Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An RNA toolbox for cancer immunotherapy

Abstract

Cancer immunotherapy has revolutionized oncology practice. However, current protein and cell therapy tools used in cancer immunotherapy are far from perfect, and there is room for improvement regarding their efficacy and safety. RNA-based structures have diverse functions, ranging from gene expression and gene regulation to pro-inflammatory effects and the ability to specifically bind different molecules. These functions make them versatile tools that may advance cancer vaccines and immunomodulation, surpassing existing approaches. These technologies should not be considered as competitors of current immunotherapies but as partners in synergistic combinations and as a clear opportunity to reach more efficient and personalized results. RNA and RNA derivatives can be exploited therapeutically as a platform to encode protein sequences, provide innate pro-inflammatory signals to the immune system (such as those denoting viral infection), control the expression of other RNAs (including key immunosuppressive factors) post-transcriptionally and conform structural scaffoldings binding proteins that control immune cells by modifying their function. Nascent RNA immunotherapeutics include RNA vaccines encoding cancer neoantigens, mRNAs encoding immunomodulatory factors, viral RNA analogues, interference RNAs and protein-binding RNA aptamers. These approaches are already in early clinical development with promising safety and efficacy results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the different RNA subtypes and their functions.
Figure 2: RNA recognition by the innate immune system.
Figure 3: Personalized mRNA-based antitumour vaccines.
Figure 4: Immunomodulatory RNA aptamers.

Similar content being viewed by others

References

  1. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).

    Google Scholar 

  2. Pearce, B. K. D., Pudritz, R. E., Semenov, D. A. & Henning, T. K. Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc. Natl Acad. Sci. USA 114, 11327–11332 (2017).

    CAS  PubMed  Google Scholar 

  3. Roeder, R. G. & Rutter, W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237 (1969).

    CAS  PubMed  Google Scholar 

  4. Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 21, 1253–1261 (2015).

    CAS  PubMed  Google Scholar 

  5. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47 (2016).

    CAS  PubMed  Google Scholar 

  6. Kung, J. T., Colognori, D. & Lee, J. T. Long noncoding RNAs: past, present, and future. Genetics 193, 651–669 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).

    CAS  PubMed  Google Scholar 

  8. Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Richard, P. & Manley, J. L. Transcription termination by nuclear RNA polymerases. Genes Dev. 23, 1247–1269 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramanathan, A., Robb, G. B. & Chan, S. H. mRNA capping: biological functions and applications. Nucleic Acids Res. 44, 7511–7526 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Shi, Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 18, 655–670 (2017).

    CAS  PubMed  Google Scholar 

  12. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).

    CAS  PubMed  Google Scholar 

  16. Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).

    CAS  PubMed  Google Scholar 

  17. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed  Google Scholar 

  18. Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008). This article demonstrates that the incorporation of pseudouridine into mRNA leads to deimmunized RNAs with increased stability and translational capacity.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoernes, T. P. et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 44, 852–862 (2016).

    CAS  PubMed  Google Scholar 

  20. Kozak, M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887–903 (1991).

    CAS  PubMed  Google Scholar 

  21. Shi, Z. & Barna, M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 31, 31–54 (2015).

    CAS  PubMed  Google Scholar 

  22. Yang, F. & Schoenberg, D. R. Endonuclease-mediated mRNA decay involves the selective targeting of PMR1 to polyribosome-bound substrate mRNA. Mol. Cell 14, 435–445 (2004).

    CAS  PubMed  Google Scholar 

  23. Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316–325 (2005).

    CAS  PubMed  Google Scholar 

  24. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  25. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    CAS  PubMed  Google Scholar 

  27. Wochner, A., Attwater, J., Coulson, A. & Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209–212 (2011).

    CAS  PubMed  Google Scholar 

  28. Fitzgerald, K., Kallend, D. & Simon, A. A. Highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, e38 (2017).

    PubMed  Google Scholar 

  29. Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004).

    CAS  PubMed  Google Scholar 

  30. Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

    CAS  PubMed  Google Scholar 

  31. Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480, 2–25 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Ranzani, M. et al. Lentiviral vector–based insertional mutagenesis identifies genes associated with liver cancer. Nat. Methods 10, 155 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lauring, A. S., Frydman, J. & Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    CAS  PubMed  Google Scholar 

  35. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  36. Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K. & Seya, T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293, 1364–1369 (2002).

    CAS  PubMed  Google Scholar 

  37. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    CAS  PubMed  Google Scholar 

  38. Ablasser, A. et al. Selection of molecular structure and delivery of RNA oligonucleotides to activate TLR7 versus TLR8 and to induce high amounts of IL-12p70 in primary human monocytes. J. Immunol. 182, 6824–6833 (2009).

    CAS  PubMed  Google Scholar 

  39. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    CAS  PubMed  Google Scholar 

  40. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Runge, S. et al. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLOS Pathog. 10, e1004081 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539–548 (2000).

    CAS  PubMed  Google Scholar 

  43. Tailor, P. et al. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27, 228–239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hervas-Stubbs, S. et al. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 17, 2619–2627 (2011).

    CAS  PubMed  Google Scholar 

  45. Bianchi, F., Pretto, S., Tagliabue, E., Balsari, A. & Sfondrini, L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol. Ther. 18, 747–756 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Salazar, A. M., Erlich, R. B., Mark, A., Bhardwaj, N. & Herberman, R. B. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol. Res. 2, 720–724 (2014).

    PubMed  Google Scholar 

  47. Caskey, M. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208, 2357–2366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez-Ruiz, M. E. et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol. 29, 1312–1319 (2018). This clinical trial illustrates the activation of immune responses in patients with cancer who were treated with poly-ICLC, radiotherapy and DC vaccination.

    CAS  PubMed  Google Scholar 

  49. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03262103 (2017).

  50. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02423863 (2015).

  51. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT01976585 (2013).

  52. Tormo, D. et al. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16, 103–114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02828098 (2016).

  54. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. De Beuckelaer, A., Grooten, J. & De Koker, S. Type I interferons modulate CD8(+) T cell immunity to mRNA vaccines. Trends Mol. Med. 23, 216–226 (2017).

    CAS  PubMed  Google Scholar 

  56. Fioravanti, J. et al. Anchoring interferon alpha to apolipoprotein A-I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology 53, 1864–1873 (2011).

    CAS  PubMed  Google Scholar 

  57. Gil, M. P. et al. Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function. Blood 120, 3718–3728 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    CAS  PubMed  Google Scholar 

  59. Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    CAS  PubMed  Google Scholar 

  60. Andries, O. et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control Release 217, 337–344 (2015).

    CAS  PubMed  Google Scholar 

  61. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kauffman, K. J. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109, 78–87 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Judge, A. D., Bola, G., Lee, A. C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).

    CAS  PubMed  Google Scholar 

  65. Broering, R. et al. Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro. Int. Immunol. 26, 35–46 (2014).

    CAS  PubMed  Google Scholar 

  66. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McConkey, S. J. et al. Enhanced T cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. 9, 729–735 (2003).

    CAS  PubMed  Google Scholar 

  68. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    CAS  PubMed  Google Scholar 

  69. Conry, R. M. et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397–1400 (1995).

    CAS  PubMed  Google Scholar 

  70. Boczkowski, D., Nair, S. K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996).

    CAS  PubMed  Google Scholar 

  71. Morse, M. A. et al. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int. J. Gastrointest. Cancer 32, 1–6 (2002).

    CAS  PubMed  Google Scholar 

  72. Heiser, A. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109, 409–417 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Su, Z. et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J. Immunol. 174, 3798–3807 (2005).

    CAS  PubMed  Google Scholar 

  74. Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K. & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 60, 1028–1034 (2000).

    CAS  PubMed  Google Scholar 

  75. Rains, N., Cannan, R. J., Chen, W. & Stubbs, R. S. Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology 48, 347–351 (2001).

    CAS  PubMed  Google Scholar 

  76. Caruso, D. A. et al. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol. 6, 236–246 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wilgenhof, S. et al. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol. 24, 2686–2693 (2013).

    CAS  PubMed  Google Scholar 

  78. Van Lint, S. et al. Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol. Immunother. 63, 959–967 (2014).

    CAS  PubMed  Google Scholar 

  79. Van Lint, S. et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 72, 1661–1671 (2012).

    CAS  PubMed  Google Scholar 

  80. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Amin, A. et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. Immunother. Cancer 3, 14 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Figlin, R. et al. Interim analysis of the phase 3 ADAPT trial evaluating rocapuldencel-T (AGS-003), an individualized immunotherapy for the treatment of newly-diagnosed patients with metastatic renal cell carcinoma (mRCC). Ann. Oncol. https://doi.org/10.1093/annonc/mdx376.003 (2017).

  83. Fotin-Mleczek, M. et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 34, 1–15 (2011).

    CAS  PubMed  Google Scholar 

  84. Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017).

    CAS  PubMed  Google Scholar 

  85. Kubler, H. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 3, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT01817738 (2013).

  87. Kreiter, S. et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010).

    CAS  PubMed  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02035956 (2014).

  89. Diken, M. et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 18, 702–708 (2011).

    CAS  PubMed  Google Scholar 

  90. Tureci, O. et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22, 1885–1896 (2016).

    CAS  PubMed  Google Scholar 

  91. Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, X., Sharma, P. K., Peter Goedegebuure, S. & Gillanders, W. E. Personalized cancer vaccines: targeting the cancer mutanome. Vaccine 35, 1094–1100 (2017).

    CAS  PubMed  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02510950 (2015).

  94. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02950766 (2016).

  95. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02287428 (2014).

  96. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02600949 (2015).

  97. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02721043 (2016).

  98. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02419170 (2015).

  99. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT00683670 (2008).

  100. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT01970358 (2013).

  101. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02427581 (2015).

  102. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02897765(2016).

  103. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03359239 (2017).

  104. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03166254 (2017).

  105. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03068832 (2017).

  106. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03223103 (2017).

  107. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03219450 (2017).

  108. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009).

    CAS  PubMed  Google Scholar 

  109. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016). This article describes an optimal liposome–RNA complex formulation for systemic delivery of RNA to DCs in vivo. The RNA encodes specific tumour neoantigens and can also be recognized by PRRs in DCs and macrophages, favouring the induction of a potent antitumour immune response.

    PubMed  Google Scholar 

  110. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). This is the first report on the first-in-class personalized RNA-encoded poly-neoantigen vaccine in patients with melanoma, with a workflow of point mutation identification, neoantigen computational prediction and design and production of a patient-specific RNA-based vaccine.

    CAS  PubMed  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03313778 (2017).

  113. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03289962 (2017).

  114. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  115. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS  PubMed  Google Scholar 

  116. Ruckman, J. et al. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998).

    CAS  PubMed  Google Scholar 

  117. Rohloff, J. C. et al. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids 3, e201 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A. & Furste, J. P. Mirror-image RNA that binds D-adenosine. Nat. Biotechnol. 14, 1112–1115 (1996).

    CAS  PubMed  Google Scholar 

  119. Gao, S., Zheng, X., Jiao, B. & Wang, L. Post-SELEX optimization of aptamers. Anal. Bioanal Chem. 408, 4567–4573 (2016).

    CAS  PubMed  Google Scholar 

  120. Cho, M. et al. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc. Natl Acad. Sci. USA 107, 15373–15378 (2010).

    CAS  PubMed  Google Scholar 

  121. Alam, K. K., Chang, J. L. & Burke, D. H. FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol. Ther. Nucleic Acids 4, e230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Santulli-Marotto, S., Nair, S. K., Rusconi, C., Sullenger, B. & Gilboa, E. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 63, 7483–7489 (2003).

    CAS  PubMed  Google Scholar 

  123. Berezhnoy, A. et al. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol. Ther. 20, 1242–1250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hervas-Stubbs, S. et al. Identification of TIM3 2′-fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy. Oncotarget 7, 4522–4530 (2016).

    PubMed  Google Scholar 

  125. Gefen, T. et al. A TIM-3 oligonucleotide aptamer enhances t cell functions and potentiates tumor immunity in mice. Mol. Ther. 25, 2280–2288 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Soldevilla, M. M. et al. Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA). PLOS One 12, e0185169 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Ajona, D. et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 7, 694–703 (2017).

    CAS  PubMed  Google Scholar 

  128. McNamara, J. O. et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J. Clin. Invest. 118, 376–386 (2008). This article describes the first agonistic aptamer generated by multimerization and/or dimerization of a 4-1BB binding aptamer.

    CAS  PubMed  Google Scholar 

  129. Dollins, C. M. et al. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15, 675–682 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pastor, F. et al. CD28 aptamers as powerful immune response modulators. Mol. Ther. Nucleic Acids 2, e98 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Soldevilla, M. M. et al. 2-Fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials 67, 274–285 (2015).

    CAS  PubMed  Google Scholar 

  132. Lee, S. W., Salek-Ardakani, S., Mittler, R. S. & Croft, M. Hypercostimulation through 4-1BB distorts homeostasis of immune cells. J. Immunol. 182, 6753–6762 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pastor, F., Kolonias, D., McNamara, J. O. 2nd & Gilboa, E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol. Ther. 19, 1878–1886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schrand, B. et al. Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer Immunol. Res. 2, 867–877 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schrand, B. et al. Radiation-induced enhancement of antitumor T cell immunity by VEGF-targeted 4-1BB costimulation. Cancer Res. 77, 1310–1321 (2017). This article describes the application of bispecific VEGF–4-1BB aptamer to target 4-1BB co-stimulation to the tumour stroma after VEGF release by local radiation.

    CAS  PubMed  Google Scholar 

  136. Soldevilla, M. M. et al. MRP1-CD28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells. Oncotarget 7, 23182–23196 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. McNamara, J. O. 2nd et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  138. Dassie, J. P. et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat. Biotechnol. 27, 839–849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pastor, F., Kolonias, D., Giangrande, P. H. & Gilboa, E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 465, 227–230 (2010). This article describes a therapeutic approach to increase tumour antigenicity by inhibiting NMD by using an aptamer–siRNA conjugate.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lykke-Andersen, S. & Jensen, T. H. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665–677 (2015).

    CAS  PubMed  Google Scholar 

  141. Melero, I., Murillo, O., Dubrot, J., Hervas-Stubbs, S. & Perez-Gracia, J. L. Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol. Sci. 29, 383–390 (2008).

    CAS  PubMed  Google Scholar 

  142. Berezhnoy, A., Castro, I., Levay, A., Malek, T. R. & Gilboa, E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J. Clin. Invest. 124, 188–197 (2014).

    CAS  PubMed  Google Scholar 

  143. Rajagopalan, A., Berezhnoy, A., Schrand, B., Puplampu-Dove, Y. & Gilboa, E. Aptamer-targeted attenuation of IL-2 signaling in CD8(+) T cells enhances antitumor immunity. Mol. Ther. 25, 54–61 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Herrmann, A. et al. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J. Clin. Invest. 124, 2977–2987 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Lozano, T. et al. Targeting inhibition of Foxp3 by a CD28 2′-Fluro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy. Biomaterials 91, 73–80 (2016).

    CAS  PubMed  Google Scholar 

  146. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    CAS  PubMed  Google Scholar 

  147. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT00950638 (2009).

  148. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT01940900 (2013).

  149. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03168139 (2017).

  150. Zboralski, D., Hoehlig, K., Eulberg, D., Fromming, A. & Vater, A. Increasing tumor-infiltrating T Cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol. Res. 5, 950–956 (2017).

    CAS  PubMed  Google Scholar 

  151. Chester, C., Ambulkar, S. & Kohrt, H. E. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol. Immunother. 65, 1243–1248 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    CAS  PubMed  Google Scholar 

  153. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Locke, F. L. et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol. Ther. 25, 285–295 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 9, eaaj2013 (2017).

    PubMed  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02735083 (2016).

  157. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT03166878 (2017).

  158. Boissel, L. et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk. Lymphoma 53, 958–965 (2012).

    CAS  PubMed  Google Scholar 

  159. Lee, J. M. et al. Direct and indirect antitumor effects by human peripheral blood lymphocytes expressing both chimeric immune receptor and interleukin-2 in ovarian cancer xenograft model. Cancer Gene Ther. 17, 742–750 (2010).

    CAS  PubMed  Google Scholar 

  160. Stadler, C. R. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017). This article presents the proof of concept of the feasibility of using bispecific antibodies encoded by an RNA therapeutic molecule. This approach sustains high levels of endogenous recombinant bispecific antibody production, eliciting a robust antitumour response.

    CAS  PubMed  Google Scholar 

  161. Ghafouri-Fard, S. siRNA and cancer immunotherapy. Immunotherapy 4, 907–917 (2012).

    CAS  PubMed  Google Scholar 

  162. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT02166255 (2014).

  164. Qian, Y. et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11, 9536–9549 (2017).

    CAS  PubMed  Google Scholar 

  165. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cubillos-Ruiz, J. R. et al. Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res. 72, 1683–1693 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. https://doi.org/10.1089/nat.2018.0734 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).

    CAS  PubMed  Google Scholar 

  169. Zubiaga, A. M., Belasco, J. G. & Greenberg, M. E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15, 2219–2230 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8, 559–568 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005).

    CAS  PubMed  Google Scholar 

  172. Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid. Drug Dev. 13, 83–105 (2003).

    CAS  PubMed  Google Scholar 

  173. Strenkowska, M. et al. Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res. 44, 9578–9590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kowalska, J. et al. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Res. 42, 10245–10264 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Stepinski, J., Waddell, C., Stolarski, R., Darzynkiewicz, E. & Rhoads, R. E. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 7, 1486–1495 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19, 4552–4560 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mockey, M. et al. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem. Biophys. Res. Commun. 340, 1062–1068 (2006).

    CAS  PubMed  Google Scholar 

  179. Svitkin, Y. V. et al. N1-methyl-pseudouridine in mRNA enhances translation through eIF2alpha-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 45, 6023–6036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov. https://www.clinicalTrials.gov/show/NCT00204607 (2005).

  181. Heyes, J., Palmer, L., Bremner, K. & MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control Release 107, 276–287 (2005).

    CAS  PubMed  Google Scholar 

  182. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    CAS  PubMed  Google Scholar 

  183. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed Engl. 51, 8529–8533 (2012). This manuscript identifies DLin-MC3-DMA as one of the most potent ionizable amino lipids to deliver RNA-based drugs to the liver.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zimmermann, T. S. et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol. Ther. 25, 71–78 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ramishetti, S. et al. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9, 6706–6716 (2015).

    CAS  PubMed  Google Scholar 

  187. Wengerter, B. C. et al. Aptamer-targeted antigen delivery. Mol. Ther. 22, 1375–1387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ishida, T. et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control Release 112, 15–25 (2006).

    CAS  PubMed  Google Scholar 

  189. Naito, Y., Yoshimura, J., Morishita, S. & Ui-Tei, K. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10, 392 (2009).

    PubMed  PubMed Central  Google Scholar 

  190. Hannus, M. et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 42, 8049–8061 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Jackson, A. L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    CAS  PubMed  Google Scholar 

  194. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    CAS  PubMed  Google Scholar 

  195. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    CAS  PubMed  Google Scholar 

  196. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    CAS  PubMed  Google Scholar 

  197. Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).

    CAS  PubMed  Google Scholar 

  198. Iwasaki, Y. W., Siomi, M. C. & Siomi, H. PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem. 84, 405–433 (2015).

    CAS  PubMed  Google Scholar 

  199. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bol, K. F., Schreibelt, G., Gerritsen, W. R., de Vries, I. J. & Figdor, C. G. Dendritic cell-based immunotherapy: state of the art and beyond. Clin. Cancer Res. 22, 1897–1906 (2016).

    CAS  PubMed  Google Scholar 

  201. Tacken, P. J., de Vries, I. J., Torensma, R. & Figdor, C. G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007).

    CAS  PubMed  Google Scholar 

  202. Kastenmuller, W., Kastenmuller, K., Kurts, C. & Seder, R. A. Dendritic cell-targeted vaccines—hope or hype? Nat. Rev. Immunol. 14, 705–711 (2014).

    PubMed  Google Scholar 

  203. Lincoff, A. M. et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387, 349–356 (2016).

    CAS  PubMed  Google Scholar 

  204. Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S. S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res. 34, 1339–1363 (2017).

    CAS  PubMed  Google Scholar 

  205. Sinha, G. Regado's aptamer lines up against anticoagulants. Nat. Biotechnol. 31, 1060 (2013).

    CAS  Google Scholar 

  206. Oney, S. et al. Development of universal antidotes to control aptamer activity. Nat. Med. 15, 1224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Worldwide Cancer Research grants 15–1146 and 15–1208, the Asociación Española Contra el Cáncer (AECC) Foundation under grant GCB15152947MELE, Red Temática de Investigación Cooperativa en Cáncer under grants RD12/0036/0040 and RD12/0036/0062, Fondo de Investigación Sanitaria-Fondo Europeo de Desarrollo Regional (FEDER) under grants PI14/01686, PI13/00207, PI16/00668 and PI17/00372, the H2020 PROCROP project under grant 635122, the Melanoma Research Alliance under grant 509510 and the Fundación Ramón Areces under grant CIVP18A3916. F.P. is supported by Ramón y Cajal (10699). P.B. is supported by a Miguel Servet II (CPII15/00004) contract from the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

I.M., F.P., P.B. and I.E. researched data for the article and I.M., F.P. and P.B wrote the article. All of the authors provided substantial contribution to the discussion of the content and reviewed and edited the article before submission.

Corresponding author

Correspondence to Ignacio Melero.

Ethics declarations

Competing interests

I.M. declares financial and non-financial competing interests. I.M. reports receiving commercial research funding (grants) from Bristol-Myers Squibb (BMS) and Roche and serves as a consultant and/or advisory board member for Alligator, AstraZeneca, Bioncotech, BMS, F-STAR, Genmab, Incyte, Merck Serono, Molecular Partners, Roche–Genentech and Tusk. E.G. is founder of Sebastian Biopharma that licensed IP from the University of Miami to develop methods of inducing neoantigens. U.S. is CEO and co-founder of BioNTech, a company that develops mRNA therapeutics.

PowerPoint slides

Glossary

RNA moieties

Defined structures in RNA that determine its binding and functional activity.

Promoter

A specific DNA sequence upstream of the gene that is recognized by the RNA polymerase complex to initiate the transcription process.

Polyadenylation

Incorporation of a tail of multiple adenosine monophosphates at the 3′ end of the nascent mRNA, thereby conferring stability.

Splicing

A process in eukaryotes by which the nascent transcribed mRNA is edited by removing part of the RNA (introns) and keeping the protein-encoding sequence (exons).

Alternative splicing

A variation in the splicing process to include or exclude different exons such that a single gene can encode for multiple translated proteins.

Ribonucleoproteins

Conjugates of RNA and protein that usually have enzymatic or scaffold functions.

Lariat RNAs

Circular introns released during the splicing process in the nucleus.

Codon rewiring

Changes in codon reassignment during the translation process.

Kozak sequence

A conserved sequence within the mRNA (ACCAUGG) that leads the ribosome to initiate the translation of the encoded protein.

Nonsense-mediated mRNA decay

(NMD). An RNA surveillance mechanism that identifies and eliminates mRNA with premature stop codons.

Toll-like receptor

(TLR). A type of pattern recognition receptor named because of homology to the fruitfly protein Toll. Such structures on the cell surface or in endosomes detect moieties that denote the presence of danger signals.

RNA helicases

A group of enzymes that rearrange RNA folding structures usually by unwinding the double-stranded RNA helix.

Type I interferon

A group of interferon proteins including interferon-β (IFNβ) and the different subtypes of IFNα, which are cytokines with antiviral, antitumour and multiple immunomodulatory activities.

Dendritic cells

(DCs). Professional antigen-presenting cells of leukocyte lineage. Several subsets are specialized at inducing and sustaining different types of immune response.

Immune-desert tumours

Tumours with lack of infiltration of immune cells due to defects in the priming phase of the antitumour immune response or problems in leukocyte trafficking.

T cell receptor

(TCR). A transmembrane protein expressed on T lymphocytes that recognizes peptides presented in the context of major histocompatibility complex (MHC) class I and MHC class II proteins. TCR-encoding genes are clonally rearranged, constituting an antigen recognition repertoire.

C12-200 lipidoid

An epoxide-derived, oligoamine-containing, lipid-like compound used to deliver small interfering RNA to the liver.

DNA cassettes

DNA fragments that contain a gene and the regulatory elements required for the gene expression in the transfected cell.

Partial tolerance

A status of unresponsiveness to a given specific antigen as a result of previous exposure to such antigen. Degrees of tolerance to a given antigen are possible, and tolerance relies on the dysfunction or elimination of specific T cells.

Protamine

An arginine-rich nucleoprotein that condensates DNA through electrostatic interactions.

Immune checkpoint

A co-inhibitory molecule that reduces the proliferation, differentiation and effector functions of lymphocytes.

Antisense antidotes

Molecules that absorb nucleic acid aptamer, disrupting its structure and therefore its function. This is achieved by complementary antisense sequence205 or positively charged polymers206.

Gene-editing nucleases

Engineered nucleases that modify the genome by targeting specific genomic sequences.

Nucleofection

Transfection of RNA or DNA to the nucleus and cytosol by an electroporation-based approach using a Nucleofector device.

Infusion reactions

Signs or symptoms that occur during the infusion of a therapeutic agent or on the first day of administration. Clinical manifestations vary in severity and can include many different symptoms involving different body systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, F., Berraondo, P., Etxeberria, I. et al. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 17, 751–767 (2018). https://doi.org/10.1038/nrd.2018.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing