Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting macrophages: therapeutic approaches in cancer

Abstract

Infiltration of macrophages in solid tumours is associated with poor prognosis and correlates with chemotherapy resistance in most cancers. In mouse models of cancer, macrophages promote cancer initiation and malignant progression by stimulating angiogenesis, increasing tumour cell migration, invasion and intravasation and suppressing antitumour immunity. At metastatic sites, macrophages promote tumour cell extravasation, survival and subsequent growth. Each of these pro-tumoural activities is promoted by a subpopulation of macrophages that express canonical markers but have unique transcriptional profiles, which makes tumour-associated macrophages (TAMs) good targets for anticancer therapy in humans through either their ablation or their re-differentiation away from pro-tumoural towards antitumoural states. In this Review, we evaluate the state of the art of TAM-targeting strategies, focusing on the limitations and potential side effects of the different therapies such as toxicity, rebound effects and compensatory mechanisms. We provide an extensive overview of the different types of therapy used in the clinic and their limitations in light of known macrophage biology and propose new strategies for targeting TAMs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophage infiltration and survival in cancer.
Figure 2: Macrophage diversity drives tumour progression to metastasis and resistance to therapy.
Figure 3: Targeting and reprogramming TAM pro-tumoural activities.
Figure 4: Selective examples of anti-TAM drugs currently under clinical trial investigation.

Similar content being viewed by others

References

  1. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  PubMed  Google Scholar 

  2. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018). This paper shows both the recruitment of monocytes and their ultimate differentiation to perivascular macrophages that promote tumour cell intravasation.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).This is the first paper to show that classical monocytes are recruited to lung metastases from breast tumours through a CCL2–CCR2-dependent mechanism and that inhibition of this recruitment reduces metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 597 (2017). This paper shows that TAMs in pancreatic ductal adenocarcinoma originate from both bone marrow-derived monocytes and embryonic-derived tissue-resident macrophages and that the latter support tumour progression.

    CAS  PubMed  Google Scholar 

  7. Chen, Z. et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon, S., Plüddemann, A. & Martinez Estrada, F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 262, 36–55 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    CAS  PubMed  Google Scholar 

  16. Stanley, E. R. & Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, a021857 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    CAS  PubMed  Google Scholar 

  18. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Baghdadi, M. et al. Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells. Cancer Res. 76, 6030–6042 (2016).

    CAS  PubMed  Google Scholar 

  20. Prehn, R. T. The immune reaction as a stimulator of tumor growth. Science 176, 170–171 (1972). This is a study that introduces the idea that immune cells promote tumour growth.

    CAS  PubMed  Google Scholar 

  21. Fidler, I. J. & Schroit, A. J. Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim. Biophys. Acta 948, 151–173 (1988).

    CAS  PubMed  Google Scholar 

  22. Mantovani, A., Ming, W. J., Balotta, C., Abdeljalil, B. & Bottazzi, B. Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim. Biophys. Acta 865, 59–67 (1986).

    CAS  PubMed  Google Scholar 

  23. Hibbs, J. B., Vavrin, Z. & Taintor, R. R. L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 138, 550–565 (1987).

    CAS  PubMed  Google Scholar 

  24. Lewis, C. E. & Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605–612 (2006).

    CAS  PubMed  Google Scholar 

  25. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001). This is the first study to show that CSF1 and macrophages promote tumour progression and metastasis of mammary tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  27. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Q. W. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLOS ONE 7, e50946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin, S. et al. The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: a meta-analysis. PLOS ONE 12, e0170042 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Zhao, X. et al. Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget 8, 30576–30586 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Guo, B., Cen, H., Tan, X. & Ke, Q. Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical Hodgkin lymphoma. BMC Med. 14, 159 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Mei, J. et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. Oncotarget 7, 34217–34228 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Chambers, S. K., Wang, Y., Gertz, R. E. & Kacinski, B. M. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 55, 1578–1585 (1995).

    CAS  PubMed  Google Scholar 

  35. Kacinski, B. M. et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene 6, 941–952 (1991).

    CAS  PubMed  Google Scholar 

  36. Scholl, S. M. et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. Br. J. Cancer 69, 342–346 (1994). This is the first study to show that elevated levels of CSF1 are an independent prognostic factor associated with poor survival in patients with ovarian cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Price, F. V. et al. Colony-stimulating factor-1 in primary ascites of ovarian cancer is a significant predictor of survival. Am. J. Obstet. Gynecol. 168, 520–527 (1993).

    CAS  PubMed  Google Scholar 

  38. Smith, H. O. et al. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin. Cancer Res. 1, 313–325 (1995). This is the first prospective study to show that patients with endometrial cancer have elevated levels of serum CSF1 and high expression of CSF1 and its receptor at the tissue level compared with control groups.

    CAS  PubMed  Google Scholar 

  39. Smith, H. O. et al. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma. Mol. Oncol. 7, 41–54 (2013).

    PubMed  Google Scholar 

  40. West, R. B. et al. Determination of stromal signatures in breast carcinoma. PLOS Biol. 3, e187 (2005).

    PubMed  PubMed Central  Google Scholar 

  41. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sapi, E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp. Biol. Med. 229, 1–11 (2004).

    CAS  Google Scholar 

  43. Tang, R. et al. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J. Cell. Biochem. 50, 350–356 (1992).

    CAS  PubMed  Google Scholar 

  44. Scholl, S. M. et al. Expression of colony-stimulating factor-1 and its receptor (the protein product of c-fms) in invasive breast tumor cells: induction of urokinase production via this pathway? Ann. NY Acad. Sci. 698, 131–135 (1993).

    CAS  PubMed  Google Scholar 

  45. Chambers, S. K., Kacinski, B. M., Ivins, C. M. & Carcangiu, M. L. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin. Cancer Res. 3, 999–1007 (1997).

    CAS  PubMed  Google Scholar 

  46. Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571–579 (2010).

    CAS  PubMed  Google Scholar 

  47. Crusz, S. M. & Balkwill, F. R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584–596 (2015).

    CAS  PubMed  Google Scholar 

  48. Moore, R. J. et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat. Med. 5, 828–831 (1999).

    CAS  PubMed  Google Scholar 

  49. Canli, O. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883 (2017).

    CAS  PubMed  Google Scholar 

  50. Balkwill, F. R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012).

    CAS  PubMed  Google Scholar 

  51. Deng, L. et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am. J. Pathol. 176, 952–967 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kong, L. et al. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J. Exp. Clin. Cancer Res. 35, 131 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Oft, M. IL-10: master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol. Res. 2, 194–199 (2014).

    CAS  PubMed  Google Scholar 

  54. Jobin, C. Precision medicine using microbiota. Science 359, 32–34 (2018).

    CAS  PubMed  Google Scholar 

  55. Jobin, C. Colorectal cancer: looking for answers in the microbiota. Cancer Discov. 3, 384–387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

    CAS  PubMed  Google Scholar 

  57. DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009). This study elucidates a pro-tumoural role of IL-4-expressing CD4+ T H 2 cells, which regulate the phenotype of macrophages in mammary tumours and promote tumour progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bruno, A. et al. Orchestration of angiogenesis by immune cells. Front. Oncol. 4, 131 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    CAS  PubMed  Google Scholar 

  61. Yeo, E. J. et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74, 2962–2973 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 67, 5064–5066 (2007).

    CAS  PubMed  Google Scholar 

  63. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hirano, H., Tanioka, K., Yokoyama, S., Akiyama, S. & Kuratsu, J. Angiogenic effect of thymidine phosphorylase on macrophages in glioblastoma multiforme. J. Neurosurg. 95, 89–95 (2001).

    CAS  PubMed  Google Scholar 

  65. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005). This is the first study to identify a novel population of pro-angiogenic monocytes expressing TIE2, which are recruited to the tumour and account for most of the pro-angiogenic activity among myeloid cells in the tumour.

    CAS  PubMed  Google Scholar 

  66. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011).

    CAS  PubMed  Google Scholar 

  67. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004). This study identifies a direct crosstalk between tumour cells and macrophages that involves EGF and CSF1 and is required for tumour cell migration.

    CAS  PubMed  Google Scholar 

  68. Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

    CAS  PubMed  Google Scholar 

  69. Hernandez, L. et al. The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12. Cancer Res. 69, 3221–3227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rohan, T. E. et al. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl Cancer Inst. 106, dju136 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Ojalvo, L. S., King, W., Cox, D. & Pollard, J. W. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am. J. Pathol. 174, 1048–1064 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S. & Pollard, J. W. Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J. Immunol. 184, 702–712 (2010).

    CAS  PubMed  Google Scholar 

  74. Morandi, F. & Pistoia, V. Interactions between HLA-G and HLA-E in physiological and pathological conditions. Front. Immunol. 5, 394 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Santarpia, M. & Karachaliou, N. Tumor immune microenvironment characterization and response to anti-PD-1 therapy. Cancer Biol. Med. 12, 74–78 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mellor, A. L., Keskin, D. B., Johnson, T., Chandler, P. & Munn, D. H. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J. Immunol. 168, 3771–3776 (2002).

    CAS  PubMed  Google Scholar 

  78. Mbongue, J. C. et al. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines 3, 703–729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLOS ONE 4, e6562 (2009). This is the first study to identify a novel subpopulation of TAMs that accumulate in metastatic lesions and promote tumour dissemination.

    PubMed  PubMed Central  Google Scholar 

  80. Kitamura, T. et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, L. et al. Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57, 829–839 (2013).

    CAS  PubMed  Google Scholar 

  82. Qian, B. Z. et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J. Exp. Med. 212, 1433–1448 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kitamura, T. et al. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of breast cancer. Front. Immunol. 8, 2004 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. Entenberg, D. et al. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital 4, e1086613 (2015).

    PubMed  Google Scholar 

  85. Chen, Q., Zhang, X. H. & Massague, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao, D. et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 72, 1384–1394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Camacho, D. F. & Pienta, K. J. A multi-targeted approach to treating bone metastases. Cancer Metastasis Rev. 33, 545–553 (2014).

    CAS  PubMed  Google Scholar 

  88. Madani, I., De Neve, W. & Mareel, M. Does ionizing radiation stimulate cancer invasion and metastasis? Bull. Cancer 95, 292–300 (2008).

    CAS  PubMed  Google Scholar 

  89. Moding, E. J., Kastan, M. B. & Kirsch, D. G. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat. Rev. Drug Discov. 12, 526–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Russell, J. S. & Brown, J. M. The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front. Physiol. 4, 157 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. Kaur, P. & Asea, A. Radiation-induced effects and the immune system in cancer. Front. Oncol. 2, 191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shiao, S. L. & Coussens, L. M. The tumor-immune microenvironment and response to radiation therapy. J. Mammary Gland Biol. Neoplasia 15, 411–421 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Teresa Pinto, A. et al. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci. Rep. 6, 18765 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Hellevik, T. & Martinez-Zubiaurre, I. Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front. Oncol. 4, 1 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Correia, A. L. & Bissell, M. J. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist. Updat. 15, 39–49 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shaked, Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat. Rev. Clin. Oncol. 13, 611–626 (2016).

    CAS  PubMed  Google Scholar 

  99. Paulus, P., Stanley, E. R., Schafer, R., Abraham, D. & Aharinejad, S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 66, 4349–4356 (2006). This study shows the antitumoural effects of anti-CSF1 therapy in MCF-7 breast cancer xenografts.

    CAS  PubMed  Google Scholar 

  100. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011). This study demonstrates that inhibition of macrophage recruitment in the tumour can influence response to chemotherapy, suggesting that macrophage targeting is a therapeutic strategy for cancer treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Alishekevitz, D. et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17, 1344–1356 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, X. et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett. 381, 305–313 (2016).

    CAS  PubMed  Google Scholar 

  104. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  105. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017). This study shows that human and mouse TAMs express PD1, which inhibits tumour phagocytosis. Inhibition of PD1 on TAMs reduced tumour growth, suggesting that checkpoint inhibitor therapy is also effective on TAMs.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl Med. 10, eaan3311 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02452424 (2018).

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02777710 (2017).

  111. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02880371 (2018).

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02829723 (2018).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02323191 (2018).

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02760797 (2018).

  115. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02713529 (2018).

  116. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02526017 (2018).

  117. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02718911 (2018).

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02807844 (2018).

  119. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02554812 (2018).

  120. Coniglio, S. J. et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med. 18, 519–527 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yan, D. et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene 36, 6049–6058 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tap, W. D. et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373, 428–437 (2015).

    CAS  PubMed  Google Scholar 

  123. Molena, B. et al. Synovial colony-stimulating factor-1 mRNA expression in diffuse pigmented villonodular synovitis. Clin. Exp. Rheumatol 29, 547–550 (2011).

    CAS  PubMed  Google Scholar 

  124. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014). This is the first clinical report showing activity of an anti-CSF1R antibody in diffuse-type giant cell tumours.

    CAS  PubMed  Google Scholar 

  125. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    PubMed  Google Scholar 

  126. von Tresckow, B. et al. An open-label, multicenter, phase I/II Study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory Hodgkin lymphoma. Clin. Cancer Res. 21, 1843–1850 (2015).

    CAS  PubMed  Google Scholar 

  127. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01804530 (2018).

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01316822 (2018).

  129. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013). This is an important paper in mouse models of glioblastoma that shows that macrophages can be repolarized to become antitumoural.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    CAS  PubMed  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02471716 (2018).

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03158272 (2018).

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01346358 (2018).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02265536 (2018).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03153410 (2018).

  137. Rodan, G. A. & Fleisch, H. A. Bisphosphonates: mechanisms of action. J. Clin. Invest. 97, 2692–2696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Stresing, V., Daubiné, F., Benzaid, I., Mönkkönen, H. & Clézardin, P. Bisphosphonates in cancer therapy. Cancer Lett. 257, 16–35 (2007).

    CAS  PubMed  Google Scholar 

  139. Van Acker, H. H., Anguille, S., Willemen, Y., Smits, E. L. & Van Tendeloo, V. F. Bisphosphonates for cancer treatment: mechanisms of action and lessons from clinical trials. Pharmacol. Ther. 158, 24–40 (2016).

    CAS  PubMed  Google Scholar 

  140. Moreau, M. F. et al. Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem. Pharmacol. 73, 718–723 (2007).

    CAS  PubMed  Google Scholar 

  141. Rogers, T. L. & Holen, I. Tumour macrophages as potential targets of bisphosphonates. J. Transl Med. 9, 177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hiraoka, K. et al. Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci. 99, 1595–1602 (2008).

    CAS  PubMed  Google Scholar 

  143. Gazzaniga, S. et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J. Invest. Dermatol. 127, 2031–2041 (2007).

    CAS  PubMed  Google Scholar 

  144. Zeisberger, S. M. et al. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br. J. Cancer 95, 272–281 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, W. et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin. Cancer Res. 16, 3420–3430 (2010).

    CAS  PubMed  Google Scholar 

  146. Guth, A. M., Hafeman, S. D., Elmslie, R. E. & Dow, S. W. Liposomal clodronate treatment for tumour macrophage depletion in dogs with soft-tissue sarcoma. Vet. Comp. Oncol. 11, 296–305 (2013).

    CAS  PubMed  Google Scholar 

  147. Daubiné, F., Le Gall, C., Gasser, J., Green, J. & Clézardin, P. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J. Natl Cancer Inst. 99, 322–330 (2007).

    PubMed  Google Scholar 

  148. Coscia, M. et al. Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14, 2803–2815 (2010).

    CAS  PubMed  Google Scholar 

  149. Comito, G. et al. Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget 8, 118–132 (2017).

    PubMed  Google Scholar 

  150. Marra, M. et al. Cutting the limits of aminobisphosphonates: new strategies for the potentiation of their anti-tumour effects. Curr. Cancer Drug Targets 9, 791–800 (2009).

    CAS  PubMed  Google Scholar 

  151. Marra, M. et al. Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 7, 955–964 (2011).

    CAS  PubMed  Google Scholar 

  152. Marra, M. et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol. Adv. 30, 302–309 (2012).

    CAS  PubMed  Google Scholar 

  153. Ben-Aharon, I. et al. Bisphosphonates in the adjuvant setting of breast cancer therapy—effect on survival: a systematic review and meta-analysis. PLOS ONE 8, e70044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    CAS  PubMed  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02347163 (2017).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02622607 (2017).

