofol. Eur. J. Pharm. Sci. 34, 110–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Hale, J. J. et al. Phosphorylated morpholine acetal human neurokinin-1 receptor antagonists as water-soluble prodrugs. J. Med. Chem. 43, 1234–1241 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ishikawa, T. et al. TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: synthesis, physicochemical and pharmacological properties. Bioorg. Med. Chem. 11, 2427–2437 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Sawada, S. et al. Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivaties of 7-ethyl-10-hydroxycamptothecin. Chem. Pharm. Bull. 39, 1446–1454 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Hageman, M. J. & Morozowich, W. in Prodrugs: Challenges and Rewards Vol. 2 (eds Stella, V. J. et al.) 569–579 (Springer & AAPS Press, 2007).

    Google Scholar 

  34. Sanghani, S. P. et al. Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab. Dispos. 32, 505–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Cheer, S. M. & Goa, K. L. Parecoxib (parecoxib sodium). Drugs 61, 1133–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Talley, J. J. et al. N-[[(5-methyl-3-phenylisoxazol-4-yl)-phenyl]sulfonyl]propanamide, sodium salt, parecoxib sodium: a potent and selective inhibitor of COX-2 for parenteral administration. J. Med. Chem. 43, 1661–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Di, L., Fish, P. V. & Mano, T. Bridging solubility between drug discovery and development. Drug Discov. Today 17, 486–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Stella, V. J., Martodihardjo, S., Terada, K. & Rao, V. M. Some relationships between the physical properties of various 3-acyloxymethyl prodrugs of phenytoin to structure: potential in vivo performance implications. J. Pharm. Sci. 87, 1235–1241 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Guarino, V. R. in Prodrugs and Targeted Delivery (ed. Rautio, J.) 111–131 (Wiley-VCH Verlag & Co. KGaA, 2011).

    Book  Google Scholar 

  40. Heimbach, T., Fleisher, D. & Kaddoumi, A. in Prodrugs: Challenges and Rewards Vol. 1 (eds Stella, V. J. et al.) 157–215 (Springer & AAPS Press, 2007).

    Book  Google Scholar 

  41. Sorbera, L. A., Martín, L., Castañer, J. & Castañer, R. M. Fosamprenavir. Anti-HIV, HIV protease inhibitor. Drugs Future 26, 224–231 (2001).

    Article  CAS  Google Scholar 

  42. Ouyang, H. in Prodrugs: Challenges and Rewards Vol. 2 (eds Stella, V. J. et al.) 541–549 (Springer & AAPS Press, 2007).

    Google Scholar 

  43. Falcoz, C. et al. Pharmacokinetics of GW433908, a prodrug of amprenavir, in healthy male volunteers. J. Clin. Pharmacol. 42, 887–898 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Furfine, E. S. et al. Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir. Antimicrob. Agents Chemother. 48, 791–798 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wire, M. B., Shelton, M. J. & Studenberg, S. Fosamprenavir: clinical pharmacokinetics and drug interactions of the amprenavir prodrug. Clin. Pharmacokinet. 45, 137–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Walker, R. C., Zeuli, J. D. & Temesgen, Z. Isavuconazonium sulfate for the treatment of fungal infection. Drugs Today 52, 7–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Ohwada, J. et al. Design, synthesis and antifungal activity of a novel water soluble prodrug of antifungal triazole. Bioorg. Med. Chem. Lett. 13, 191–196 (2003). This study describes the design of novel water-soluble acyloxyalkyl triazolium salt-type prodrugs that led to the discovery of isavuconazonium.

    Article  CAS  PubMed  Google Scholar 

  48. Schmitt-Hoffmann, A. et al. Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob. Agents Chemother. 50, 279–285 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmitt-Hoffmann, A. et al. Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob. Agents Chemother. 50, 286–293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elliott, E. L. et al. Boronate ester compounds and pharmaceutical compositions thereof. WO2009154737A1 (2009).

  51. Beaumont, K., Webster, R., Gardner, I. & Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr. Drug Metab. 4, 461–485 (2003). This is an excellent review that provides practical solutions to the challenges of prodrug discovery and development.

    Article  CAS  PubMed  Google Scholar 

  52. Maag, H. Overcoming poor permeability — the role of prodrugs for oral permeability. Drug Discov. Today 9, 121–130 (2012).

    Article  CAS  Google Scholar 

  53. Simplicio, A. L., Clancy, J. M. & Gilmer, J. F. Prodrugs for amines. Molecules 13, 519–547 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Doucette, K. E. & Aoki, F. Y. Oseltamivir: a clinical and pharmacological perspective. Expert Opin. Pharmacother. 2, 1671–1683 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. McClellan, K. & Perry, C. M. Oseltamivir: a review of its use in influenza. Drugs 61, 263–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Li, W. et al. Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob. Agents Chemother. 42, 647–653 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi, D. et al. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J. Pharmacol. Exp. Ther. 319, 1477–1484 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ksander, G. M. et al. Dicarboxylic acid dipeptide neutral endopeptidase inhibitors. J. Med. Chem. 38, 1689–1700 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Q. et al. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther. 325, 47–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Stangier, J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin. Pharmacokinet. 47, 285–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Burness, C. B. & McKeage, K. Dabigatran etexilate: a review of its use for the prevention of venous thromboembolism after total hip or knee replacement surgery. Drugs 72, 963–986 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. van Ryn, J. et al. The discovery of dabigatran etexilate. Front. Pharmacol. 4, 12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laizure, S. C., Parker, R. B., Herring, V. L. & Hu, Z. Y. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis. Drug Metab. Dispos. 42, 201–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stangier, J., Rathgen, K., Stahle, H., Gansser, D. & Roth, W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br. J. Clin. Pharmacol. 64, 292–303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mehellou, Y., Balzarini, J. & McGuigan, C. Aryloxy phosphoramidate triesters: a technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem 4, 1779–1791 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Thornton, P. J., Kadri, H., Miccoli, A. & Mehellou, Y. Nucleoside phosphate and phosphonate prodrug clinical candidates. J. Med. Chem. 59, 10400–10410 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Pradere, U., Garnier-Amblard, E. C., Coats, S. J., Amblard, F. & Schinazi, R. F. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem. Rev. 114, 9154–9218 (2014). This is a comprehensive review on prodrug strategies for drugs containing phosphate and phosphonate groups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Starrett, J. E. et al. Synthesis and in vitro evaluation of a phosphonate prodrug: bis(pivaloyloxymethyl) 9-(2-phosphonylmethoxyethyl)adenine. Antiviral Res. 19, 267–273 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Starrett, J. E. Jr. et al. Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). J. Med. Chem. 37, 1857–1864 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Dando, T. & Plosker, G. Adefovir dipivoxil: a review of its use in chronic hepatitis B. Drugs 63, 2215–2234 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. McGuigan, C. et al. Synthesis, anti-human immunodeficiency virus activity and esterase lability of some novel carboxylic ester-modified phosphoramidate derivatives of stavudine (d4T). Antivir. Chem. Chemother. 9, 473–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. McGuigan, C., Tsang, H. W., Sutton, P. W., De Clercq, E. & Balzarini, J. Synthesis and anti-HIV activity of some novel chain-extended phosphoramidate derivatives of d4T (stavudine): esterase hydrolysis as a rapid predictive test for antiviral potency. Antivir. Chem. Chemother. 9, 109–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Slusarczyk, M. et al. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J. Med. Chem. 57, 1531–1542 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fukano, Y. & Kawazu, K. Disposition and metabolism of a novel prostanoid antiglaucoma medication, tafluprost, following ocular administration to rats. Drug Metab. Dispos. 37, 1622–1634 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Hoy, S. M. Tafluprost/Timolol: a review in open-angle glaucoma or ocular hypertension. Drugs 75, 1807–1813 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Patel, S. S. & Spencer, C. M. Latanoprost. A review of its pharmacological properties, clinical efficacy and tolerability in the management of primary open-angle glaucoma and ocular hypertension. Drugs Aging 9, 363–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Quaranta, L. et al. Safety and efficacy of travoprost solution for the treatment of elevated intraocular pressure. Clin. Ophthalmol. 9, 633–643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Curran, M. P. Bimatoprost: a review of its use in open-angle glaucoma and ocular hypertension. Drugs Aging 26, 1049–1071 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Di, L. et al. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov. Today 17, 905–912 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Sugano, K. et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discov. 9, 597–614.

    Article  CAS  PubMed  Google Scholar 

  82. Warren, M. S. & Rautio, J. in Prodrugs and Targeted Delivery (ed. Rautio, J.) 133–151 (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

    Book  Google Scholar 

  83. Brogden, R. N., Speight, T. M. & Avery, G. S. Levodopa: a review of its pharmacological properties and therapeutic use with particular reference to Parkinsonism. Drugs 2, 262–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  84. Nutt, J. G. & Woodward, W. R. Levodopa pharmacokinetics and pharmacodynamics in fluctuating parkinsonian patients. Neurology 36, 739–744 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Nutt, J. G., Woodward, W. R., Hammerstad, J. P., Carter, J. H. & Anderson, J. L. The “on-off” phenomenon in Parkinson's disease. Relation to levodopa absorption and transport. N. Engl. J. Med. 310, 483–488 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Vig, B. S., Huttunen, K. M., Laine, K. & Rautio, J. Amino acids as promoieties in prodrug design and development. Adv. Drug Deliv. Rev. 65, 1370–1385 (2013). This is an extensive compilation of knowledge around the frequently used amino acid promoieties for the safe development of prodrugs to overcome multiple different delivery barriers.

    Article  CAS  PubMed  Google Scholar 

  87. Brandsch, M. Drug transport via the intestinal peptide transporter PepT1. Curr. Opin. Pharmacol. 13, 881–887 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Soul-Lawton, J. et al. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob. Agents Chemother. 39, 2759–2764 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de Miranda, P. & Blum, M. R. Pharmacokinetics of acyclovir after intravenous and oral administration. J. Antimicrob. Chemother. 12 (Suppl. B), 29–37 (1983).

    Article  PubMed  Google Scholar 

  90. Anderson, R. D. et al. Ganciclovir absolute bioavailability and steady-state pharmacokinetics after oral administration of two 3000-mg/d dosing regimens in human immunodeficiency virus- and cytomegalovirus-seropositive patients. Clin. Ther. 17, 425–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Balimane, P. V. et al. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250, 246–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Sugawara, M. et al. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89, 781–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Hatanaka, T. et al. Transport of amino acid-based prodrugs by the Na+- and Cl--coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery. J. Pharmacol. Exp. Ther. 308, 1138–1147 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kim, I. et al. Identification of a human valacyclovirase: biphenyl hydrolase-like protein as valacyclovir hydrolase. J. Biol. Chem. 278, 25348–25356 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Tsuda, M. et al. Transport characteristics of a novel peptide transporter 1 substrate, antihypotensive drug midodrine, and its amino acid derivatives. J. Pharmacol. Exp. Ther. 318, 455–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Cruz, D. N. Midodrine: a selective alpha-adrenergic agonist for orthostatic hypotension and dialysis hypotension. Expert Opin. Pharmacother. 1, 835–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Cundy, K. C. et al. XP13512 [(+/−)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys. J. Pharmacol. Exp. Ther. 311, 324–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Cundy, K. C. et al. XP13512 [(+/−)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J. Pharmacol. Exp. Ther. 311, 315–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Lal, R. et al. Pharmacokinetics and tolerability of single escalating doses of gabapentin enacarbil: a randomized-sequence, double-blind, placebo-controlled crossover study in healthy volunteers. Clin. Ther. 31, 1776–1786 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Lal, R. et al. Population pharmacokinetics and pharmacodynamics of gabapentin after administration of gabapentin enacarbil. J. Clin. Pharmacol. 53, 29–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Svensson, L. A. & Tunek, A. The design and bioactivation of presystemically stable prodrugs. Drug Metab. Rev. 19, 165–194 (1988).

    Article  CAS  PubMed  Google Scholar 

  102. Tunek, A. & Svensson, L. A. Bambuterol, a carbamate ester prodrug of terbutaline, as inhibitor of cholinesterases in human blood. Drug Metab. Dispos. 16, 759–764 (1988).

    CAS  PubMed  Google Scholar 

  103. Tunek, A., Levin, E. & Svensson, L. A. Hydrolysis of 3H-bambuterol, a carbamate prodrug of terbutaline, in blood from humans and laboratory animals in vitro. Biochem. Pharmacol. 37, 3867–3876 (1988).

    Article  CAS  PubMed  Google Scholar 

  104. Sitar, D. S. Clinical pharmacokinetics of bambuterol. Clin. Pharmacokinet. 31, 246–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Persson, G., Baas, A., Knight, A., Larsen, B. & Olsson, H. One month treatment with the once daily oral beta 2-agonist bambuterol in asthmatic patients. Eur. Respir. J. 8, 34–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Dhareshwar, S. S. & Stella, V. J. in Prodrugs: Challenges and Rewards Vol. 2 (eds Stella et al, V. J.) 31–99 (Springer & AAPS Press, 2007).

    Google Scholar 

  107. Rautio, J. & Laine, K. in Textbook of Drug Design and Discovery (ed. Stromgaard, K., Krogsgaard-Larsen, P. & Madsen, U.) 155–173 (CRC Press, 2017).

    Google Scholar 

  108. Raedler, L. A. Aripiprazole lauroxil (Aristada): long-acting atypical antipsychotic injection approved for the treatment of patients with schizophrenia. Am. Health Drug Benefits 9, 40–43 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Rohde, M. et al. Biological conversion of aripiprazole lauroxil — an N-acyloxymethyl aripiprazole prodrug. Results Pharma Sci. 4, 19–25 (2014). This study describes the design and release of a long-acting prodrug administered intramuscularly once every 4 to 6 weeks, which is an emerging approach to sustained drug delivery.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Najib, J. et al. Review of lisdexamfetamine dimesylate in adults with attention-deficit/hyperactivity disorder. J. Cent. Nerv. Syst. Dis. 9, 1179573517728090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Comiran, E., Kessler, F. H., Froehlich, P. E. & Limberger, R. P. Lisdexamfetamine: A pharmacokinetic review. Eur. J. Pharm. Sci. 89, 172–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Pennick, M. Absorption of lisdexamfetamine dimesylate and its enzymatic conversion to d-amphetamine. Neuropsychiatr. Dis. Treat. 6, 317–327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nakamura, A., Yamada, T. & Asaki, T. Synthesis and evaluation of N-acylsulfonamide and N-acylsulfonylurea prodrugs of a prostacyclin receptor agonist. Bioorg. Med. Chem. 15, 7720–7725 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Asaki, T. et al. Selexipag: An oral and selective IP prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. J. Med. Chem. 58, 7128–7137 (2015). This study describes the discovery of selexipag and demonstrates that a sulfonamide group can be a promoiety for carboxylic acid.

    Article  CAS  PubMed  Google Scholar 

  115. Bruderer, S., Hurst, N., Kaufmann, P. & Dingemanse, J. Multiple-dose up-titration study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of selexipag, an orally available selective prostacyclin receptor agonist, in healthy subjects. Pharmacology 94, 148–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Scott, L. J. Selexipag: First global approval. Drugs 76, 413–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Kratz, F., Muller, I. A., Ryppa, C. & Warnecke, A. Prodrug strategies in anticancer chemotherapy. ChemMedChem 3, 20–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, X., Li, X., You, Q. & Zhang, X. Prodrug strategy for cancer cell-specific targeting: a recent overview. Eur. J. Med. Chem. 139, 542–563 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Kratz, F. et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J. Med. Chem. 45, 5523–5533 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Fryklund, J., Gedda, K. & Wallmark, B. Specific labelling of gastric H+,K+-ATPase by omeprazole. Biochem. Pharmacol. 37, 2543–2549 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Brändström, A. et al. Chemical reactions of omeprazole and omeprazole analogs. I. A survey of the chemical transformations of omeprazole and its analogs. Acta Chem. Scand. 43, 536–548 (1989).

    Article  Google Scholar 

  122. Sachs, G., Shin, J. M., Briving, C., Wallmark, B. & Hersey, S. The pharmacology of the gastric acid pump: the H+,K+ ATPase. Annu. Rev. Pharmacol. Toxicol. 35, 277–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Erion, M. D. in Targeted Delivery of Small and Macromolecular Drugs (eds Narang, A. S. & Mahato, R. I.) 277–310 (CRC Press, 2010).

    Book  Google Scholar 

  124. Rooseboom, M., Commandeur, J. N. & Vermeulen, N. P. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol. Rev. 56, 53–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, X., Wu, B. & Wang, P. G. Glucuronides in anti-cancer therapy. Curr. Med. Chem. Anticancer Agents 3, 139–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Lyttle, M. H. et al. Glutathione-S-transferase activates novel alkylating agents. J. Med. Chem. 37, 1501–1507 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Satyam, A. et al. Design, synthesis, and evaluation of latent alkylating agents activated by glutathione S-transferase. J. Med. Chem. 39, 1736–1747 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Ruzza, P. & Calderan, A. Glutathione transferase (GST)-activated prodrugs. Pharmaceutics 5, 220–231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ebi, H. et al. Pharmacokinetic and pharmacodynamic comparison of fluoropyrimidine derivatives, capecitabine and 5′-deoxy-5-fluorouridine (5′-DFUR). Cancer Chemother. Pharmacol. 56, 205–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Shimma, N. et al. The design and synthesis of a new tumor-selective fluoropyrimidine carbamate, capecitabine. Bioorg. Med. Chem. 8, 1697–1706 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Jordan, A. M. et al. Melanocyte-directed enzyme prodrug therapy (MDEPT): development of second generation prodrugs for targeted treatment of malignant melanoma. Bioorg. Med. Chem. 9, 1549–1558 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Jordan, A. M., Khan, T. H., Osborn, H. M., Photiou, A. & Riley, P. A. Melanocyte-directed enzyme prodrug therapy (MDEPT): development of a targeted treatment for malignant melanoma. Bioorg. Med. Chem. 7, 1775–1780 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Brown, J. M. & Wang, L. H. Tirapazamine: laboratory data relevant to clinical activity. Anticancer Drug Des. 13, 529–539 (1998).

    CAS  PubMed  Google Scholar 

  134. Patterson, A. V. et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res. 13, 3922–3932 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Bailey, S. M. et al. Reduction of the indoloquinone anticancer drug EO9 by purified DT-diaphorase: a detailed kinetic study and analysis of metabolites. Biochem. Pharmacol. 56, 613–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Vandooren, J., Opdenakker, G., Loadman, P. M. & Edwards, D. R. Proteases in cancer drug delivery. Adv. Drug Deliv. Rev. 97, 144–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Weidle, U. H., Tiefenthaler, G. & Georges, G. Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genom. Proteom. 11, 67–79 (2014).

    Google Scholar 

  138. Dhaneshwar, S. S. & Vadnerkar, G. Rational design and development of colon-specific prodrugs. Curr. Top. Med. Chem. 11, 2318–2345 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Erion, M. D., Bullough, D. A., Lin, C. C. & Hong, Z. HepDirect prodrugs for targeting nucleotide-based antiviral drugs to the liver. Curr. Opin. Investig. Drugs 7, 109–117 (2006).

    CAS  PubMed  Google Scholar 

  140. Erion, M. D. et al. Design, synthesis, and characterization of a series of cytochrome P(450) 3A-activated prodrugs (HepDirect prodrugs) useful for targeting phosph(on)ate-based drugs to the liver. J. Am. Chem. Soc. 126, 5154–5163 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Erion, M. D. et al. Liver-targeted drug delivery using HepDirect prodrugs. J. Pharmacol. Exp. Ther. 312, 554–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Tillmann, H. L. Pradefovir, a liver-targeted prodrug of adefovir against HBV infection. Curr. Opin. Investig. Drugs 8, 682–690 (2007).

    CAS  PubMed  Google Scholar 

  143. Miwa, M. et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer 34, 1274–1281 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Ishikawa, T. et al. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem. Pharmacol. 55, 1091–1097 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Reigner, B., Blesch, K. & Weidekamm, E. Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet. 40, 85–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Wagstaff, A. J., Ibbotson, T. & Goa, K. L. Capecitabine: a review of its pharmacology and therapeutic efficacy in the management of advanced breast cancer. Drugs 63, 217–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Azadkhan, A. K., Truelove, S. C. & Aronson, J. K. The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br. J. Clin. Pharmacol. 13, 523–528 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kane, S. V. & Bjorkman, D. J. The efficacy of oral 5-ASAs in the treatment of active ulcerative colitis: a systematic review. Rev. Gastroenterol. Disord. 3, 210–218 (2003).

    PubMed  Google Scholar 

  149. Hall, B. S. & Wilkinson, S. R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother. 56, 115–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wilkinson, S. R., Bot, C., Kelly, J. M. & Hall, B. S. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr. Top. Med. Chem. 11, 2072–2084 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Gillis, J. C. & Wiseman, L. R. Secnidazole. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic use in the management of protozoal infections and bacterial vaginosis. Drugs 51, 621–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Sharma, S. K. & Bagshawe, K. D. Antibody Directed Enzyme Prodrug Therapy (ADEPT): trials and tribulations. Adv. Drug Deliv. Rev. 118, 2–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Sharma, S. K. & Bagshawe, K. D. Translating antibody directed enzyme prodrug therapy (ADEPT) and prospects for combination. Expert Opin. Biol. Ther. 17, 1–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Scomparin, A., Florindo, H. F., Tiram, G., Ferguson, E. L. & Satchi-Fainaro, R. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv. Drug Deliv. Rev. 118, 52–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, J., Kale, V. & Chen, M. Gene-directed enzyme prodrug therapy. AAPS J. 17, 102–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Niculescu-Duvaz, D., Negoita-Giras, G., Niculescu-Duvaz, I., Hedley, D. & Springer, C. J. in Prodrugs and Targeted Delivery (ed. Rautio, J.) 271–344 (Wiley-VCH Verlag & Co. KGaA, 2011).

    Book  Google Scholar 

  157. Satchi-Fainaro, R., Hailu, H., Davies, J. W., Summerford, C. & Duncan, R. PDEPT: polymer-directed enzyme prodrug therapy. 2. HPMA copolymer-beta-lactamase and HPMA copolymer-C-Dox as a model combination. Bioconjug. Chem. 14, 797–804 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Minton, N. P. Clostridia in cancer therapy. Nat. Rev. Microbiol. 1, 237–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Francis, R. J. et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br. J. Cancer 87, 600–607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rainov, N. G. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Duncan, R. & Vicent, M. J. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev. 65, 60–70 (2013). This study provides an illustration of some of the key points of polymer therapeutics from the laboratory to the clinic.

    Article  CAS  PubMed  Google Scholar 

  162. Frich Riber, C. & Zelikin, A. N. Recent advances in macromolecular prodrugs. Curr. Opin. Colloid Interface Sci. 31, 1–9 (2017).

    Article  CAS  Google Scholar 

  163. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Duncan, R. & Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101–2141 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Vasey, P. A. et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin. Cancer Res. 5, 83–94 (1999). This is the first clinical study to evaluate a synthetic polymer–drug conjugate.

    CAS  PubMed  Google Scholar 

  166. Duncan, R., Cable, H. C., Lloyd, J. B., Rejmanova, P. & Kopecek, J. Degradation of side-chains of N-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiol-proteinases. Biosci. Rep. 2, 1041–1046 (1982).

    Article  CAS  PubMed  Google Scholar 

  167. Thomson, A. H. et al. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br. J. Cancer 81, 99–107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Seymour, L. W. et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629–1636 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Rademaker-Lakhai, J. M. et al. A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res. 10, 3386–3395 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Rice, J. R., Steward, D. R. & Nowotnik, D. P. Enhanced antitumour activity of a new polymer-linked DACH-platinum complex. in 93rd AACR Annual Meeting (San Francisco, CA, 2002).

    Google Scholar 

  171. Greenwald, R. B., Choe, Y. H., McGuire, J. & Conover, C. D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55, 217–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Banerjee, S. S., Aher, N., Patil, R. & Khandare, J. Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J. Drug Deliv. 2012, 103973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rowinsky, E. K. et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J. Clin. Oncol. 21, 148–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Garrett, C. R. et al. Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer 119, 4223–4230 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Duncan, R. Polymer therapeutics as nanomedicines: new perspectives. Curr. Opin. Biotechnol. 22, 492–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Li, C. et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res. 58, 2404–2409 (1998).

    CAS  PubMed  Google Scholar 

  177. Singer, J. W. et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv. Exp. Med. Biol. 519, 81–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Shaffer, S. A. et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 59, 537–548 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. O'Brien, M. E. et al. Randomized phase III trial comparing single-agent paclitaxel Poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J. Thorac. Oncol. 3, 728–734 (2008).

    Article  PubMed  Google Scholar 

  180. Ho, D. H. et al. Clinical pharmacology of polyethylene glycol-L-asparaginase. Drug Metab. Dispos. 14, 349–352 (1986).

    CAS  PubMed  Google Scholar 

  181. Parslow, A. C., Parakh, S., Lee, F. T., Gan, H. K. & Scott, A. M. Antibody-drug conjugates for cancer therapy. Biomedicines 4, 14 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  182. McCombs, J. R. & Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 17, 339–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fenton, C. & Perry, C. M. Gemtuzumab ozogamicin: a review of its use in acute myeloid leukaemia. Drugs 65, 2405–2427 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Linenberger, M. L. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19, 176–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Doronina, S. O. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Scott, L. J. Brentuximab vedotin: a review in CD30-positive Hodgkin lymphoma. Drugs 77, 435–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Francisco, J. A. et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102, 1458–1465 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Fromm, J. R. et al. Clinical binding properties, internalization kinetics, and clinicopathologic activity of brentuximab vedotin: an antibody-drug conjugate for CD30-positive lymphoid neoplasms. Clin. Lymphoma Myeloma Leuk. 12, 280–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Casi, G. & Neri, D. Antibody-drug conjugates and small molecule-drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem. 58, 8751–8761 (2015). This study reports an 'engineering' approach to drug discovery, capitalizing on the modular nature of drug conjugates, that describes the critical importance of a precise understanding of tumour targeting and cellular-based drug release processes.

    Article  CAS  PubMed  Google Scholar 

  190. Srinivasarao, M., Galliford, C. V. & Low, P. S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14, 203–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Low, P. S., Henne, W. A. & Doorneweerd, D. D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  192. Naumann, R. W. et al. PRECEDENT: a randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 31, 4400–4406 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Bräuer, A. et al. (177)Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imag. 44, 1663–1670 (2017).

    Article  CAS  Google Scholar 

  194. Ortiz de Montellano, P. R. Cytochrome P450-activated prodrugs. Future Med. Chem. 5, 213–228 (2013). This is a comprehensive review on the role of CYP in prodrug activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nishimura, K. et al. KY-109, a new bifunctional prodrug of cephalosporin. II. Mechanism of oral absorption. Chem. Pharm. Bull. 36, 2128–2134 (1988).

    Article  CAS  PubMed  Google Scholar 

  196. Lee, W. A. et al. Bioavailability improvement of mycophenolic acid through amino ester derivatization. Pharm. Res. 7, 161–166 (1990).

    Article  CAS  PubMed  Google Scholar 

  197. Di, L. & Kerns, E. H. Drug-Like Properties: Concepts, Structure Design, and Methods (Elsevier, 2016). This is an excellent book on concepts and methods of drug-like properties.

    Google Scholar 

  198. Gobeau, N., Stringer, R., De Buck, S., Tuntland, T. & Faller, B. Evaluation of the GastroPlus Advanced Compartmental and Transit (ACAT) model in early discovery. Pharm. Res. 33, 2126–2139 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Jamei, M. et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 11, 225–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Stella, V. J. in Prodrugs: Challenges and Rewards Vol. 1 (eds Stella, V. J. et al.) 37–82 (Springer & AAPS Press, 2007).

    Book  Google Scholar 

  201. Eichenbaum, G. et al. Use of enzyme inhibitors to evaluate the conversion pathways of ester and amide prodrugs: a case study example with the prodrug ceftobiprole medocaril. J. Pharm. Sci. 101, 1242–1252 (2012). This study describes experiments involving the in vitro evaluation of enzymes responsible for ester and amide bond hydrolysis.

    Article  CAS  PubMed  Google Scholar 

  202. Imai, T. & Ohura, K. The role of intestinal carboxylesterase in the oral absorption of prodrugs. Curr. Drug Metab. 11, 793–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Yuan, H., Li, N. & Lai, Y. Evaluation of in vitro models for screening alkaline phosphatase-mediated bioconversion of phosphate ester prodrugs. Drug Metab. Dispos. 37, 1443–1447 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Trapa, P. E. et al. In vitro-in vivo extrapolation of intestinal availability for carboxylesterase substrates using portal vein-cannulated monkey. J. Pharm. Sci. 106, 898–905 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Matsuda, Y. et al. Quantitative assessment of intestinal first-pass metabolism of oral drugs using portal-vein cannulated rats. Pharm. Res. 32, 604–616 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Perkins, E. J. & Abraham, T. Pharmacokinetics, metabolism, and excretion of the intestinal peptide transporter 1 (SLC15A1)-targeted prodrug (1S,2S,5R,6S)-2-[(2'S)-(2-amino)propionyl]aminobicyclo[3.1.0.]hexen-2,6-dicarboxy lic acid (LY544344) in rats and dogs: assessment of first-pass bioactivation and dose linearity. Drug Metab. Dispos. 35, 1903–1909 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Bueno, A. B. et al. Dipeptides as effective prodrugs of the unnatural amino acid (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), a selective group II metabotropic glutamate receptor agonist. J. Med. Chem. 48, 5305–5320 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Stoeckel, K. et al. Stability of cephalosporin prodrug esters in human intestinal juice: implications for oral bioavailability. Antimicrob. Agents Chemother. 42, 2602–2606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Heimbach, T. et al. Absorption rate limit considerations for oral phosphate prodrugs. Pharm. Res. 20, 848–856 (2003). This study provides guidance for selecting an oral parent drug for a phosphate prodrug strategy.

    Article  CAS  PubMed  Google Scholar 

  210. Xu, H. et al. Substrate-competitive activity-based profiling of ester prodrug activating enzymes. Mol. Pharm. 12, 3399–3407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hauel, N. H. et al. Structure-based design of novel potent nonpeptide thrombin inhibitors. J. Med. Chem. 45, 1757–1766 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Laizure, S. C., Herring, V., Hu, Z., Witbrodt, K. & Parker, R. B. The role of human carboxylesterases in drug metabolism: have we overlooked their importance? Pharmacotherapy 33, 210–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yang, Y.-h., Aloysius, H., Inoyama, D., Chen, Y. & Hu, L.-q. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharmaceut. Sin. B 1, 143–159 (2011).

    Article  CAS  Google Scholar 

  214. Di, L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin. Drug Discov. 12, 1105–1115 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Wang, X. et al. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors. Pharmacogenom. J. 16, 220–230 (2016).

    Article  CAS  Google Scholar 

  216. Imai, T. Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab. Pharmacokinet. 21, 173–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Hosokawa, M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 13, 412–431 (2008). This is an outstanding review on carboxylesterases and their functions in the metabolic activation of prodrugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Williams, E. T. et al. Characterization of the expression and activity of carboxylesterases 1 and 2 from the beagle dog, cynomolgus monkey, and human. Drug Metab. Dispos. 39, 2305–2313 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Bahar, F. G., Ohura, K., Ogihara, T. & Imai, T. Species difference of esterase expression and hydrolase activity in plasma. J. Pharm. Sci. 101, 3979–3988 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Li, B. et al. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 70, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  221. Nishimuta, H., Houston, J. B. & Galetin, A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: implications for in vitro-in vivo extrapolation of clearance of prodrugs. Drug Metab. Dispos. 42, 1522–1531 (2014). This study investigates species and in vitro system differences in the hepatic and extrahepatic hydrolysis of 11 prodrugs in an effort to improve our understanding of animal species differences when developing hydrolysable prodrugs.

    Article  CAS  PubMed  Google Scholar 

  222. Bai, J. P. F., Pacanowski, M., Rahman, A. & Lesko, L. L. in Prodrugs and Targeted Delivery (ed. Rautio, J.) 453–481 (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

  223. Downie, D. et al. Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin. Cancer Res. 11, 7369–7375 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Karlgren, M. et al. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun. 341, 451–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Rivera, S. P. et al. A novel promoter element containing multiple overlapping xenobiotic and hypoxia response elements mediates induction of cytochrome P4502S1 by both dioxin and hypoxia. J. Biol. Chem. 282, 10881–10893 (2007).

    Article  CAS  PubMed  Google Scholar 

  226. Mortimer, C. G. et al. Antitumor benzothiazoles. 26.(1) 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem. 49, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Brantley, E. et al. Fluorinated 2-(4-amino-3-methylphenyl)benzothiazoles induce CYP1A1 expression, become metabolized, and bind to macromolecules in sensitive human cancer cells. Drug Metab. Dispos. 32, 1392–1401 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Tan, B. S. et al. CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol. Cancer Ther. 10, 1982–1992 (2011).

    Article  CAS  PubMed  Google Scholar 

  229. Beverage, J. N., Sissung, T. M., Sion, A. M., Danesi, R. & Figg, W. D. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J. Pharm. Sci. 96, 2224–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Malmborg, J. & Ploeger, B. A. Predicting human exposure of active drug after oral prodrug administration, using a joined in vitro/in silico-in vivo extrapolation and physiologically-based pharmacokinetic modeling approach. J. Pharmacol. Toxicol. Methods 67, 203–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Hu, Z. Y., Edginton, A. N., Laizure, S. C. & Parker, R. B. Physiologically based pharmacokinetic modeling of impaired carboxylesterase-1 activity: effects on oseltamivir disposition. Clin. Pharmacokinet. 53, 825–836 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Yan, G. Z. et al. A semiphysiologically based pharmacokinetic modeling approach to predict the dose-exposure relationship of an antiparasitic prodrug/active metabolite pair. Drug Metab. Dispos. 40, 6–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lukacova, V. et al. A physiologically based pharmacokinetic model for ganciclovir and its prodrug valganciclovir in adults and children. AAPS J. 18, 1453–1463 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Djebli, N. et al. Physiologically based pharmacokinetic modeling for sequential metabolism: effect of CYP2C19 genetic polymorphism on clopidogrel and clopidogrel active metabolite pharmacokinetics. Drug Metab. Dispos. 43, 510–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Dhareshwar, S. S. & Stella, V. J. Your prodrug releases formaldehyde: should you be concerned? No! J. Pharm. Sci. 97, 4184–4193 (2008).

    Article  CAS  PubMed  Google Scholar 

  236. Brass, E. P. Pivalate-generating prodrugs and carnitine homeostasis in man. Pharmacol. Rev. 54, 589–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  237. Meanwell, N. A. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 24, 1420–1456 (2011).

    Article  CAS  PubMed  Google Scholar 

  238. Meanwell, N. A. Improving drug design: an update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chem. Res. Toxicol. 29, 564–616 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. DeGoey, D. A., Chen, H. J., Cox, P. B. & Wendt, M. D. Beyond the rule of 5: lessons learned from AbbVie's drugs and compound collection. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.7b00717 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Meanwell, N. A. Inhibitors of HIV-1 Attachment: the discovery and development of temsavir and its prodrug fostemsavir. J. Med. Chem. 61, 62–80 (2018). This study describes the discovery of fostemsavir, a prodrug designed to address dissolution-limited and solubility-limited absorption issues.

    Article  CAS  PubMed  Google Scholar 

  241. Kadow, J. F. et al. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment 6. Preclinical and human pharmacokinetic profiling of BMS-663749, a phosphonooxymethyl prodrug of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxo ethanone (BMS-488043). J. Med. Chem. 55, 2048–2056 (2012).

    Article  CAS  PubMed  Google Scholar 

  242. Heimbach, T. et al. Enzyme-mediated precipitation of parent drugs from their phosphate prodrugs. Int. J. Pharm. 261, 81–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  243. Nettles, R. E. et al. Pharmacodynamics, safety, and pharmacokinetics of BMS-663068, an oral HIV-1 attachment inhibitor in HIV-1-infected subjects. J. Infect. Dis. 206, 1002–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  244. Brown, J. et al. Compartmental absorption modeling and site of absorption studies to determine feasibility of an extended-release formulation of an HIV-1 attachment inhibitor phosphate ester prodrug. J. Pharm. Sci. 102, 1742–1751 (2013). This study provides an excellent discussion on the sustained delivery of a phosphonooxymethyl-based prodrug to overcome rapid in vivo clearance and also establishes the presence of alkaline phosphatase in the lower part of the intestine.

    Article  CAS  PubMed  Google Scholar 

  245. Timmins, P. et al. Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery. Drug Discov. Today 19, 1288–1293 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Mehellou, Y., Rattan, H. S. & Balzarini, J. The ProTide prodrug technology: from the concept to the clinic. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.7b00734 (2017). This is a comprehensive review of the development and application of ProTide technology to deliver nucleoside phosphate and phosphonate derivatives that are used in the commercially important antiviral drugs tenofovir alafenamide and sofosbuvir.

    Article  CAS  PubMed  Google Scholar 

  247. Ballatore, C., McGuigan, C., De Clercq, E. & Balzarini, J. Synthesis and evaluation of novel amidate prodrugs of PMEA and PMPA. Bioorg. Med. Chem. Lett. 11, 1053–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  248. Eisenberg, E. J., He, G. X. & Lee, W. A. Metabolism of GS-7340, a novel phenyl monophosphoramidate intracellular prodrug of PMPA, in blood. Nucleosides Nucleotides Nucleic Acids 20, 1091–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  249. Birkus, G. et al. Intracellular activation of tenofovir alafenamide and the effect of viral and host protease inhibitors. Antimicrob. Agents Chemother. 60, 316–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Ray, A. S., Fordyce, M. W. & Hitchcock, M. J. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Res. 125, 63–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. De Clercq, E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochem. Pharmacol. 119, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Sofia, M. J. et al. Discovery of a beta-d-2′-deoxy-2′-alpha-fluoro-2′-beta-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem. 53, 7202–7218 (2010). This study reports the discovery story of sofosbuvir.

    Article  CAS  PubMed  Google Scholar 

  253. Murakami, E. et al. Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J. Biol. Chem. 285, 34337–34347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Furman, P. A. et al. Activity and the metabolic activation pathway of the potent and selective hepatitis C virus pronucleotide inhibitor PSI-353661. Antiviral Res. 91, 120–132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lam, A. M. et al. PSI-7851, a pronucleotide of beta-D-2′-deoxy-2′-fluoro-2′-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication. Antimicrob. Agents Chemother. 54, 3187–3196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kirby, B. J., Symonds, W. T., Kearney, B. P. & Mathias, A. A. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of the hepatitis C virus NS5B polymerase inhibitor sofosbuvir. Clin. Pharmacokinet. 54, 677–690 (2015).

    Article  CAS  PubMed  Google Scholar 

  257. Babusis, D. et al. in 64th Annual Meeting of the American Association for the Study of Liver Diseases Poster Session 2, Poster 1091 (Washington, DC, 2013).

    Google Scholar 

  258. Michel, M. C. Fesoterodine: a novel muscarinic receptor antagonist for the treatment of overactive bladder syndrome. Expert Opin. Pharmacother. 9, 1787–1796 (2008).

    Article  CAS  PubMed  Google Scholar 

  259. Dobesh, P. P. Pharmacokinetics and pharmacodynamics of prasugrel, a thienopyridine P2Y12 inhibitor. Pharmacotherapy 29, 1089–1102 (2009).

    Article  CAS  PubMed  Google Scholar 

  260. VanderMolen, K. M., McCulloch, W., Pearce, C. J. & Oberlies, N. H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot. 64, 525–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Adachi, K. & Chiba, K. FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Med. Chem. 1, 11–23 (2007).

    Google Scholar 

  262. Kurtz, T. W. & Kajiya, T. Differential pharmacology and benefit/risk of azilsartan compared to other sartans. Vasc. Health Risk Manag. 8, 133–143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Stappaerts, J. et al. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro, rat in situ and human in vivo studies. Eur. J. Pharm. Biopharm. 90, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Linker, R. A. & Haghikia, A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther. Adv. Chron. Dis. 7, 198–207 (2016).

    Article  CAS  Google Scholar 

  265. Benes, J. et al. Anticonvulsant and sodium channel-blocking properties of novel 10,11-dihydro-5H-dibenz[b, f]azepine-5-carboxamide derivatives. J. Med. Chem. 42, 2582–2587 (1999).

    Article  CAS  PubMed  Google Scholar 

  266. Ben-Menachem, E. Eslicarbazepine acetate: a well-kept secret? Epilepsy Curr. 10, 7–8 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Goldstein, D. S. L-Dihydroxyphenylserine (L-DOPS): a norepinephrine prodrug. Cardiovasc. Drug Rev. 24, 189–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  268. Vera-Cabrera, L. et al. In vitro activities of DA-7157 and DA-7218 against Mycobacterium tuberculosis and Nocardia brasiliensis. Antimicrob. Agents Chemother. 50, 3170–3172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. von Borstel, R. W. & Bamat, M. K. Acylated uridine and cytidine and uses thereof. WO1989003837A1 (1989).

  270. Mollmann, H., Hochhaus, G., Rohatagi, S., Barth, J. & Derendorf, H. Pharmacokinetic/pharmacodynamic evaluation of deflazacort in comparison to methylprednisolone and prednisolone. Pharm. Res. 12, 1096–1100 (1995).

    Article  CAS  PubMed  Google Scholar 

  271. Grigoriadis, D. E., Smith, E., Hoare, S. R. J., Madan, A. & Bozigian, H. Pharmacologic characterization of valbenazine (NBI-98854) and its metabolites. J. Pharmacol. Exp. Ther. 361, 454–461 (2017).

    Article  CAS  PubMed  Google Scholar 

  272. O'Brien, C. F. et al. NBI-98854, a selective monoamine transport inhibitor for the treatment of tardive dyskinesia: a randomized, double-blind, placebo-controlled study. Mov Disord. 30, 1681–1687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Garcia, G. A., Ngai, P., Mosaed, S. & Lin, K. Y. Critical evaluation of latanoprostene bunod in the treatment of glaucoma. Clin. Ophthalmol. 10, 2035–2050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research on prodrugs was funded by the Academy of Finland (grant number 308329 to J.R.). The authors also want to recognize C. McGuigan (1958–2016) for his outstanding achievements in prodrug research, which paved the way for the development of phosphoramidate ProTide phosphate and phosphonate prodrug technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Rautio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary Figure S1

In vitro and in vivo studies for prodrug characterization. (PDF 118 kb)

Glossary

Solid form selection

The selection and characterization of the preferred pharmaceutical solid-state form of a drug.

Formulation

The combination of excipients with the active pharmaceutical ingredient.

Dosage form design

A formulation configured to provide a particular delivery function via a commercializable format.

Promoiety

A covalently bound, inactive moiety bound to a drug to form a prodrug that provides the desired pharmaceutical properties.

Parenteral

Administered via skin penetration (typically intravenous, subcutaneous or intramuscular).

Anti-emetic

A drug effective against vomiting and nausea.

Oral bioavailability

The fraction of orally dosed drug that reaches the systemic circulation.

Excipients

Substances added to formulations to improve delivery or efficacy.

ProTide-based prodrugs

The ProTide technology is most commonly used to deliver nucleotide analogues to cells. The hydroxyls of the monophosphate or monophosphonate are masked by an aromatic group and an amino acid ester.

First-pass effect

An effect in which the concentration of a drug is greatly reduced via presystemic metabolism before it reaches the systemic circulation.

Disposition

The distribution of a drug throughout the body following administration.

Parietal cells

Epithelial cells lining the stomach that secrete hydrogen chloride.

Pinocytosis

The transport of fluid into a cell via vesicles created by local infoldings by the cell membrane.

Ussing chamber

A perfusion device used to measure transport across epithelial membranes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautio, J., Meanwell, N., Di, L. et al. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 17, 559–587 (2018). https://doi.org/10.1038/nrd.2018.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.46

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research