Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Expanding the medicinal chemistry synthetic toolbox

A Corrigendum to this article was published on 28 November 2018

Abstract

The key objectives of medicinal chemistry are to efficiently design and synthesize bioactive compounds that have the potential to become safe and efficacious drugs. Most medicinal chemistry programmes rely on screening compound collections populated by a range of molecules derived from a set of known and robust chemistry reactions. Analysis of the role of synthetic organic chemistry in subsequent hit and lead optimization efforts suggests that only a few reactions dominate. Thus, the uptake of new synthetic methodologies in drug discovery is limited. Starting from the known limitations of reaction parameters, synthesis design tools, synthetic strategies and innovative chemistries, here we highlight opportunities for the expansion of the medicinal chemists' synthetic toolbox. More intense crosstalk between synthetic and medicinal chemists in industry and academia should enable enhanced impact of new methodologies in future drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common chemical reactions in drug discovery and development.
Figure 2: Examples of bioprocessing and natural product chemistry applied to bioactive or drug molecules.
Figure 3: Examples of emerging synthetic methodologies applied to fragments and lead-like scaffolds.
Figure 4: Broad synthetic strategies and platforms applied to lead and drug-like scaffolds.

Similar content being viewed by others

References

  1. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Mullard, A. The drug maker's guide to the galaxy. Nature 549, 445–447 (2017).

    Article  PubMed  Google Scholar 

  3. Ertl, P. J. Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties & automatic identification of drug-like bioisosteric groups. J. Chem. Inf. Comput. Sci. 43, 374–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Virshup, A. M., Contreras-García, J., Wipf, P., Yang, W. & Beratan, D. N. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds. J. Am. Chem. Soc. 135, 7296–7303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Bemis, G. W. & Murcko, M. A. Properties of known drugs. 2. Side chains. J. Med. Chem. 42, 5095–5099 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J. & Hou, T. Drug and drug candidate building block analysis. J. Chem. Inf. Model. 50, 55–67 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. Taylor, R. D., MacCoss, M. & Lawson, A. D. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, R. D., MacCoss, M. & Lawson, A. D. Combining molecular scaffolds from FDA approved drugs: application to drug discovery. J. Med. Chem. 60, 1638–1647 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Pitt, W. R., Parry, D. M., Perry, B. G. & Groom, C. R. Heteroaromatic rings of the future. J. Med. Chem. 52, 2952–2963 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Visini, R., Arús-Pous, J., Awale, M. & Reymond, J. L. Virtual exploration of the ring systems chemical universe. J. Chem. Inf. Model. 57, 2707–2718 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Roughley, S. D. & Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists' bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Carey, J. S., Laffan, D., Thomson, C. & Williams, M. T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 4, 2337–2347 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Dugger, R. W., Ragan, J. A. & Brown Ripin, D. H. Survey of GMP bulk reactions run in a research facility between 1985 and 2002. Org. Proc. Res. Dev. 9, 253–258 (2005).

    Article  CAS  Google Scholar 

  17. Satyanarayanajois, S. D. & Hill, R. A. Medicinal chemistry for 2020. Future Med. Chem. 14, 1765–1786 (2011).

    Article  CAS  Google Scholar 

  18. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Boström, J., Grant, J. A., Fjellström, O., Thelin, A. & Gustafsson, D. Potent fibrinolysis inhibitor discovered by shape and electrostatic complementarity to the drug tranexamic acid. J. Med. Chem. 56, 3273–3280 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Lionta, E., Spyrou, G., Vassilatis, D. K. & Cournia, Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14, 1923–1938 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. Engl. 51, 1114–1122 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Goldberg, F. W., Kettle, J. G., Kogej, T., Perry, M. W. & Tomkinson, N. P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today 20, 11–17 (2015).

    Article  PubMed  Google Scholar 

  24. Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 8, 203–212 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Young, R. J. & Leeson, P. D. Mapping the efficiency and physicochemical trajectories of successful optimizations. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.8b00180 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Keserü, G. M., Soós, T. & Kappe, C. O. Anthropogenic reaction parameters — the missing link between chemical intuition and the available chemical space. Chem. Soc. Rev. 43, 5387–5399 (2014).

    Article  PubMed  Google Scholar 

  27. Boström, J. & Brown, D. G. Stuck in a rut with old chemistry. Drug Discov. Today 21, 701–703 (2016).

    Article  PubMed  Google Scholar 

  28. Walters, W. P., Green, J., Weiss, J. R. & Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 54, 6405–6416 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Hann, M. M. & Keserü, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat. Rev. Drug Discov. 11, 355–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Rafferty, M. F. No denying it: medicinal chemistry training is in big trouble. J. Med. Chem. 59, 10859–10864 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Campbell, I. B., Macdonald, S. J. F. & Procopiou, P. A. Medicinal chemistry in drug discovery in big pharma: past, present and future. Drug Discov. Today 23, 219–234 (2018).

    Article  PubMed  Google Scholar 

  33. Hartenfeller, M. et al. A collection of robust organic synthesis reactions for in silico molecule design. J. Chem. Inf. Model. 51, 3093–3098 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Bergman, R. G. & Danheiser, R. L. Reproducibility in chemical research. Angew. Chem. Int. Ed. Engl. 55, 12548–12549 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Engkvist, O. et al. Computational prediction of chemical reactions: current status and outlook. Drug Discov. Today 23, 1203–1218 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Rahman, S. A. et al. Reaction decoder tool (RDT): extracting features from chemical reactions. Bioinformatics 32, 2065–2066 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Buitrago Santanilla, A. et al. Organic chemistry. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Szymkuc´, S. et al. Computer-assisted synthetic planning: The end of the beginning. Angew. Chem. Int. Ed. Engl. 55, 5904–5937 (2016).

    Article  PubMed  CAS  Google Scholar 

  41. Segler, M. H. S. & Waller, M. P. Modelling chemical reasoning to predict and invent reactions. Chem. Eur. J. 23, 6118–6128 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Kayala, M. A. & Baldi, P. ReactionPredictor: prediction of complex chemical reactions at the mechanistic level using machine learning. J. Chem. Inf. Model. 52, 2526–2540 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Kayala, M. A., Azencott, C.-A., Chen, J. H. & Baldi, P. Learning to predict chemical reactions. J. Chem. Inf. Model. 51, 2209–2222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stark, S. A., Neudert, R. & Threlfall, R. Wiley ChemPlanner predicts experimentally verified synthesis routes in medicinal chemistry. CHEManager http://www.chemanager-online.com/en/whitepaper/wiley-chemplanner-predicts-experimentally-verifiedsynthesis-routes-medicinal-chemistry (2016).

  45. Bøgevig, A. et al. Route design in the 21st century: the ICSYNTH Software tool as an idea generator for synthesis prediction. Org. Proc. Res. Dev. 19, 357–368 (2015).

    Article  CAS  Google Scholar 

  46. Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522–532 (2018).

    Article  CAS  Google Scholar 

  47. Kroman, J. C. et al. Fast and accurate prediction of the regioselectivity of electrophilic aromatic substitution reactions. Chem. Sci. 9, 660–665 (2018).

    Article  Google Scholar 

  48. Hansen, E. et al. Prediction of stereochemistry using Q2MM. Acc. Chem. Res. 49, 996–1005 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldberg, F. W., Kettle, J. G., Kogej, T., Perry, M. W. & Tomkinson, N. P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today 20, 11–17 (2015).

    Article  PubMed  Google Scholar 

  50. Carreira, E. M. & Fessard, T. C. Four-membered ring-containing spirocycles: synthetic strategies and opportunities. Chem. Rev. 114, 8257–8322 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Helal, C. J. et al. Increased building block access through collaboration. Drug Discov. Today https://doi.org/10.1016/j.drudis.2018.03.001 (2018).

    Article  PubMed  Google Scholar 

  52. Murray, P. M. et al. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 14, 2373–2384 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Carlson, R. & Carlson, J. E. in Design and Optimization in Organic Synthesis Vol. 24 1–574 (Elsevier, 2005).

    Google Scholar 

  54. Cook, A. Computer-aided synthesis design: 40 years on — WIREs. Comput. Mol. Sci. 2, 79–107 (2012).

    Article  CAS  Google Scholar 

  55. Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C. & Laino, T. “Found in translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. arXiv https://arxiv.org/abs/1711.04810 (2017).

  56. Baskin, I., Madzhidov, T. I., Antipin, I. S. & Varnek, A. A. Artificial intelligence in synthetic chemistry: achievements and prospects. Rus. Chem. Rev. 86, 1127 (2017).

    Article  CAS  Google Scholar 

  57. Wengong, J. Predicting organic reaction outcomes with Weisfeiler-Lehman network. arXiv https://arxiv.org/abs/1709.04555 (2017).

  58. Fooshee, D. Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng. https://doi.org/10.1039/C7ME00107J (2018).

    Article  CAS  Google Scholar 

  59. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H. & Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci 3, 434–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brynjolfsson, E. & Mitchell, T. What can machine learning do? Workforce implications: profound change is coming, but roles for humans remain. Science 358, 1530–1534 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Griffen, E. J. et al. Can we accelerate medicinal chemistry by augmenting the chemist with Big Data and artificial intelligence? Drug Discov. Today 23, 1373–1384 (2018).

    Article  PubMed  Google Scholar 

  62. Fitzpatrick, D. E., Battilocchio, C. & Ley, S. V. Enabling technologies for the future of chemical synthesis. ACS Cent. Sci. 2, 131–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trang, J., T. T. T., Ermolat'ev, D. S. & Van der Eycken, E. V. Facile and diverse microwave-assisted synthesis of secondary propargylamines in water using CuCl/CuCl2. RSC Adv. 5, 28921–28924 (2015).

    Article  CAS  Google Scholar 

  64. Tsoung, J. et al. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J. Org. Chem. 82, 1073–1084 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Tran, D. N., Battilocchio, C., Lou, S.-B., Hawkins, J. M. & Ley, S. V. Flow chemistry as a discovery tool to access sp2–sp3 cross-coupling reactions via diazo compounds. Chem. Sci. 6, 1120–1125 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Battilocchio, C. et al. Iterative reactions of transient boronic acids enable sequential C–C bond formation. Nat. Chem. 8, 360–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Yoshida, J., Takahashi, Y. & Nagaki, A. Flash chemistry: flow chemistry that cannot be done in batch. Chem. Commun. 49, 9896–9904 (2013).

    Article  CAS  Google Scholar 

  68. Kim, H. et al. Submillisecond organic synthesis: outpacing Fries rearrangement through microfluidic rapid mixing. Science 352, 691–694 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baranczak, A. et al. Integrated platform for expedited synthesis-pPurification-testing of small molecule libraries. ACS Med. Chem. Lett. 8, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Godfrey, A. G., Masquelin, T. & Hemmerle, H. A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century. Drug Disc. Today 18, 795–802 (2013).

    Article  CAS  Google Scholar 

  73. Reizman, B. J., Wang, Y.-M., Buchwald, S. L. & Jensen, K. F. Suzuki-Miyaura cross-coupling optimization enabled by automated feedback. React. Chem. Eng. 1, 658–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trobe, M. & Burke, M. D. The molecular industrial revolution: automated synthesis of small molecules. Ang. Chem. Int. Ed. 57, 4192–4214 (2018).

    Article  CAS  Google Scholar 

  75. Troshin, K. & Hartwig, J. F. Snap deconvolution: an informatics approach to high-throughput discovery of catalytic reactions. Science 357, 175–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Chakravorty, S. J. et al. Nuisance compounds, PAINS filters, and dark chemical matter in the GSK HTS collection. SLAS Discov. 23, 532–545 (2018).

    CAS  PubMed  Google Scholar 

  77. Stalcup, A. M. Chiral separations. Annu. Rev. Anal. Chem. 3, 341–363 (2010).

    Article  CAS  Google Scholar 

  78. Desai, B. et al. Rapid discovery of a novel series of Abl kinase inhibitors by application of an integrated microfluidic synthesis and screening platform. J. Med. Chem. 56, 3033–3047 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Czechtizky, W. et al. Integrated synthesis and testing of substituted xanthine based DPP4 inhibitors: application to drug discovery. ACS Med. Chem. Lett. 4, 768–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hobbs, A. N. & Young, R. J. Practical purification of hydrophilic fragments and lead/drug-like molecules by reverse phase flash chromatography: tips, tricks and contemporary developments. Drug Discov. Today 18, 148–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Buszewski, B. & Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem. 402, 231–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hettiarachchi, K., Kong, M., Yun, A., Jacobsen, J. R. & Xue, Q. Development of an automated dual-mode supercritical fluid chromatography & reversed-phase liquid chromatography mass-directed purification system for small-molecule drug discovery. J. Sep. Sci. 37, 775–781 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Tarcsay, A., Nyíri, K., Keserü, G. M. Impact of lipophilic efficiency on compound quality. J. Med. Chem. 55, 1252–1260 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Johnson, T. W., Gallego, R. A., Edwards, M. P. Lipophilic efficiency as an important metric in drug design. J. Med. Chem. https://doi.org/10.1021/acs.jmedchem.8b00077 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Kan, S. B. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. Nature 552, 132–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. Engl. 57, 4143–4148 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boer, J. et al. Roles of UGT, P450, and gut microbiota in the metabolism of epacadostat in humans. Drug Metab. Dispos. 44, 1668–1674 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Obach, R. S. et al. Lead diversification at the nanomole scale using liver microsomes and quantitative nuclear magnetic resonance spectroscopy: application to phosphodiesterase 2 inhibitors. J. Med. Chem. 61, 3626–3640 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Schonherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed. Engl. 52, 12256–12267 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Pettersson, M. et al. Quantitative assessment of the impact of fluorine substitution on P-glycoprotein (P-gp) mediated efflux, permeability, lipophilicity, and metabolic stability. J. Med. Chem. 59, 5284–5296 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Obach, R. S., Walker, G. S. & Brodney, M. A. Biosynthesis of fluorinated analogs of drugs using human cytochrome P450 enzymes followed by deoxyfluorination and quantitative nuclear magnetic resonance spectroscopy to improve metabolic stability. Drug Metab. Dispos. 44, 634–646 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Romero, N., A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Ji, Y. et al. Innate C-H trifluormethylation of heterocycles. Proc. Natl Aacad. Sci. USA. 108, 14411–14415 (2011).

    Article  CAS  Google Scholar 

  96. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carbonyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, X. & MacMillan, D. W. Alcohols as latent coupling fragments for metallophotoredox catalysis: sp3-sp2 cross coupling of oxalates with aryl halides. J. Am. Chem. Soc 138, 13862–13865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Z., Herraiz, A. G., del Hoyo, A. M. & Suero, M. G. Generating carbyne equivalents with photoredox catalysis. Nature 554, 86–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Denisenko, A. V. et al. Photochemical synthesis of 3-azabicyclo[3.2.0]heptanes: advanced building blocks for drug discovery. J. Org. Chem. 82, 9627–9636 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Dirocco, D. A. et al. Late-stage functionalization of biologically active heterocycles through photoredox catalysis. Angew. Chem. Int. Ed. Engl. 53, 4802–4806 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang, Y., Xu, K. & Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 118, 4485–4540 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Morofuji, T., Shimizu, A. & Yoshida, J. Direct C-N coupling of imidazoles with aromatic and benzylic compounds via electrooxidative C-H functionalization. J. Am. Chem. Soc. 136, 4496–4499 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Zhao, H.-B., Hou, Z.-W., Liu, Z.-J., Zhou, Z.-F., Song, J. & Xu, H.-C. Amidinyl radical formation through anodic N-H bond cleavage and its application in aromatic C-H bond functionalization. Angew. Chem. Int. Ed. Engl. 56, 587–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Faust, M. R., Höfner, G., Pabel, J. & Wanner, K. T. Azetidine derivatives as novel γ -aminobutyric acid uptake inhibitors: synthesis, biological evaluation, and structure-activity relationships. Eur. J. Med. Chem. 45, 2453–2466 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Elsler, B., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. Metal- and reagent-free highly selective anodic cross-coupling reactions of phenols. Angew. Chem. Int. Ed. Engl. 53, 5210–5213 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Green, R. A., Brown, R. C. D. & Pletcher, D. A microflow electrolysis cell for laboratory synthesis on a multigram scale. Org. Process Res. Dev. 19, 1424–1427 (2015).

    Article  CAS  Google Scholar 

  109. Ajami, A. Converging trends brings organic electrochemistry to the front line of drug discovery. BiopharmaTrend.com www.biopharmatrend.com/post/40-converging-trends-brings-organic-electrochemistry-to-the-front-line-of-drug-discovery/ (2017).

  110. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, P. et al. Ligand-accelerated non-directed C-H functionalization of arenes. Nature 551, 489–493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dai, H.-X., Stepan, A. F., Plummer, M. S., Zhang, Y.-H. & Yu, J.-Q. Divergent C-H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 133, 7222–7228 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Wei, X. et al. Arylation and enantioselective hydrogenation enables ideal asymmetric entry to the indenopiperidine core of an 11β-HSD-1 inhibitor. J. Am. Chem. Soc. 138, 15473–15481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, C. et al. Decarboxylative borylation. Science 356, eaam7355 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling reaction. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu, X. et al. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. Nat. Commun. 7, 11129 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lopchuk, J. M. et al. Strain-release heteroatom functionalization: development, scope, and stereospecificity. J. Am. Chem. Soc. 139, 3209–3226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ariki, Z. T., Maekawa, Y., Nambo, M. & Crudden, C. M. Preparation of quaternary centers via nickel-catalyzed Suzuki–Miyaura cross-coupling of tertiary sulfones. J. Am. Chem. Soc. 140, 78–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Campbell, P. S., Jamieson, C., Simpson, I. & Watson, A. J. B. Practical synthesis of pharmaceutically relevant molecules enriched in sp3 character. Chem. Commun. 54, 46–49 (2018).

    Article  CAS  Google Scholar 

  121. Ritchie, T. J. & Macdonald, S. J. Physicochemical descriptors of aromatic character and their use in drug discovery. J. Med. Chem. 57, 7206–7215 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Li, L. et al. Design of an amide N-glycoside derivative of β-glucogallin: a stable, potent, and specific inhibitor of aldose reductase. J. Med. Chem. 57, 71–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Tyler, D. S. et al. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356, 1397–1401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dömling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Osipova, A., Yufit, D. S. & De Meijere, A. Synthesis of new cyclopropylisonitriles and their applications in Ugi four-component reactions. Synthesis 1, 131–139 (2007).

    Google Scholar 

  127. Liddle, J. et al. The discovery of GSK221149A: a potent and selective oxytocin antagonist. Bioorg. Med. Chem. Lett. 18, 90–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Zarganes-Tzitzikas, T. & Dömling, A. Modern multicomponent reactions for better drug syntheses. Org. Chem. Front. 1, 834–837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goodnow, R. A. & Davie, C. P. DNA-encoded library technology: a brief guide to its evolution and impact on drug discovery. Annu. Rep. Med. Chem. 50, 1–15 (2017).

    CAS  Google Scholar 

  130. Arico-Muendel, C. C. From haystack to needle: finding value with DNA encoded library technology at GSK. MedChemComm 7, 1898–1909 (2016).

    Article  CAS  Google Scholar 

  131. Satz, A. L. et al. DNA Compatible multistep synthesis and applications to DNA encoded libraries. Bioconj. Chem. 26, 1623–1632 (2015).

    Article  CAS  Google Scholar 

  132. Thomas, B. et al. Application of biocatalysis to on-DNA carbohydrate library synthesis. Chembiochem 18, 858–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Goodnow Jr, R. A., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    Article  CAS  Google Scholar 

  134. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60, 1247–1261 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Soutter, H. H. et al. Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology. Proc. Natl Acad. Sci. USA 113, E7880–E7889 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chan, A. I. et al. Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library × protein library selection. J. Am. Chem. Soc. 139, 10192–10195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Machutta, C. A. et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat. Comm. 8, 16081 (2017).

    Article  CAS  Google Scholar 

  139. Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 11, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Perera, T. P. S. et al. Discovery and pharmacological characterization of JNJ-42756493 (Erdafitinib), a functionally celective small-molecule FGFR family inhibitor. Mol. Cancer Ther. 16, 1010–1020 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Keserü, G. M. et al. Design principles for fragment libraries: maximizing the value of learnings from pharma fragment-based drug discovery (FBDD) programs for use in academia. J. Med. Chem. 59, 8189–8206 (2016).

    Article  PubMed  CAS  Google Scholar 

  143. Palmer, N., Peakman, T. M., Norton, D. & Rees, D. C. Design and synthesis of dihydroisoquinolones for fragment-based drug discovery (FBDD). Org. Biomol. Chem. 14, 1599–1610 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Morley, A. D. et al. Fragment-based hit identification: thinking in 3D. Drug Discov. Today 18, 1221–1227 (2013).

    Article  PubMed  Google Scholar 

  145. Rizzo, S., Wakchaure, V. & Waldmann, H. in Natural Products in Medicinal Chemistry (ed. Hanessian, S.) Vol. 60 43–80 (Wiley-VCH Verlag GmbH & Co. KGaA, 2014).

    Book  Google Scholar 

  146. Hall, R. J., Mortenson, P. N. & Murray, C. W. Efficient exploration of chemical space by fragment-based screening. Progr. Biophys. Mol. Biol. 116, 82–91 (2014).

    Article  CAS  Google Scholar 

  147. Ferenczy, G. G. & Keserü, G. M. How are fragments optimized? A retrospective analysis of 145 fragment optimizations. J. Med. Chem. 56, 2478–2486 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Kathman, S. G. & Statsyuk, A. V. Covalent tethering of fragments for covalent probe discovery. Med. Chem. Commun. 7, 576–585 (2016).

    Article  CAS  Google Scholar 

  149. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wetzel, S., Lachance, H. & Waldmann, H. in Comprehensive in Natural Products II (eds Mander, L. & Liu, H.-W.) 5–46 (Elsevier, 2010).

    Book  Google Scholar 

  152. Zaid, H., Raiyn, J., Nasser, A., Saad, B. & Rayan, A. Physicochemical properties of natural based products versus synthetic chemicals. Open Nutraceuticals J. 3, 194–202 (2010).

    CAS  Google Scholar 

  153. Li, J. W.-H. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–165 (2009).

    Article  PubMed  CAS  Google Scholar 

  154. Gerry, C. J. & Schreiber, S. L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discov. 17, 333–352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pascolutti, M. & Quinn, R. J. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov. Today 19, 215–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Karawajczyk, A. et al. Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective. Drug Discov. Today 20, 1310–1316 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Colomer, I. et al. A divergent synthetic approach to diverse molecular scaffolds: assessment of lead-likeness using LLAMA, an open-access computational tool. Chem. Commun. 52, 7209–7212 (2016).

    Article  CAS  Google Scholar 

  158. Foley, D. J., Nelson, A. & Marsden, S. P. Evaluating new chemistry to drive molecular discovery: fit for purpose? Angew. Chem. Int. Ed. Engl. 55, 13650–13657 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chow, S. Y. & Nelson, A. Embarking on a chemical space odyssey. J. Med. Chem. 60, 3591–3593 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Dow, M., Fisher, M., James, T., Marchetti, F. & Nelson, A. Towards the systematic exploration of chemical space. Org. Biomol. Chem. 10, 17–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Morgentin, R. et al. Translation of innovative chemistry into screening libraries: an exemplar partnership from the European Lead Factory. Drug Discov. Today https://doi.org/10.1016/j.drudis.2018.05.007 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Doveston, R., Marsden, S. & Nelson, A. Towards the realisation of lead-oriented synthesis. Drug Discov. Today 19, 813–819 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Mayol-Llinàs, J., Nelson, A., Farnaby, W. & Ayscough, A. Assessing molecular scaffolds for CNS drug discovery. Drug Discov. Today 22, 965–969 (2017).

    Article  PubMed  CAS  Google Scholar 

  164. Dow, M. et al. Modular synthesis of diverse natural product-like macrocycles: discovery of hits with antimycobacterial activity. Chem. Eur. J. 23, 7207–7211 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Karageorgis, G., Warriner, S. & Nelson, A. Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nat. Chem. 6, 872–876 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Karageorgis, G., Dow, M., Aimon, A., Warriner, S. & Nelson, A. Activity-directed synthesis with intermolecular reactions: Development of a fragment into a range of androgen receptor agonists. Angew. Chem. Int. Ed. Engl. 54, 13538–13544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bootwicha, T., Feilner, J. M., Myers, E. L. & Aggarwal, V. K. Iterative assembly line synthesis of polypropionates with full stereocontrol. Nat. Chem. 9, 896 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Balieu, S. et al. Toward ideality: the synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Ardkhean, R. et al. Cascade polycyclizations in natural product synthesis. Chem. Soc. Rev. 45, 1557–1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Dückert, H. et al. Natural product-inspired cascade synthesis yields modulators of centrosome integrity. Nat. Chem. Biol. 8, 179 (2011).

    Article  PubMed  CAS  Google Scholar 

  171. Schafroth, M. A., Zuccarello, G., Krautwald, S., Sarlah, D. & Carreira, E. M. Stereodivergent total synthesis of Δ9-tetrahydrocannabinols. Angew. Chem. Int. Ed. Engl. 53, 13898–13901 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Davis, A. M., Plowright, A. T. & Valeur, E. Directing evolution: the next revolution in drug discovery? Nat. Rev. Drug Disc. 16, 681 (2017).

    Article  CAS  Google Scholar 

  173. Shen, X., Corey, Chemistry, D. R. mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucl. Ac. Res. 46, 1584–1600 (2018).

    Article  CAS  Google Scholar 

  174. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Sternbach, L. The benzodiazepine story. J. Med. Chem. 22, 1–7 (1979).

    Article  CAS  PubMed  Google Scholar 

  176. Wright, P. M., Seiple, I. B. & Myers, A. G. The evolving role of chemical synthesis in antibacterial drug discovery. Angew. Chem. Int. Ed. Engl. 34, 8840–8869 (2014).

    Article  CAS  Google Scholar 

  177. Flam, F. The race to synthesize taxol ends in a tie. Science 263, 910–911 (1994).

    Article  Google Scholar 

  178. Donehower, R. C. The clinical development of paclitaxel: a successful collaboration of academia, industry and the national cancer institute. Oncol. 1, 240–243 (1996).

    CAS  Google Scholar 

  179. Ringel, M., Tollman, P., Hersch, G. & Schulze, U. Does size matter in R&D productivity? If not, what does? Nat. Rev. Drug Disc. 12, 901–902 (2013).

    Article  CAS  Google Scholar 

  180. Besnard, J., Jones, P. S., Hopkins, A. L. & Pannifer, A. D. The Joint European Compound Library: boosting precompetitive research. Drug Discov. Today 20, 181–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today. 23, 1241–1250 (2018).

    Article  PubMed  Google Scholar 

  183. Fleming, N. How artificial intelligence is changing drug discovery. Nature 557, S55–S57 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Macdonald, S. J., Fray, M. J. & McInally, T. Passing on the medicinal chemistry baton: training undergraduates to be industry-ready through research projects between the University of Nottingham and GlaxoSmithKline. Drug Discov. Today 21, 880–887 (2016).

    Article  PubMed  Google Scholar 

  185. Urquhart, L. Market watch: top drugs and companies by sales in 2017. Nat. Rev. Drug Discov. 17, 232 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Cernak, T. et al. Nanoscale synthesis and affinity ranking Nature 557, 228–232 (2018).

    Article  PubMed  CAS  Google Scholar 

  187. Pant, S. M. et al. Design, synthesis and testing of potent, selective hepsin inhibitors via application of an automated closed-loop optimization platform. J. Med. Chem. 61, 4335–4347 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Cole, K. P. et al. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science 356, 1144–1150 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Cooper, T. W., Campbell, I. B. & Macdonald, S. J. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew. Chem. Int. Ed. Engl. 49, 8082–8091 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.M.K. is supported by the National Brain Research Program (2017–1.2.1-NKP-2017-00002) of the National Research, Development and Innovation Office, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György M. Keserü.

Ethics declarations

Competing interests

The authors declare competing interests: see Web version for details.

Related links

PowerPoint slides

Supplementary information

Supplementary information

Supplementary Figure (PDF 395 kb)

Glossary

Chemical space

Chemical space is a nebulous term used in various ways, but pertinent to drug discovery, it is the classification of molecules in terms of their physicochemical make-up, such as size, shape, lipophilicity, charge and hydrogen-bonding potential, which together can be used to describe the chemical space occupied.

Design–make–test–analyse (DMTA) cycle

The iterative central process in lead optimization, involving a cycle of four steps: design (a hypothesis is constructed to improve the profile of the lead molecule); make (compounds exemplifying the design are synthesized); test (synthesized compounds of confirmed structure and purity are tested in one or more carefully constructed and controlled assays); and analyse (the experimental data are analysed, and the results are used to amend a design hypothesis for the next cycle).

Drug-like compounds

Drug-likeness is another term that is used in various ways, often to describe the possession of physicochemical properties that are typical of orally absorbed small-molecule drugs. Lipinski's rule of five (Ro5) is one common metric; if no more than one of the following criteria is exceeded, then there should be a reasonable chance of oral bioavailability: molecular mass <500 Da, cLogP <5, number of hydrogen-bond donors <5 and number of hydrogen-bond acceptors <10. More recently, it has been demonstrated that oral activity is feasible beyond Ro5, and these programmes follow specific principles that contribute to the oral bioavailability.

Fragment

A simple, small and relatively polar molecule with 8–17 heavy atoms, often screened using sensitive biophysical techniques (such as X-ray crystallography, NMR spectroscopy and surface plasmon resonance) to identify inherently weak binders that can be elaborated into lead compounds.

Functional group tolerance

The range of organic functionalities that do not react with or impede the reagents and/or catalysts involved in a transformation. As drug molecules are predisposed to contain charged or hydrogen-bonding motifs to, for example, achieve potency and selectivity, this can often cause issues and interfere with catalysts, ligands and reactive partners.

Lead-like

Lead-likeness is a term that describes an aspirational profile for a screening collection of molecules that have physicochemical properties, together with predicted safety, pharmacokinetic and pharmacodynamic data and complexity, that bridge fragment space and drug-like space, as well as appropriate chemical functionalities that can be used in the optimization of the molecules into candidate drugs.

Quality of drug candidates

Like chemical space, the notion of compound quality is used in various ways, but physicochemical parameters can predict the likely quality of a compound, in conjunction with pharmacokinetic and pharmacodynamic data, giving confidence in probable exposure, efficacy and safety. This should not be prescriptive, but more optimal properties indicate a higher likelihood of success. Note that the actual set of physicochemical parameters is dependent on the target, the compartment where the target is engaged and the route of administration.

Robust reactions

Reproducible chemical transformations applicable to structurally diverse substrates, tolerating a range of functionality and able to be realized on simple equipment in a reasonable time period. Factors for robust reactions for medicinal chemistry include the following:

• Provide structures relevant for drug discovery

• Technically straightforward (no special equipment needed)

• Moderately sensitive to reaction parameters

• Broad applicability (also with polar substrates)

• Broad availability of starting materials and reagents

• Broad functional group tolerance, including polar functionalities

• Time for delivery of the target compounds is reasonably short (<1 month ideally)

• Simple operational procedure (minimal training and support needed)

• Low-risk reagents to comply with often onerous local safety rules

A full-size poster depicting the set of most popular robust reactions (available online for downloading; see Supplementary Fig. 1) illustrates their impact on drug discovery. Our hope is that displaying this poster in offices and laboratories could highlight the importance of expanding the medicinal chemistry synthetic toolbox and stimulate debate.

Structurally diverse substrates

The breadth of diversity of a given reaction type is dependent on the accessibility and intrinsic reactivity of the substrates and/or building blocks involved in the reactions. A reaction that can use a number of different reactive groups can be advantageous to medicinal chemists, as it will allow access to more analogues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boström, J., Brown, D., Young, R. et al. Expanding the medicinal chemistry synthetic toolbox. Nat Rev Drug Discov 17, 709–727 (2018). https://doi.org/10.1038/nrd.2018.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.116

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research