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00127205 (2017).

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00009945 (2017).

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00003232 (2010).

  160. Cuevas, C. & Francesch, A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 26, 322–337 (2009).

    CAS  PubMed  Google Scholar 

  161. Le Cesne, A. et al. A retrospective analysis of antitumour activity with trabectedin in translocation-related sarcomas. Eur. J. Cancer 48, 3036–3044 (2012).

    CAS  PubMed  Google Scholar 

  162. Grosso, F. et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 8, 595–602 (2007).

    CAS  PubMed  Google Scholar 

  163. Monk, B. J. et al. Trabectedin plus pegylated liposomal doxorubicin (PLD) versus PLD in recurrent ovarian cancer: overall survival analysis. Eur. J. Cancer 48, 2361–2368 (2012).

    CAS  PubMed  Google Scholar 

  164. Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013). This study shows that the antitumoural drug trabectedin induces monocyte and macrophage apoptosis through the activation of caspase 8 in a TRAIL-dependent mechanism.

    CAS  PubMed  Google Scholar 

  165. Liguori, M. et al. Functional TRAIL receptors in monocytes and tumor-associated macrophages: a possible targeting pathway in the tumor microenvironment. Oncotarget 7, 41662–41676 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. Amarante-Mendes, G. P. & Griffith, T. S. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol. Ther. 155, 117–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Deshmane, S. L., Kremlev, S., Amini, S. & Sawaya, B. E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29, 313–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chun, E. et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12, 244–257 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Fang, W. B. et al. CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J. Biol. Chem. 287, 36593–36608 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Fang, W. B. et al. Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget 7, 49349–49367 (2016).

    PubMed  PubMed Central  Google Scholar 

  171. Peña, C. G. et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J. Clin. Invest. 125, 4063–4076 (2015). This is an important paper showing how loss of a tumour suppressor gene can induce CCL2 production that results in TAM recruitment.

    PubMed  PubMed Central  Google Scholar 

  172. Li, M., Knight, D. A., A. Snyder, L., Smyth, M. J. & Stewart, T. J. A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology 2, e25474 (2013).

    PubMed  PubMed Central  Google Scholar 

  173. Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014). This study reports the paradoxical pro-metastatic effect of the cessation CCL2 inhibition in different tumour models.

    CAS  PubMed  Google Scholar 

  174. Hitchcock, J. R. & Watson, C. J. Anti-CCL2: building a reservoir or opening the floodgates to metastasis? Breast Cancer Res. 17, 68 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000).

    CAS  PubMed  Google Scholar 

  176. Lebrecht, A. et al. Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol. 25, 14–17 (2004).

    CAS  PubMed  Google Scholar 

  177. Loberg, R. D. et al. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia 9, 556–562 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Loberg, R. D. et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67, 9417–9424 (2007).

    CAS  PubMed  Google Scholar 

  179. Moisan, F. et al. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol. Oncol. 8, 1231–1239 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Sandhu, S. K. et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharmacol. 71, 1041–1050 (2013).

    CAS  PubMed  Google Scholar 

  181. Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. New Drugs 31, 760–768 (2013).

    CAS  PubMed  Google Scholar 

  182. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Williams, C. B., Yeh, E. S. & Soloff, A. C. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2, 15025 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. Brown, E. J. & Frazier, W. A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).

    CAS  PubMed  Google Scholar 

  186. Gao, A. G. et al. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21–24 (1996).

    CAS  PubMed  Google Scholar 

  187. Liu, Y. et al. The role of CD47 in neutrophil transmigration. Increased rate of migration correlates with increased cell surface expression of CD47. J. Biol. Chem. 276, 40156–40166 (2001).

    CAS  PubMed  Google Scholar 

  188. Lindberg, F. P. et al. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274, 795–798 (1996).

    CAS  PubMed  Google Scholar 

  189. Okazawa, H. et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. 174, 2004–2011 (2005).

    CAS  PubMed  Google Scholar 

  190. Barclay, A. N. & Van den Berg, T. K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu. Rev. Immunol. 32, 25–50 (2014).

    CAS  PubMed  Google Scholar 

  191. Bian, Z. et al. Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc. Natl Acad. Sci. USA 113, E5434–E5443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009). This study shows that CD47 expression is upregulated by leukaemic cells to escape phagocytosis by macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhao, H. et al. CD47 promotes tumor invasion and metastasis in non-small cell lung cancer. Sci. Rep. 6, 29719 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang, H. et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl Acad. Sci. USA 112, E6215–E6223 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Betancur, P. A. et al. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat. Commun. 8, 14802 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Edris, B. et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc. Natl Acad. Sci. USA 109, 6656–6661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Xiao, Z. et al. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 360, 302–309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu, R. et al. CD47 promotes ovarian cancer progression by inhibiting macrophage phagocytosis. Oncotarget 8, 39021–39032 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Weiskopf, K. et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J. Clin. Invest. 126, 2610–2620 (2016).

    PubMed  PubMed Central  Google Scholar 

  202. Alvey, C. M. et al. SIRPA-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors. Curr. Biol. 27, 2065–2077 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu, J. et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLOS ONE 10, e0137345 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Gholamin, S. et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl Med. 9, eaaf2968 (2017).

    PubMed  Google Scholar 

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02216409 (2018).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02678338 (2018).

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02953782 (2018).

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02953509 (2018).

  209. Sikic, B. I. et al. A first-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 34 (Suppl. 15), 3019 (2016).

    Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02367196 (2018).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02641002 (2018).

  212. Petrova, P. S. et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin. Cancer Res. 23, 1068–1079 (2017).

    CAS  PubMed  Google Scholar 

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02663518 (2018).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02890368 (2018).

  215. Medzhitov, R. & Janeway, C. The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452–456 (2000).

    CAS  PubMed  Google Scholar 

  216. Kaczanowska, S., Joseph, A. M. & Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 93, 847–863 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Le Mercier, I. et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res. 73, 4629–4640 (2013).

    CAS  PubMed  Google Scholar 

  218. Singh, M. et al. Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J. Immunol. 193, 4722–4731 (2014).

    CAS  PubMed  Google Scholar 

  219. Kobold, S., Wiedemann, G., Rothenfußer, S. & Endres, S. Modes of action of TLR7 agonists in cancer therapy. Immunotherapy 6, 1085–1095 (2014).

    CAS  PubMed  Google Scholar 

  220. Vacchelli, E. et al. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 5, e1214790 (2016).

    PubMed  PubMed Central  Google Scholar 

  221. Adams, S. et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin. Cancer Res. 18, 6748–6757 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Menzies, S., Mc Menamin, M. & Barry, R. Lentigo maligna successfully treated with combination therapy of topical tazarotene and imiquimod. Clin. Exp. Dermatol. 42, 468–470 (2017).

    CAS  PubMed  Google Scholar 

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00319748 (2017).

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00095160 (2017).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00276159 (2017).

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00189332 (2008).

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00091689 (2008).

  228. Dudek, A. Z. et al. First in human phase I trial of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin. Cancer Res. 13, 7119–7125 (2007).

    CAS  PubMed  Google Scholar 

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00719199 (2013).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00633529 (2013).

  231. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01040832 (2017).

  232. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00729053 (2018).

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01360827 (2014).

  234. Smith, D. A. et al. Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy. Cancer Immunol. Immunother. 63, 787–796 (2014).

    CAS  PubMed  Google Scholar 

  235. Khalil, M. & Vonderheide, R. H. Anti-CD40 agonist antibodies: preclinical and clinical experience. Update Cancer Ther. 2, 61–65 (2007).

    PubMed  PubMed Central  Google Scholar 

  236. van Kooten, C. & Banchereau, J. CD40-CD40 ligand. J. Leukoc. Biol. 67, 2–17 (2000).

    CAS  PubMed  Google Scholar 

  237. Hoves, S. et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J. Exp. Med. 215, 859–876 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Perry, C. J. et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J. Exp. Med. 215, 877–893 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Vonderheide, R. H. et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 25, 876–883 (2007).

    CAS  PubMed  Google Scholar 

  240. Vonderheide, R. H. et al. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2, e23033 (2013).

    PubMed  PubMed Central  Google Scholar 

  241. Nowak, A. K. et al. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann. Oncol. 26, 2483–2490 (2015).

    CAS  PubMed  Google Scholar 

  242. Beatty, G. L. et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin. Cancer Res. 19, 6286–6295 (2013).

    CAS  PubMed  Google Scholar 

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02304393 (2018).

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02665416 (2018).

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02588443 (2017).

  246. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384–400 (2012).

    CAS  PubMed  Google Scholar 

  247. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    CAS  PubMed  Google Scholar 

  248. Lobera, M. et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 9, 319–325 (2013).

    CAS  PubMed  Google Scholar 

  249. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017). This paper shows that class IIa HDAC inhibitors can reprogramme TAMs to antitumoural macrophages and increase the efficacy of chemotherapy and immunotherapy in preclinical models of cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

    CAS  PubMed  Google Scholar 

  251. Bergamaschi, A. et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J. Pathol. 214, 357–367 (2008).

    CAS  PubMed  Google Scholar 

  252. Georgoudaki, A. M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016).

    CAS  PubMed  Google Scholar 

  253. Li, F. & Ravetch, J. V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 1030–1034 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Sotsios, Y. & Ward, S. G. Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol. Rev. 177, 217–235 (2000).

    CAS  PubMed  Google Scholar 

  255. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049–1053 (2000).

    CAS  PubMed  Google Scholar 

  256. Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016). This study shows that PI3Kγ is a key regulator of TAM pro-tumoural activities and that its inhibition contributes to TAM reprogramming and tumour inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Ha, M. & Kim, V. N. Regulation of microRNA bio-genesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

    CAS  PubMed  Google Scholar 

  258. Baer, C. et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat. Cell Biol. 18, 790–802 (2016). This is the first study showing reprogramming of TAMs to tumoricidal macrophages by the modulation of miRNA activity.

    CAS  PubMed  Google Scholar 

  259. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    PubMed  PubMed Central  Google Scholar 

  260. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018). This study shows that the frequency of CD14+CD16HLA-DRhigh monocytes is a strong predictor of response to PD1 immunotherapy in patients with melanoma.

    CAS  PubMed  Google Scholar 

  261. Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Gil Del Alcazar, C. R. et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 7, 1098–1115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Harrer, D. C., Dörrie, J. & Schaft, N. Chimeric antigen receptors in different cell types: new vehicles join the race. Hum. Gene Ther. 29, 547–558 (2018).

    CAS  PubMed  Google Scholar 

  264. Kulkarni, A. et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng. 2, 589–599 (2018). In this paper, the authors design a supramolecule that inhibits CSF1R signalling and blocks the CD47–SIRPα pathway in macrophages; this compound can reprogramme TAMs and exert potent antitumour effects in aggressive models of breast cancer and melanoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  266. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271–285 (2017).

    CAS  PubMed  Google Scholar 

  268. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. de Haas, N., de Koning, C., Spilgies, L., de Vries, I. J. & Hato, S. V. Improving cancer immunotherapy by targeting the STATe of MDSCs. Oncoimmunology 5, e1196312 (2016).

    PubMed  PubMed Central  Google Scholar 

  270. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  271. Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Lavin, Y., Mortha, A., Rahman, A. & Merad, M. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15, 731–744 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    CAS  PubMed  Google Scholar 

  275. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    PubMed  PubMed Central  Google Scholar 

  276. Cecchini, M. G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 1357–1372 (1994).

    CAS  PubMed  Google Scholar 

  277. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. [No authors listed]. Technology quarterly: targeting tumours. Treating cancer: progress on many fronts. The Economist (London) https://www.economist.com/technology-quarterly/2017-09-16/treating-cancer (2017).

  279. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many authors whose work they could not cite owing to space constraints. Research in the authors' laboratories is supported by the Wellcome Trust (101067/Z/13/Z) and Medical Research Council (MRC) Centre grant MR/N022556/1 to J.W.P.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jeffrey W. Pollard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

PEGylated nanoparticles

A type of therapeutic delivery system that results from PEGylation (a chemical modification that involves the conjugation of polyethylene glycol (PEG) to different molecules) of nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassetta, L., Pollard, J. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17, 887–904 (2018). https://doi.org/10.1038/nrd.2018.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing