Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures

Abstract

The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic use, efficacy and biased signalling of GPCR ligands.
Figure 2: Selected crystallography data on GPCR structural architectures and intermolecular interactions.
Figure 3: Conformational plasticity of β2AR.
Figure 4: NMR-observable conformational equilibria related to biased signalling of β2AR.
Figure 5: Effects on local conformational equilibria of β2AR from different experimental set-ups.
Figure 6: NMR-observable conformational equilibria related to biased signalling of MOR.
Figure 7: NMR affords a global view of A2AAR response to variable drug efficacy and inactivation of an allosteric centre.
Figure 8: NMR methods for studies of GPCR–ligand interactions.
Figure 9: NMR screening of biased ligands.

Similar content being viewed by others

References

  1. Rask-Andersen, M., Almén, M. S. & Schiöth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017). This study presents an analysis of all GPCR-targeted drugs that are FDA-approved or in clinical trials and reports on current and future directions in GPCR drug development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Jazayeri, A., Andrews, S. P. & Marshall, F. H. Structurally enabled discovery of adenosine A2A receptor antagonists. Chem. Rev. 117, 21–37 (2017). This is a review of structure-guided drug design of GPCRs, as illustrated by the development of optimized antagonists for the A 2A AR.

    Article  CAS  PubMed  Google Scholar 

  5. Hutchings, C. J., Koglin, M., Olson, W. C. & Marshall, F. H. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat. Rev. Drug Discov. 16, 787–810 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Steyaert, J. & Kobilka, B. K. Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Congreve, M., Oswald, C. & Marshall, F. H. Applying structure-based drug design approaches to allosteric modulators of GPCRs. Trends Pharmacol. Sci. 38, 837–847 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Conn, P. J., Lindsley, C. W., Meiler, J. & Niswender, C. M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov. 13, 692–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Changeux, J.-P. & Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166, 1084–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Changeux, J.-P. 50 years of allosteric interactions: the twists and turns of the models. Nat. Rev. Mol. Cell Biol. 14, 819 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Violin, J. D., Crombie, A. L., Soergel, D. G. & Lark, M. W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018). This is a comprehensive survey of biased signalling by one of the founders of the field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lane, J. R., May, L. T., Parton, R. G., Sexton, P. M. & Christopoulos, A. A kinetic view of GPCR allostery and biased agonism. Nat. Chem. Biol. 13, 929–937 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Rankovic, Z., Brust, T. F. & Bohn, L. M. Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Reiter, E., Ahn, S., Shukla, A. K. & Lefkowitz, R. J. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh, E., Kumari, P., Jaiman, D. & Shukla, A. K. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell. Biol. 16, 69–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Renaud, J. P. et al. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15, 679–698 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Didenko, T., Liu, J. J., Horst, R., Stevens, R. C. & Wüthrich, K. Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr. Opin. Struct. Biol. 23, 740–747 (2013). This is a survey of 19F NMR techniques used in current research of GPCRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prosser, R. S. & Kim, T. H. Nuts and bolts of CF3 and CH3 NMR toward the understanding of conformational exchange of GPCRs. Methods Mol. Biol. 1335, 39–51 (2015).

    Article  PubMed  Google Scholar 

  20. Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M. & Shukla, A. K. Novel structural insights into GPCR-β-arrestin interaction and signaling. Trends Cell Biol. 27, 851–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Audet, M. & Bouvier, M. Restructuring G-protein- coupled receptor activation. Cell 151, 14–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, F., Song, G., de Graaf, C. & Stevens, R. C. Structure and function of peptide-binding G protein-coupled receptors. J. Mol. Biol. 429, 2726–2745 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carpenter, B. & Tate, C. G. Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. Curr. Opin. Struct. Biol. 45, 124–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, X. E., Melcher, K. & Xu, H. E. Understanding the GPCR biased signaling through G protein and arrestin complex structures. Curr. Opin. Struct. Biol. 45, 150–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Scheerer, P. & Sommer, M. E. Structural mechanism of arrestin activation. Curr. Opin. Struct. Biol. 45, 160–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Jazayeri, A., Dias, J. M. & Marshall, F. H. From G Protein-coupled receptor structure resolution to rational drug design. J. Biol. Chem. 290, 19489–19495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hauser, A. S. et al. Pharmacogenomics of GPCR drug targets. Cell 172, 41–54.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wootten, D., Miller, L. J., Koole, C., Christopoulos, A. & Sexton, P. M. Allostery and biased agonism at class B G protein-coupled receptors. Chem. Rev. 117, 111–138 (2017). This is a review of biased agonism and small-molecule allosteric modulators of Class B GPCRs.

    Article  CAS  PubMed  Google Scholar 

  31. de Graaf, C. et al. Extending the structural view of class B GPCRs. Trends Biochem. Sci. 42, 946–960 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Renaud, J.-P. et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov. 17, 471–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. García- Nafría, J., Nehmé, R., Edwards, P. C. & Tate, C. G. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620–623 (2018).

    Article  CAS  Google Scholar 

  34. Kang, Y. et al. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558, 553–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eddy, M. T. & Yu, T.-Y. Membranes, peptides, and disease: unraveling the mechanisms of viral proteins with solid state nuclear magnetic resonance spectroscopy. Solid State Nucl. Magn. Reson. 61–62, 1–7 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Brown, L. S. & Ladizhansky, V. Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci. 24, 1333–1346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Opella, S. J. & Marassi, F. M. Applications of NMR to membrane proteins. Arch. Biochem. Biophys. 628, 92–101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaplan, M., Pinto, C., Houben, K. & Baldus, M. Nuclear magnetic resonance (NMR) applied to membrane–protein complexes. Q. Rev. Biophys. 49, 1010 (2016).

    Article  Google Scholar 

  41. Mandala, V. S., Williams, J. K. & Hong, M. Structure and Dynamics of Membrane Proteins from Solid-State NMR. Annu. Rev. Biophys. 47, 201–222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wylie, B. J., Do, H. Q., Borcik, C. G. & Hardy, E. P. Advances in solid-state NMR of membrane proteins. Mol. Phys. 114, 3598–3609 (2016).

    Article  CAS  Google Scholar 

  43. Judge, P. J. & Watts, A. Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Curr. Opin. Chem. Biol. 15, 690–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Alexander, S. P. et al. The concise guide to pharmacology 2017/18: G protein-coupled receptors. Br. J. Pharmacol. 174 (Suppl. 1), 17–129 (2017).

    Article  CAS  Google Scholar 

  45. Bologna, Z., Teoh, J. P., Bayoumi, A. S., Tang, Y. & Kim, I. M. Biased G Protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol. Ther. 25, 12–25 (2017).

    Article  Google Scholar 

  46. Benredjem, B., Dallaire, P. & Pineyro, G. Analyzing biased responses of GPCR ligands. Curr. Opin. Pharmacol. 32, 71–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Urban, J. D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Pupo, A. S. et al. Recent updates on GPCR biased agonism. Pharmacol. Res. 112, 49–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Reiter, E. et al. β-Arrestin signalling and bias in hormone-responsive GPCRs. Mol. Cell. Endocrinol. 449, 28–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Thompson, G. L. et al. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem. Pharmacol. 113, 70–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Kenakin, T. Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther. 336, 296–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Soergel, D. G. et al. First clinical experience with TRV130: pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol. 54, 351–357 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Soergel, D. G. et al. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155, 1829–1835 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. DeWire, S. M. et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Schmid, C. L. et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171, 1165–1175.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Majumdar, S. & Devi, L. A. Strategy for making safer opioids bolstered. Nature 553, 286–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Volkow, N. D. & Collins, F. S. The role of science in addressing the opioid crisis. N. Engl. J. Med. 377, 391–394 (2017).

    Article  PubMed  Google Scholar 

  59. Sivertsen, B., Holliday, N., Madsen, A. N. & Holst, B. Functionally biased signalling properties of 7TM receptors — opportunities for drug development for the ghrelin receptor. Br. J. Pharmacol. 170, 1349–1362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanania, N. A., Dickey, B. F. & Bond, R. A. Clinical implications of the intrinsic efficacy of β-adrenoceptor drugs in asthma: full, partial and inverse agonism. Curr. Opin. Pulm. Med. 16, 1–5 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stotts, A. L., Dodrill, C. L. & Kosten, T. R. Opioid dependence treatment: options in pharmacotherapy. Expert Opin. Pharmacother. 10, 1727–1740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pich, E. M. & Collo, G. Pharmacological targeting of dopamine D3 receptors: possible clinical applications of selective drugs. Eur. Neuropsychopharmacol. 25, 1437–1447 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Greene, S. J. et al. Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail Rev. 21, 95–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. da Silva Junior, E. D. et al. Factors influencing biased agonism in recombinant cells expressing the human α1A -adrenoceptor. Br. J. Pharmacol. 174, 2318–2333 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pándy-Szekeres, G. et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46, D440–D446 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Draper-Joyce, C. J. et al. Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature 558, 559–563 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Koehl, A. et al. Structure of the μ-opioid receptor–Gi protein complex. Nature 558, 547–552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ghosh, E., Nidhi, K. & Shukla, A. K. SnapShot: GPCR-ligand interactions. Cell 159, 1712 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, D. et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520, 317–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fenalti, G. et al. Molecular control of δ-opioid receptor signalling. Nature 506, 191–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 A structure of the human β2-adrenergic receptor. Structure 16, 897–905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: structures in motion. Chem. Rev. 117, 139–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Cong, X., Topin, J. & Golebiowski, J. Class A GPCRs: structure, function, modeling and structure-based ligand design. Curr. Pharm. Des. 23, 4390–4409 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Tautermann, C. S. GPCR structures in drug design, emerging opportunities with new structures. Bioorg. Med. Chem. Lett. 24, 4073–4079 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    Article  CAS  Google Scholar 

  83. Tehan, B. G., Bortolato, A., Blaney, F. E., Weir, M. P. & Mason, J. S. Unifying family A GPCR theories of activation. Pharmacol. Ther. 143, 51–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Manglik, A. & Kruse, A. C. Structural basis for G Protein-coupled receptor activation. Biochemistry 56, 5628–5634 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Kumari, P., Ghosh, E. & Shukla, A. K. Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol. Med. 21, 687–701 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Zou, Y., Weis, W. I. & Kobilka, B. K. N-Terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLOS ONE 7, e46039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thompson, A. A. et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485, 395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doré, A. S. et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19, 1283–1293 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lebon, G., Bennett, K., Jazayeri, A. & Tate, C. G. Thermostabilisation of an agonist-bound conformation of the human adenosine A2A receptor. J. Mol. Biol. 409, 298–310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W. & Tate, C. G. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536, 104–107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hino, T. et al. G-Protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482, 237–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Warne, T., Edwards, P. C., Leslie, A. G. & Tate, C. G. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20, 841–849 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, X., Stevens, R. C. & Xu, F. The importance of ligands for G protein-coupled receptor stability. Trends Biochem. Sci. 40, 79–87 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Shihoya, W. et al. Activation mechanism of endothelin ET. Nature 537, 363–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. White, J. F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, Z. et al. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature 556, 520–524 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mittermaier, A. & Kay, L. Observing biological dynamics at atomic resolution using NMR. Trends Biochem. Sci. 34, 601–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Osawa, M., Takeuchi, K., Ueda, T., Nishida, N. & Shimada, I. Functional dynamics of proteins revealed by solution NMR. Curr. Opin. Struct. Biol. 22, 660–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Ikeya, T. et al. Solution NMR views of dynamical ordering of biomacromolecules. Biochim. Biophys. Acta 1862, 287–306 (2018).

    Article  CAS  Google Scholar 

  103. Bhabha, G. et al. A dynamic knockout reveals that conformational fuctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kerns, S. J. et al. The energy landscape of adenylate kinase during catalysis. Nat. Struct. Mol. Biol. 22, 124–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lange, O. F. et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320, 1471–1475 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Morrison, E. A. et al. Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481, 45–50 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Brüschweiler, S., Yang, Q., Run, C. & Chou, J. J. Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion. Nat. Struct. Mol. Biol. 22, 636–641 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Minato, Y. et al. Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc. Natl Acad. Sci. USA 113, 4741–4746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nishida, N. et al. Functional dynamics of cell surface membrane proteins. J. Magn. Reson. 241, 86–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tugarinov, V., Hwang, P. M., Ollerenshaw, J. E. & Kay, L. E. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125, 10420–10428 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012). Based on observation of CF 3 NMR signals of TET at C265 and C327, this study identifies local conformational equilibria of TMVI and TMVII, which are then related to variable efficacy and biased signalling of β 2 AR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kofuku, Y. et al. Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat. Commun. 3, 1045 (2012). Based on observation of methionine methyl group NMR signals, this study identifies local conformational equilibria of β 2 AR that are related to variable drug efficacy.

    Article  PubMed  CAS  Google Scholar 

  114. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016). In this study, observation of valine backbone 15N–1H NMR signals of β 1 AR reveals changes in the backbone conformation related to drug binding and formation of a tertiary complex with a G protein-mimicking nanobody.

    Article  CAS  PubMed  Google Scholar 

  115. Solt, A. S. et al. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nat. Commun. 8, 1795 (2017). Based on observation of methionine methyl NMR signals, efficacy-dependent local conformational equilibria are identified for β 1 AR, and it is shown that a single conformation is present after binding to a G protein-mimicking nanobody.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bokoch, M. P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chung, K. Y. et al. Role of detergents in conformational exchange of a G protein-coupled receptor. J. Biol. Chem. 287, 36305–36311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013). Based on observation of methionine methyl group NMR signals, this study reveals that β 2 AR exists in equilibria among multiple conformations in the full agonist-bound state and adopts a single specific conformation in the ternary complex obtained by additional binding of a nanobody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, T. H. et al. The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135, 9465–9474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Horst, R., Liu, J. J., Stevens, R. C. & Wüthrich, K. β2-adrenergic receptor activation by agonists studied with 19F NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 52, 10762–10765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kofuku, Y. et al. Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew. Chem. Int. Ed. 53, 13376–13379 (2014). In this study, observation of methionine methyl group NMR signals of partially deuterated β 2 AR reveals variations in the relative populations of different conformers and the rates of conformational exchange between β 2 AR reconstituted in detergent micelles and in lipid nanodiscs, respectively.

    Article  CAS  Google Scholar 

  122. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eddy, M. T., Didenko, T., Stevens, R. C. & Wüthrich, K. β2-adrenergic receptor conformational response to fusion protein in the third intracellular loop. Structure 24, 2190–2197 (2016). Based on observation of the CF 3 NMR signals of TET at C265 and C327, the fusion of T4 lysozyme into ICL3 of β 2 AR is shown to block function-related conformational equilibria near the cytoplasmic surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shiraishi, Y. et al. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat. Commun. 9, 194 (2018). In this study, observation of segmentally labelled β 2 AR containing the [u-2H,13C,15N]-labelled C-terminal polypeptide segment of residues 349 to 413 attached to the unlabelled β 2 AR polypeptide 1–348 reveals a phosphorylation-induced conformation of β 2 AR that preferentially interacts with β-arrestin.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ye, L., Van Eps, N., Zimmer, M., Ernst, O. P. & Prosser, R. S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Clark, L. D. et al. Ligand modulation of sidechain dynamics in a wild-type human GPCR. eLife 6, e28505 (2017). Observing the isoleucine methyl NMR signals, A 2A AR is shown to undergo conformational changes at variable sodium concentration.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Eddy, M. T. et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172, 68–80.e12 (2018). Observation of the tryptophan side chain and glycine backbone signals in 2H-labelled and 15N-labelled A 2A AR results in a comprehensive characterization of signalling-related structural plasticity.

    Article  CAS  PubMed  Google Scholar 

  128. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015). Observation of the methyl NMR signals of reductively methylated lysine side chains reveals conformational rearrangements upon activation of MOR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Okude, J. et al. Identification of a conformational equilibrium that determines the efficacy and functional selectivity of the μ-opioid receptor. Angew. Chem. Int. Ed. Engl. 54, 15771–15776 (2015). Observation of methionine methyl NMR signals in deuterated and methionine methyl-labelled MOR identifies conformational equilibria related to biased signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Casiraghi, M. et al. Functional modulation of a G protein-coupled receptor conformational landscape in a lipid bilayer. J. Am. Chem. Soc. 138, 11170–11175 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Ye, L. et al. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun. 9, 1372 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. O'Connor, C. et al. NMR structure and dynamics of the agonist dynorphin peptide bound to the human κ opioid receptor. Proc. Natl Acad. Sci. USA 112, 11852–11857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, S. H., Berkamp, S., Radoicic, J., De Angelis, A. A. & Opella, S. J. Interaction of monomeric interleukin-8 with CXCR1 mapped by proton-detected fast MAS solid-state NMR. Biophys. J. 113, 2695–2705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Berkamp, S., Park, S. H., De Angelis, A. A., Marassi, F. M. & Opella, S. J. Structure of monomeric interleukin-8 and its interactions with the N-terminal binding site-I of CXCR1 by solution NMR spectroscopy. J. Biomol. NMR 69, 111–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bartoschek, S. et al. Drug design for G-protein-coupled receptors by a ligand-based NMR method. Angew. Chem. 49, 1426–1429 (2010).

    Article  CAS  Google Scholar 

  136. Joedicke, L. et al. The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors. Nat. Chem. Biol. 14, 284–290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goricanec, D. et al. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proc. Natl Acad. Sci. USA 113, E3629–E3638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Toyama, Y. et al. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nat. Commun. 8, 14523 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhuang, T. et al. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc. Natl Acad. Sci. USA 110, 942–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. London, R. E., Wingad, B. D. & Mueller, G. A. Dependence of amino acid side chain 13C shifts on dihedral angle: application to conformational analysis. J. Am. Chem. Soc. 130, 11097–11105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Butterfoss, G. L. et al. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. J. Biomol. NMR 48, 31–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Perkins, S. J. & Wüthrich, K. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor. Biochim. Biophys. Acta 576, 409–423 (1979).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, D. & Wüthrich, K. Ring current shifts in 19F-NMR of membrane proteins. J. Biomol. NMR 65, 1–5 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Pintacuda, G. & Otting, G. Identification of protein surfaces by NMR measurements with a pramagnetic Gd(III) chelate. J. Am. Chem. Soc. 124, 372–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Bloembergen, N., Purcell, E. M. & Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948).

    Article  CAS  Google Scholar 

  146. Staus, D. P. et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gether, U. et al. Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor. EMBO J. 16, 6737–6747 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ghanouni, P., Steenhuis, J. J., Farrens, D. L. & Kobilka, B. K. Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor. Proc. Natl Acad. Sci. USA 98, 5997–6002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yao, X. et al. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nat. Chem. Biol. 2, 417–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Yao, X. J. et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc. Natl Acad. Sci. USA 106, 9501–9506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR-G-protein activation. Nature 547, 68–73 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lamichhane, R. et al. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR. Proc. Natl Acad. Sci. USA 112, 14254–14259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stumpf, A. D. & Hoffmann, C. Optical probes based on G protein-coupled receptors – added work or added value? Br. J. Pharmacol. 173, 255–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Rahmeh, R. et al. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl Acad. Sci. USA 109, 6733–6738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kahsai, A. W. et al. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat. Chem. Biol. 7, 692–700 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xiao, K., Chung, J. & Wall, A. The power of mass spectrometry in structural characterization of GPCR signaling. J. Recept. Signal Transduct. Res. 35, 213–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. West, G. M. et al. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. Structure 19, 1424–1432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wisler, J. W. et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Drake, M. T. et al. β-Arrestin-biased agonism at the β2-adrenergic receptor. J. Biol. Chem. 283, 5669–5676 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Carr, R. et al. β-Arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc. Natl Acad. Sci. USA 113, E4107–E4116 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Boom, M. et al. Non-analgesic effects of opioids: opioid-induced respiratory depression. Curr. Pharm. Des. 18, 5994–6004 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Dahan, A. et al. Anesthetic potency and influence of morphine and sevoflurane on respiration in μ-opioid receptor knockout mice. Anesthesiology 94, 824–832 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, X. T. et al. Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan- 9-yl]ethyl})amine (TRV130), for the treatment of acute severe pain. J. Med. Chem. 56, 8019–8031 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Huang, W. et al. Structural insights into μ-opioid receptor activation. Nature 524, 315–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ferré, S. et al. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog. Neurobiol. 83, 332–347 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Schiffmann, S. N., Fisone, G., Moresco, R., Cunha, R. A. & Ferré, S. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 83, 277–292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Young, A. et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30, 391–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Hatfield, S. M. & Sitkovsky, M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr. Opin. Pharmacol. 29, 90–96 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Leone, R. D., Lo, Y. C. & Powell, J. D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J. 13, 265–272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mediavilla-Varela, M. et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol. Ther. 14, 860–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mittal, D. et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74, 3652–3658 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. & Tate, C. G. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536, 104–107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sušac, L., O'Connor, C., Stevens, R. C. & Wüthrich, K. In-Membrane Chemical Modification (IMCM) for site-specific chromophore labeling of GPCRs. Angew. Chem. Int. Ed. Engl. 54, 15246–15249 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Susac, L. NMR studies of GPCR structure and function. Thesis, The Scripps Research Institute (2015).

    Google Scholar 

  179. Piirainen, H. et al. Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner. Biophys. J. 108, 903–917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tossavainen, H., Hellman, M., Piirainen, H., Jaakola, V. & Permi, P. H.-N. N, C-a, C-β and C' assignments of the intrinsically disordered C-terminus of human adenosine A2A receptor. Biomol. NMR Assign. 9, 403–406 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Venkatakrishnan, A. J. et al. Structured and disordered facets of the GPCR fold. Curr. Opin. Struct. Biol. 27, 129–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Berlow, R. B., Dyson, H. J. & Wright, P. E. Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. J. Mol. Biol. 430, 2309–2320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nature 16, 18–29 (2015).

    CAS  Google Scholar 

  184. Oh, D. Y. & Olefsky, J. M. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat. Rev. Drug Discov. 15, 161–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Prasad-Reddy, L. & Isaacs, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context 4, 212283 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hou, Y. et al. Solvent-accessibility of discrete residue positions in the polypeptide hormone glucagon by 19F-NMR observation of 4-fluorophenylalanine. J. Biomol. NMR 68, 1–6 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  189. Andrews, S. P., Brown, G. A. & Christopher, J. A. Structure-based and fragment-based GPCR drug discovery. ChemMedChem 9, 256–275 (2013).

    Article  PubMed  CAS  Google Scholar 

  190. Congreve, M. et al. Fragment screening of stabilized G-protein-coupled receptors using biophysical methods. Methods Enzymol. 493, 115–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Chen, D. et al. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A2A receptor with novel biological activity. ACS Chem. Biol. 7, 2064–2073 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Igonet, S. et al. Enabling STD-NMR fragment screening using stabilized native GPCR: a case study of adenosine receptor. Sci. Rep. 8, 8142 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Pellecchia, M., Sem, D. S. & Wüthrich, K. NMR in drug discovery. Nat. Rev. Drug Discov. 1, 211–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Hajduk, P. J. & Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Mizukoshi, Y. et al. Improvement of ligand affinity and thermodynamic properties by NMR-based evaluation of local dynamics and surface complementarity in the receptor-bound state. Angew. Chem. 55, 14606–14609 (2016).

    Article  CAS  Google Scholar 

  196. Brancaccio, D. et al. Ligand-based NMR study of C-X-C chemokine receptor type 4 (CXCR4)–ligand interactions on living cancer cells. J. Med. Chem. 61, 2910–2923 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Inooka, H. et al. Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat. Struct. Biol. 8, 161–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  198. Fredriksson, K. et al. Nanodiscs for INPHARMA NMR characterization of GPCRs: ligand binding to the Human A2A adenosine receptor. Angew. Chem. Int. Ed. Engl. 56, 5750–5754 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Cox, B. D. et al. Structural analysis of CXCR4–antagonist interactions using saturation-transfer double-difference NMR. Biochem. Biophys. Res. Commun. 466, 28–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Yong, K. J. et al. Determinants of ligand subtype-selectivity at α1A-adrenoceptor revealed using saturation transfer difference (STD) NMR. ACS Chem. Biol. 13, 1090–1102 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Assadi-Porter, F. M. et al. Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J. Am. Chem. Soc. 130, 7212–7213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kofuku, Y. et al. Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J. Biol. Chem. 284, 35240–35250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yoshiura, C. et al. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments. J. Biomol. NMR 63, 333–340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yoshiura, C. et al. NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bailayers. J. Am. Chem. Soc. 132, 6768–6777 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Catoire, L. J. et al. Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J. Am. Chem. Soc. 132, 9049–9057 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Zheng, Z. et al. Structure-based discovery of new antagonist and biased agonist chemotypes for the κ opioid receptor. J. Med. Chem. 60, 3070–3081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ring, A. M. et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mary, S. et al. Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc. Natl Acad. Sci. USA 109, 8304–8309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shonberg, J. et al. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem. 56, 9199–9221 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lewi, P. J. et al. On the detection of multiple-binding modes of ligands to proteins, from biological, structural, and modeling data. J. Comput. Aided Mol. Des. 17, 129–134 (2003).

    Article  PubMed  Google Scholar 

  213. Wittmann, H. J. & Strasser, A. Competitive association binding kinetic assays: a new tool to detect two different binding orientations of a ligand to its target protein under distinct conditions? Naunyn Schmiedebergs Arch. Pharmacol. 390, 595–612 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Bock, A. et al. Dynamic ligand binding dictates partial agonism at a G protein-coupled receptor. Nat. Chem. Biol. 10, 18–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Bruchas, M. R. & Roth, B. L. New technologies for elucidating opioid receptor function. Trends Pharmacol. Sci. 37, 279–289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sharp, K. A., O'Brien, E., Kasinath, V. & Wand, A. J. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes. Proteins 83, 922–930 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yasuhara, K. et al. Spontaneous lipid nanodisc fomation by amphiphilic polymethacrylate copolymers. J. Am. Chem. Soc. 139, 18657–18663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, G. & Hilty, C. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry. Mag. Res. Chem. 56, 566–582 (2018).

    Article  CAS  Google Scholar 

  220. Ragavan, M., Chen, H.-Y., Sekar, G. & Hilty, C. Solution NMR of polypeptides hyperpolarized by dynamic nuclear polarization. Analyt. Chem. 83, 6054–6059 (2011).

    Article  CAS  Google Scholar 

  221. Bajaj, V. S., Mak-Jurkauskas, M. L., Belenky, M., Herzfeld, J. & Griffin, R. G. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc. Natl Acad. Sci. USA 106, 9244–9249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mak-Jurkauskas, M. L. et al. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc. Natl Acad. Sci. USA 105, 883–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ni, Q. Z. et al. Primary transfer step in the light-driven ion pump bacteriorhodopsin: an irreversible u-turn revealed by dynamic nuclear polarization-enhanced magic angle spinning NMR. J. Am. Chem. Soc. 140, 4085–4091 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Frederick, K. K. et al. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163, 620–628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. George, S. R., O'Dowd, B. F. & Lee, S. P. G-Protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  226. Gurevich, V. V. & Gurevich, E. V. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends Pharmacol. Sci. 39, 672–684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nørskov-Lauritsen, L. & Bräuner-Osborne, H. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. Eur. J. Pharmacol. 763, 233–240 (2015).

    Article  PubMed  CAS  Google Scholar 

  228. Klein, K. R., Matson, B. C. & Caron, K. M. The expanding repertoire of receptor activity modifying protein (RAMP) function. Crit. Rev. Biochem. Mol. Biol. 51, 65–71 (2015).

    Article  CAS  Google Scholar 

  229. Zhang, H. et al. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546, 259–264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang, X. et al. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat. Commun. 8, 15383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Noguchi, S. & Satow, Y. Purification of human β2-adrenergic receptor expressed in methylotrophic yeast Pichia pastoris. J. Biochem. 140, 799–804 (2006).

    Article  CAS  PubMed  Google Scholar 

  232. Krettler, C., Reinhart, C. & Bevans, C. G. Expression of GPCRs in Pichia pastoris for structural studies. Methods Enzymol. 520, 1–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Yurugi-Kobayashi, T. et al. Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem. Biophys. Res. Commun. 380, 271–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  234. Shimamura, T. et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Eddy, M. T. et al. Extrinsic tryptophans as NMR probes of allosteric coupling in membrane proteins: application to the A2A adenosine receptor. J. Am. Chem. Soc. 140, 8228–8235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Klein-Seetharaman, J., Getmanova, E. V., Loewen, M. C., Reeves, P. J. & Khorana, H. G. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR. Proc. Natl Acad. Sci. USA 96, 13744–13749 (1999). This is the first report using extrinsic trifluoromethyl groups for solution 19F NMR studies of integral membrane proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Otting, G. Protein NMR using paramagnetic ions. Annu. Rev. Biophys. 39, 387–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Clore, G. M. & Iwahara, J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109, 4108–4139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Iwahara, J., Tang, C. & Clore, G. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Mag. Reson. 184, 185–195 (2007).

    Article  CAS  Google Scholar 

  240. Su, X.-C. & Otting, G. Paramagnetic labelling of proteins and oligonucleotides for NMR. J. Biomol. NMR 46, 101–112 (2009).

    Article  PubMed  CAS  Google Scholar 

  241. Huang, S. et al. Utilization of paramagnetic relaxation enhancements for structural analysis of actin-binding proteins in complex with actin. Sci. Rep. 6, 33690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Salzmann, M., Wider, G., Pervushin, K., Senn, H. & Wüthrich, K. TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J. Am. Chem. Soc. 121, 844–848 (1999).

    Article  CAS  Google Scholar 

  243. Clark, L. et al. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris. J. Biomol. NMR 62, 239–245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Opitz, C., Isogai, S. & Grzesiek, S. An economic approach to efficient isotope labeling in insect cells using homemade 15N-,13C- and 2H-labeled yeast extracts. J. Biomol. NMR 62, 373–385 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Franke, B. et al. Production of isotope-labeled proteins in insect cells for NMR. J. Biomol. NMR 22, 1583–1512 (2018).

    Google Scholar 

  246. Kofuku, Y. et al. Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system. J. Biomol. NMR 71, 185–192 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Huber, T., Naganathan, S., Tian, H., Ye, S. & Sakmar, T. P. Unnatural amino acid mutagenesis of GPCRs using amber codon suppression and bioorthogonal labeling. Methods Enzymol. 520, 281–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Grunbeck, A., Huber, T., Sachdev, P. & Sakmar, T. P. Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry 50, 3411–3413 (2011).

    Article  CAS  PubMed  Google Scholar 

  249. Daggett, K. A. & Sakmar, T. P. Site-specific in vitro and in vivo incorporation of molecular probes to study G-protein-coupled receptors. Curr. Opin. Chem. Biol. 15, 392–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  250. Ye, S. et al. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464, 1386–1389 (2010).

    Article  CAS  PubMed  Google Scholar 

  251. Egloff, P. et al. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 111, E655–E662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Casiraghi, M., Damian, M., Lescop, E., Banères, J.-L. & Catoire, L. J. Illuminating the energy landscape of GPCRs: the key contribution of solution-state NMR associated with Escherichia coli as an expression host. Biochemistry 57, 2297–2307 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Maly, J. & Crowhurst, K. A. Expression, purification and preliminary NMR characterization of isotopically labeled wild-type human heterotrimeric G protein αi1 . Protein Expr. Purif. 84, 255–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  254. Sounier, R., Yang, Y., Hagelberger, J., Granier, S. & Déméné, H. 1H, 13C, and 15N backbone chemical shift assignments of camelid single-domain antibodies against active state μ -opioid receptor. Biomol. NMR Assign. 11, 117–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Dawaliby, R. et al. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat. Chem. Biol. 12, 35–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Pei, G., Tiberi, M., Caron, M. G. & Lefkowitz, R. J. An approach to the study of G-protein-coupled receptor kinases: an in vitro-purified membrane assay reveals differential receptor specificity and regulation by Gβγ subunits. Proc. Natl Acad. Sci. USA 91, 3633–3636 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Bayburt, T. H., Grinkova, Y. V. & Sligar, S. G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002).

    Article  CAS  Google Scholar 

  258. Denisov, I. G. & Sligar, S. G. Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117, 4669–4713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Denisov, I. G., Grinkova, Y. V., Lazarides, A. A. & Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 (2004).

    Article  CAS  PubMed  Google Scholar 

  260. Leitz, A. J., Bayburt, T. H., Barnakov, A. N., Springer, B. A. & Sligar, S. G. Functional reconstitution of β2-adrenergic receptors utilizing self-assembling Nanodisc technology. BioTechniques https://doi.org/10.2144/000112169 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Bocquet, N. et al. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. Biochim. Biophys. Acta 1848, 1224–1233 (2015).

    Article  CAS  PubMed  Google Scholar 

  262. Van Eps, N. et al. Conformational equilibria of light-activated rhodopsin in nanodiscs. Proc. Natl Acad. Sci. USA 114, E3268–E3275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Dijkman, P. M. & Watts, A. Lipid modulation of early G protein-coupled receptor signalling events. Biochim. Biophys. Acta 1848, 2889–2897 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Bayburt, T. H. et al. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286, 1420–1428 (2011).

    Article  CAS  PubMed  Google Scholar 

  265. Inagaki, S. et al. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 417, 95–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mitra, N. et al. Calcium-dependent ligand binding and G-protein signaling of family B GPCR parathyroid hormone 1 receptor purified in nanodiscs. ACS Chem. Biol. 8, 617–625 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. El Moustaine, D. et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc. Natl Acad. Sci. USA 109, 16342–16347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Schuler, M. A., Denisov, I. G. & Sligar, S. G. Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol. Biol. 974, 415–433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Nasr, M. L. et al. Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods 14, 49–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  270. Chien, C. H. et al. An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. J. Am. Chem. Soc. 139, 14829–14832 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Frauenfeld, J. et al. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13, 345–351 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Orwick, M. C. et al. Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew. Chem. Int. Ed. Engl. 51, 4653–4657 (2012).

    Article  CAS  PubMed  Google Scholar 

  273. Imai, S. et al. Functional equilibrium of the KcsA structure revealed by NMR. J. Biol. Chem. 287, 39634–39641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Moreira, F. A. & Dalley, J. W. Dopamine receptor partial agonists and addiction. Eur. J. Pharmacol. 752, 112–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  275. Shi, L. et al. β2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 277, 40989–40996 (2002).

    Article  CAS  PubMed  Google Scholar 

  276. Schwartz, T. W., Frimurer, T. M., Holst, B., Rosenkilde, M. M. & Elling, C. E. Molecular mechanism of 7TM receptor activation — a global toggle switch model. Annu. Rev. Pharmacol. Toxicol. 46, 481–519 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by The Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Society for the Promotion of Science (JSPS) KAKENHI, grant numbers JP17H06097 (I.S.), JP18H04540 (T.U.) and JP17H04999 (Y.K.); the development of core technologies for innovative drug development based upon IT and the development of innovative drug discovery technologies for middle-sized molecules, from the Japan Agency for Medical Research and Development (AMED; I.S.); an American Cancer Society Postdoctoral Fellowship (M.T.E.); and NIH/NIGMS R01GM115825 (K.W.). K.W. is the Cecil H. and Ida M. Green Professor of Structural Biology at The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ichio Shimada or Kurt Wüthrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

RELATED LINKS

RCSB Protein Data Bank

PowerPoint slides

Glossary

Allosteric modulation

Allosteric modulators are molecules that bind to sites on G protein-coupled receptors that are spatially distinct from the orthosteric binding pocket and modulate the affinity and/or efficacy of drugs bound to the orthosteric site. Allosteric modulators can be synthetic or endogenous compounds or metal ions in the cellular environment.

Biased signalling

G protein-coupled receptor agonists can activate both G protein and β-arrestin signalling pathways (as shown in Fig. 1). Agonists that activate predominantly one of the intracellular pathways are referred to as 'biased ligands'. Drugs functioning as agonists may produce unwanted side effects mediated through the activation of multiple signalling pathways. Such side effects can be minimized by designing biased ligands that selectively activate only the signalling pathway required to produce the desired therapeutic response.

Conformational equilibria

Solution NMR studies established that G protein-coupled receptors in near-physiological environments exist in multiple, locally different conformers that are simultaneously populated in function-related equilibria. It has been shown that the relative populations of these conformers are related to the efficacies and the bias of bound drugs.

Efficacy

The extent to which a G protein-coupled receptor (GPCR) ligand changes the receptor signalling intensity relative to its basal level. The efficacy is a key determinant of the therapeutic properties of a GPCR-targeting drug.

Motif

A polypeptide segment of two or several amino acids that are highly conserved among G protein-coupled receptors of a given class. Motifs have been identified as key components of activation centres, which are clusters of closely spaced amino acids in the 3D structure.

Transverse relaxation-optimized spectroscopy

(TROSY). An experiment that enables solution NMR studies of large macromolecules or supramolecular structures, in particular of membrane proteins reconstituted into micelles, bicelles or nanodiscs.

Labelling with stable isotopes

NMR spectroscopy with complex biomacromolecular systems is routinely based on labelling of proteins or other components with stable NMR-observable isotopes. Widely used stable isotopes in G-protein coupled receptor research are 2H, 13C, 15N and 19F.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, I., Ueda, T., Kofuku, Y. et al. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 18, 59–82 (2019). https://doi.org/10.1038/nrd.2018.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.180

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research