Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

New approaches and challenges to targeting the endocannabinoid system

A Corrigendum to this article was published on 30 August 2018

Abstract

The endocannabinoid signalling system was discovered because receptors in this system are the targets of compounds present in psychotropic preparations of Cannabis sativa. The search for new therapeutics that target endocannabinoid signalling is both challenging and potentially rewarding, as endocannabinoids are implicated in numerous physiological and pathological processes. Hundreds of mediators chemically related to the endocannabinoids, often with similar metabolic pathways but different targets, have complicated the development of inhibitors of endocannabinoid metabolic enzymes but have also stimulated the rational design of multi-target drugs. Meanwhile, drugs based on botanical cannabinoids have come to the clinical forefront, synthetic agonists designed to bind cannabinoid receptor 1 with very high affinity have become a societal threat and the gut microbiome has been found to signal in part through the endocannabinoid network. The current development of drugs that alter endocannabinoid signalling and how this complex system could be pharmacologically manipulated in the future are described in this Opinion article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocannabinoidome mediators and receptors.
Figure 2: Synthesis of the endocannabinoidome mediators.
Figure 3: Catabolism of the endocannabinoidome mediators.

Similar content being viewed by others

References

  1. Alexander, S. P. Therapeutic potential of cannabis-related drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 157–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Loewe, S. [Active principals of the cannabis and the pharmacology of the cannabinols]. Naunyn. Schmiedebergs Arch. Exp. Pathol. Pharmakol. 211, 175–193 (1950).

    Article  CAS  PubMed  Google Scholar 

  3. Mechoulam, R. & Shvo, Y. Hashish. I. The structure of cannabidiol. Tetrahedron 19, 2073–2078 (1963).

    Article  CAS  PubMed  Google Scholar 

  4. Gaoni, R. & Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647 (1964).

    Article  CAS  Google Scholar 

  5. Mechoulam, R. et al. Chemical basis of hashish activity. Science 169, 611–612 (1970).

    Article  CAS  PubMed  Google Scholar 

  6. Varvel, S. A. et al. Δ9-tetrahydrocannbinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J. Pharmacol. Exp. Ther. 314, 329–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda, L. A. et al. Structure of a cannabinoid receptor and functional expression of a cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Munro, S., Thomas, K. L. & Abushaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 31–65 (1993).

    Article  Google Scholar 

  9. Howlett, A. C. in Cannabinoids: Handbook of Experimental Pharmacology (ed. Pertwee R. G.) 53–79 (Springer, Berlin, 2005).

    Book  Google Scholar 

  10. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Di Marzo, V. & Fontana, A. Anandamide, an endogenous cannabinomimetic eicosanoid: 'killing two birds with one stone'. Prostaglandins Leukot. Essent. Fatty Acids 53, 1–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto, Y. et al. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ligresti, A., De Petrocellis, L. & Di Marzo, V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol. Rev. 96, 1593–1659 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Devinsky, O. et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15, 270–278 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Keating, G. M. Δ9-Tetrahydrocannabinol/Cannabidiol oromucosal spray (Sativexâ): a review in multiple sclerosis-related spasticity. Drugs 77, 563–574 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Lötsch, J., Weyer-Menkhoff, I. & Tegeder, I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur. J. Pain 22, 471–484 (2017).

    Article  PubMed  Google Scholar 

  23. Tambaro, S. & Bortolato, M. Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. Recent Pat. CNS Drug Discov. 7, 25–40 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernández-Ruiz, J., Romero, J. & Ramos, J. A. Endocannabinoids and neurodegenerative disorders: Parkinson's disease, Huntington's chorea, Alzheimer's disease, and others. Handb. Exp. Pharmacol. 231, 233–259 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Hasenoehrl, C. Storr, M. & Schicho, R. Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert Rev. Gastroenterol. Hepatol. 11, 329–337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richey, J. M. & Woolcott, O. Re-visiting the endocannabinoid system and its therapeutic potential in obesity and associated diseases. Curr. Diab. Rep. 17, 99 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Roser, P., Vollenweider, F. X. & Kawohl, W. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists. World J. Biol. Psychiatry 11, 208–219 (2010).

    Article  PubMed  Google Scholar 

  28. Puighermanal, E. et al. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Phil. Trans. R. Soc. B 367, 3254–3263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, M. K. et al. Prospective therapeutic agents for obesity: molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists. Eur. J. Med. Chem. 79, 298–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Badowski, M. E. A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: a focus on pharmacokinetic variability and pharmacodynamics. Cancer Chemother. Pharmacol. 80, 441–449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tam, J. et al. The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur. J. Intern. Med. 49, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Fowler, C. J. The potential of inhibitors of endocannabinoid metabolism for drug development: a critical review. Handb. Exp. Pharmacol. 231, 95–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Lodola, A. et al. Fatty acid amide hydrolase inhibitors: a patent review (2009–2014). Expert Opin. Ther. Pat. 25, 1247–1266 (2015).

    CAS  PubMed  Google Scholar 

  34. Huggins, J. P. et al. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 153, 1837–1846 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Kerbrat, A. et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N. Engl. J. Med. 375, 1717–1725 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. van Esbroeck, A. C. M. et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10–2474. Science 356, 1084–1087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen, T. et al. Allosteric modulation: An alternate approach targeting the cannabinoid CB1 receptor. Med. Res. Rev. 37, 441–474 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Ignatowska-Jankowska, B. M. et al. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 40, 2948–2959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slivicki, R. A. et al. Positive allosteric modulation of cannabinoid receptor type 1 suppresses pathological pain without producing tolerance or dependence. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2017.06.032 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Appiah, K. K. et al. Identification of small molecules that selectively inhibit diacylglycerol lipase-α activity. J. Biomol. Screen 19, 595–605 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Hsu, K.-L. et al. Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-β). Probe reports from the NIH molecular libraries program (National Center for Biotechnology Information, Bethesda, 2013).

  42. Baggelaar, M. P. et al. Highly selective, reversible inhibitor identified by comparative chemoproteomics modulates diacylglycerol lipase activity in neurons. J. Am. Chem. Soc. 137, 8851–8857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greig, I. R. et al. Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators. Bioorg. Med. Chem. Lett. 26, 4403–4407 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Bisogno, T. et al. A novel fluorophosphonate inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol with potential anti-obesity effects. Br. J. Pharmacol. 169, 784–793 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janssen, F. J. & van der Stelt, M. Inhibitors of diacylglycerol lipases in neurodegenerative and metabolic disorders. Bioorg. Med. Chem. Lett. 26, 3831–3837 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Wilkerson, J. L. et al. Diacylglycerol lipase β inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br. J. Pharmacol. 173, 1678–1692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Navarro, G. et al. Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front. Neurosci. 10, 406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morales, P. et al. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin. Ther. Pat. 26, 843–856 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Gruden, G. et al. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 173, 1116–1127 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Johnson, D. E. et al. Isolation, identification and synthesis of an endogenous arachidonic amide that inhibits calcium channel antagonist 1,4-dihydropyridine binding. Prostaglandins Leukot. Essent. Fatty Acids 48, 429–437 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Shimasue, K. et al. Effects of anandamide and arachidonic acid on specific binding of (+) -PN200-110, diltiazem and (−)-desmethoxyverapamil to L-type Ca2+ channel. Eur. J. Pharmacol. 296, 347–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Di Marzo, V. et al. Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: evidence for non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 75, 2434–2444 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Breivogel, C. S. et al. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol. Pharmacol. 60, 155–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Monory, K. et al. Novel, not adenylyl cyclase-coupled cannabinoid binding site in cerebellum of mice. Biochem. Biophys. Res. Commun. 292, 231–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Offertáler, L. et al. Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol. Pharmacol. 63, 699–705 (2003).

    Article  PubMed  Google Scholar 

  56. Ryberg, E. et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 152, 1092–1101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lauckner, J. E. et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl Acad. Sci. USA 105, 2699–2704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McHugh, D. et al. Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol. 165, 2414–2424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, J. W. et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat. Commun. 7, 13123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oka, S. et al. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun. 362, 928–934 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Finlay, D. B. et al. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-arachidonoyl glycine. PeerJ. 4, e1835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hanuš, L. O. et al. Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 33, 1357–1392 (2016).

    Article  PubMed  Google Scholar 

  63. De Petrocellis, L., Nabissi, M., Santoni, G. & Ligresti, A. Actions and regulation of ionotropic cannabinoid receptors. Adv. Pharmacol. 80, 249–289 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Bisogno, T. et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 134, 845–852 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu, S. S. et al. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot. Essent. Fatty Acids 81, 291–301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raboune, S. et al. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front. Cell. Neurosci. 8, 195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. De Petrocellis, L. et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J. Pharmacol. Exp. Ther. 325, 1007–1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Iannotti, F. A. et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem. Neurosci 5, 1131–1141 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. De Petrocellis, L. et al. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB1 receptors and endovanilloids. Exp. Cell Res. 313, 1911–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Lam, P. M., McDonald, J. & Lambert, D. G. Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. Br. J. Anaesth. 94, 649–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Di Marzo, V. et al. Hypolocomotor effects in rats of capsaicin and two long chain capsaicin homologues. Eur. J. Pharmacol. 25 420, 123–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Starowicz, K. et al. Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism. PLOS ONE 8, e60040 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maione, S. et al. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J. Pharmacol. Exp. Ther. 316, 969–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Morgese, M. G. et al. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB1 and TRPV1 receptors. Exp. Neurol. 208, 110–119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Benito, C. et al. β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB1 or CB2 receptors. Br. J. Pharmacol. 166, 1474–1489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmid, H. H. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem. Phys. Lipids 108, 71–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Jin, X. H. et al. Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J. Biol. Chem. 282, 3614–3623 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Ogura, Y. et al. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat. Chem. Biol. 12, 669–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsuboi, K. et al. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J. Biol. Chem. 280, 11082–11092 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Fowler, C. J. Oleamide: a member of the endocannabinoid family? Br. J. Pharmacol. 141, 195–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Saghatelian, A. et al. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 45, 9007–9015 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Labar, G. et al. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem 11, 218–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Navia-Paldanius, D., Savinainen, J. R. & Laitinen, J. T. Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J. Lipid Res. 53, 2413–2424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kozak, K. R., Prusakiewicz, J. J. & Marnett, L. J. Oxidative metabolism of endocannabinoids by COX-2. Curr. Pharm. Des. 10, 659–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ueda, N. et al. Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Biochim. Biophys. Acta 1254, 127–134 (1995).

    Article  PubMed  Google Scholar 

  86. Snider, N. T., Walker, V. J. & Hollenberg, P. F. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol. Rev. 62, 136–154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Granchi, C. et al. A patent review of Monoacylglycerol Lipase (MAGL) inhibitors Expert Opin. Ther. Pat. 27, 1341–1351 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Bedse, G. et al. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry. 8, 92 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feledziak, M. et al. Inhibitors of the endocannabinoid-degrading enzymes, or how to increase endocannabinoid's activity by preventing their hydrolysis. Recent Pat. CNS Drug Discov. 7, 49–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Sagar, D. R., Kendall, D. A. & Chapman, V. Inhibition of fatty acid amide hydrolase produces PPARα-mediated analgesia in a rat model of inflammatory pain. Br. J. Pharmacol. 155, 1297–1306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luchicchi, A. et al. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict. Biol. 15, 277–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kawahara, H., Drew, G. M., Christie, M. J., Vaughan, C. W. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. Br. J. Pharmacol. 163, 1214–1222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hansen, H. S. et al. GPR119 as a fat sensor. Trends Pharmacol. Sci. 33, 374–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Wilkerson, J. L. et al. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 114, 156–167 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Ghosh, S. et al. The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model. Life Sci. 92, 498–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Bandoh, K. et al. Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett. 478, 159–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Nakane, S. et al. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch. Biochem. Biophys. 402, 51–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Nomura, D. K. et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem. Biol. 18, 846–856 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gatta, L. et al. Discovery of prostamide F2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. PLOS ONE 7, e31111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alhouayek, M., Masquelier, J. & Muccioli, G. G. Controlling 2-arachidonoylglycerol metabolism as an anti-inflammatory strategy. Drug Discov. Today 19, 295–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Valdeolivas, S. et al. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis. 4, e862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brüser, A. et al. Prostaglandin E2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y6. Sci. Rep. 7, 2380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hu, S. S. et al. Prostaglandin E2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFκB activity. Br. J. Pharmacol. 153, 1538–1549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cristino, L. et al. Orexin/endocannabinoid/leptin interaction affects hypothalamic tau phosphorilation by glycogen synthase kinase-3β activation. 10th FENS Forum of Neuroscience (Copenhagen, Denmark, 2016).

    Google Scholar 

  106. Gillum, M. P. et al. N-Acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell 135, 813–824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weber, A. et al. Formation of prostamides from anandamide in FAAH knockout mice analyzed by HPLC with tandem mass spectrometry. J. Lipid Res. 45, 757–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Moreira, F. A., Kaiser, N., Monory, K. & Lutz, B. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Navia-Paldanius, D., et al. Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. Eur. J. Pharm. Sci. 77, 180–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Imperatore, R., et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1R signaling and anxiety-like behavior. J. Neurochem. 135, 799–813 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, S. M. et al. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J. Biol. Chem. 276, 42639–42644 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Kohno, M. et al. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347, 827–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Chemin, J. et al. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 20, 7033–7040 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cazade, M. et al. Cross-modulation and molecular interaction at the Cav3.3 protein between the endogenous lipids and the T-type calcium channel antagonist TTA-A2. Mol. Pharmacol. 85, 218–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Mann, A. et al. Palmitoyl Serine: An endogenous neuroprotective endocannabinoid-like entity after traumatic brain injury. J. Neuroimmune Pharmacol. 10, 356–363 (2015).

    Article  PubMed  Google Scholar 

  116. Smoum, R. et al. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc. Natl Acad. Sci. USA 107, 17710–17715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bisogno, T. et al. N-Acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem. J. 351, 817–824 (2010).

    Article  Google Scholar 

  118. Huang, S. M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl Acad. Sci. USA 99, 8400–8405 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chu, C. J. et al. N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633–13639 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Ross, H. R., Gilmore, A. J. & Connor, M. Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine. Br. J. Pharmacol. 156, 740–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barbara, G. et al. T-Type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J. Neurosci. 29, 13106–13114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Verhoeckx, K. C. et al. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim. Biophys. Acta 1811, 578–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Bisogno, T. et al. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem. Biophys. Res. Commun. 248, 515–522 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Maione, S. et al. Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors. Br. J. Pharmacol. 150, 766–781 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gilmore, A. J. et al. Inhibition of human recombinant T-type calcium channels by N-arachidonoyl 5-HT. Br. J. Pharmacol. 167, 1076–1088 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dempsey, D. R. et al. Identification of an arylalkylamine N-acyltransferase from Drosophila melanogaster that catalyzes the formation of long-chain N-acylserotonins. FEBS Lett. 588, 594–599 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bradshaw, H. B., Raboune, S. & Hollis, J. L. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 92, 404–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Connor, M., Vaughan, C. W. & Vandenberg, R. J. N-Acyl amino acids and N-acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets. Br. J. Pharmacol. 160, 1857–1871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Di Marzo, V. & Wang, J. (eds) The Endocannabinoidome: The World of Endocannabinoids and Related Mediators (Elsevier Academic Press, London, 2015).

    Google Scholar 

  130. Piscitelli, F. et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr. Metab. (Lond.) 8, 51 (2011).

    Article  CAS  Google Scholar 

  131. Witkamp, R. Fatty acids, endocannabinoids and inflammation. Eur. J. Pharmacol. 785, 96–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Piazza, P. V., Cota, D. & Marsicano, G. The CB1 receptor as the cornerstone of exostasis. Neuron 93, 1252–1274 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Hasenoehrl, C. et al. G protein-coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. Int. J. Cancer 142, 121–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Ramer, R. & Hinz, B. Cannabinoids as anticancer drugs. Adv. Pharmacol. 80, 397–436 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Tsujiuchi, T. et al. Lysophosphatidic acid receptors in cancer pathobiology. Histol. Histopathol. 29, 313–321 (2014).

    CAS  PubMed  Google Scholar 

  136. Velasco, M., O'Sullivan, C. & Sheridan, G. K. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 113, 608–617 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Deliu, E. et al. The lysophosphatidylinositol receptor GPR55 modulates pain perception in the periaqueductal gray. Mol. Pharmacol. 88, 265–272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McKillop, A. M. et al. Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal β-cells, isolated pancreatic islets and mice. Br. J. Pharmacol. 170, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Piras, A. et al. Effects of dietary CLA on n-3 HUFA score and N-acylethanolamides biosynthesis in the liver of obese Zucker rats. Prostaglandins Leukot. Essent. Fatty Acids 98, 15–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Melis, M. & Pistis, M. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Pharmacol. Res. 86, 42–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Silvestri, C. et al. Anandamide-derived prostamide F2α negatively regulates adipogenesis. J. Biol. Chem. 288, 23307–22332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bisogno, T., Piscitelli, F. & Di Marzo, V. Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: Endocannabinoidomics. Eur. J. Lipid Sci. Technol. 111, 53–63 (2008).

    Article  CAS  Google Scholar 

  143. Piscitelli, F. in The Endocannabinoidome: The World of Endocannabinoids and Related Mediators ( eds Di Marzo, V. & Wang, J. ) 137–152 (Elsevier Academic Press, London, 2015).

    Book  Google Scholar 

  144. Di Marzo, V. et al. Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Lett. 436, 449–454 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Ligresti, A. et al. Exploiting nanotechnologies and TRPV1 channels to investigate the putative anandamide membrane transporter. PLOS ONE 5, e10239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chicca, A. et al. Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc. Natl Acad. Sci. USA 114, E5006–E5015 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zygmunt, P. M. et al. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur. J. Pharmacol. 396, 39–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Högestätt, E. D. et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J. Biol. Chem. 280, 31405–31412 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Sharma, C. V. et al. First evidence of the conversion of paracetamol to AM404 in human cerebrospinal fluid. J. Pain Res. 10, 2703–2709 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ohashi, N. et al. Acetaminophen metabolite N-acylphenolamine induces analgesia via transient receptor potential vanilloid 1 receptors expressed on the primary afferent terminals of C-fibers in the spinal dorsal horn. Anesthesiology 127, 355–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Eberhardt, M. J. et al. Reactive metabolites of acetaminophen activate and sensitize the capsaicin receptor TRPV1. Sci. Rep. 7, 12775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ottani, A. et al. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur. J. Pharmacol. 531, 280–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Costa, B. et al. The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. Pharmacol.Res. 61, 537–546 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Malek, N. et al. The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. Pharmacol. Res. 111, 251–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Micale, V. et al. Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology 34, 593–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Navarria, A. et al. The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol. Res. 87, 151–159 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Bashashati, M. et al. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT). Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13148 (2017).

    Article  CAS  Google Scholar 

  158. Maione, S. et al. Piperazinyl carbamate fatty acid amide hydrolase inhibitors and transient receptor potential channel modulators as “dual-target” analgesics. Pharmacol. Res. 76, 98–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Malek, N. et al. A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis. Pain 156, 890–903 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci. 27, 832–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Abdelhamid, R. E. et al. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol. Res. 79, 21–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Alhouayek, M. & Muccioli, G. G. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol. Sci. 35, 284–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Ligresti, A. et al. Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition. Br. J. Pharmacol. 171, 1408–1419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fowler, C. J. et al. Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide. J. Enzyme Inhib. Med. Chem. 28, 172–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Cipriano, M. et al. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen. Eur. J. Pharmacol. 720, 383–390 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Migliore, M. et al. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur. J. Med. Chem. 109, 216–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Duggan, K. C. et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat. Chem. Biol. 7, 803–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bishay, P. et al. R-Flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLOS ONE 5, e10628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gouveia-Figueira, S. et al. Characterisation of (R)-2-(2-Fluorobiphenyl-4-yl)-N-(3-Methylpyridin-2-yl)Propanamide as a dual fatty acid amide hydrolase: Cyclooxygenase inhibitor. PLOS ONE 10, e0139212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chicca, A. et al. Functionalization of β-caryophyllene generates novel polypharmacology in the endocannabinoid system. ACS Chem. Biol. 9, 1499–1507 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Sasso, O. et al. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage. FASEB J. 29, 2616–2627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ligresti, A. et al. Targeting pain and inflammation by combining two therapeutic modalities in a single molecule: inhibition of FAAH and antagonism of multiple prostanoid receptors. Proc. Bioactive Lipids Conf. (2015).

  173. Pérez-Fernández, R. et al. Discovery of potent dual PPARα agonists/CB1 ligands. ACS Med. Chem. Lett. 2, 793–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Long, J. Z. et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl Acad. Sci. USA 106, 20270–20275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ramesh, D. et al. Dual inhibition of endocannabinoid catabolic enzymes produces enhanced antiwithdrawal effects in morphine-dependent mice. Neuropsychopharmacology 38, 1039–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sakin, Y. S. et al. The effect of FAAH, MAGL, and dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in rodents. Neurogastroenterol. Motil 27, 936–944 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Parker, L. A. et al. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models. Psychopharmacology 233, 2265–2275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yesilyurt, O. et al. Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice. Arch. Dermatol. Res. 308, 335–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Novotna, A. et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativexâ), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur. J. Neurol. 18, 1122–1131 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Comelli, F. et al. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother. Res. 22, 1017–1024 (2008).

    Article  PubMed  Google Scholar 

  181. Marcu, J. P. et al. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther. 9, 180–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Valdeolivas, S. et al. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors. ACS Chem. Neurosci. 3, 400–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Johnson, J. R. et al. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manage. 39, 167–179 (2010).

    Article  PubMed  Google Scholar 

  184. Lichtman, A. H. et al. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as a adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom. Manage. 55, 179–188 (2018).

    Article  PubMed  Google Scholar 

  185. López-Sendón Moreno, J. L. et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's disease. J. Neurol. 263, 1390–1400 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Baker, D. et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404, 84–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Schubart, C. D. et al. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr. Res. 130, 216–221 (2011).

    Article  PubMed  Google Scholar 

  188. Englund, A. et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J. Psychopharmacol. 27, 19–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Gomes, F. V., Del Bel, E. A. & Guimarães, F. S. Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 43–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Hilliard, A. et al. Evaluation of the effects of Sativex (THC BDS: CBD BDS) on inhibition of spasticity in a chronic relapsing experimental allergic autoimmune encephalomyelitis: a model of multiple sclerosis. ISRN Neurol. 2012, 802649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. McPartland, J. M. et al. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 172, 737–753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wargent, E. T. et al. The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes 3, e68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Silvestri, C. et al. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J. Hepatol. 62, 1382–1390 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Jadoon, K. A. et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind,placebo-controlled, parallel group pilot study. Diabetes Care 39, 1777–1786 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Leweke, F. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2, e94 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. McGuire, P. et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am. J. Psychiatry 175, 225–231 (2017).

    Article  PubMed  Google Scholar 

  197. Devinsky, O. et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Katona, I. Cannabis and endocannabinoid signaling in epilepsy. Handb. Exp. Pharmacol. 231, 285–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Turner, S. E. et al. Molecular pharmacology of phytocannabinoids. Prog. Chem. Org. Nat. Prod. 103, 61–101 (2017).

    CAS  PubMed  Google Scholar 

  200. Brodie, J. S., Di Marzo, V. & Guy, G. W. Polypharmacology shakes hands with complex aetiopathology. Trends Pharmacol. Sci. 36, 802–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Di Marzo, V. & Piscitelli, F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics 12, 692–698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pistis, M. & O'Sullivan, S. E. The role of nuclear hormone receptors in cannabinoid function. Adv. Pharmacol. 80, 291–328 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Paronis, C. A. et al. Δ9-Tetrahydrocannabinol acts as a partial agonist/antagonist in mice. Behav. Pharmacol. 23, 802–805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wiley, J. L., Marusich, J. A. & Huffman, J. W. Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci. 97, 55–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Atwood, B. K. et al. JWH018, a common constituent of 'Spice' herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br. J. Pharmacol. 160, 585–593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Maccarrone, M., Guzmán, M., Mackie, K., Doherty, P. & Harkany, T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat. Rev. Neurosci. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pacher, P., Steffens, S., Haskó, G., Schindler, T. H. & Kunos, G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat. Rev. Cardiol. 15, 151–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Armenian, P. et al. Intoxication from the novel synthetic cannabinoids AB-PINACA and ADB-PINACA: A case series and review of the literature. Neuropharmacology 134, 82–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Debruyne, D. & Le Boisselier, R. Emerging drugs of abuse: current perspectives on synthetic cannabinoids. Subst. Abuse Rehabil. 6, 113–129 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Paul, A. B. M. et al. Teens and spice: a review of adolescent fatalities associated with synthetic cannabinoid use. J. Forens. Sci. 63, 1321–1324 (2017).

    Article  CAS  Google Scholar 

  211. Hruba, L. & McMahon, L. R. Apparent affinity estimates and reversal of the effects of synthetic cannabinoids AM-2201, CP-47,497, JWH-122, and JWH-250 by rimonabant in Rhesus Monkeys. J. Pharmacol. Exp. Ther. 362, 278–286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martinez, K. B., Leone, V. & Chang, E. B. Microbial metabolites in health and disease: Navigating the unknown in search of function. J. Biol. Chem. 292, 8553–8559 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Rousseaux, C. et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13, 35–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  214. Karwad, M. A. et al. The role of CB1 in intestinal permeability and inflammation. FASEB J. 31, 3267–3277 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Kang, C. et al. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio 8, e00470-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Mehrpouya-Bahrami, P. et al. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 7, 15645 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Wu, D. F. et al. Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J. Neurochem. 104, 1132–1143 (2008).

    Article  CAS  PubMed  Google Scholar 

  220. Cluny, N. L. et al. Prevention of diet-induced obesity effects on body weight and gut microbiota in mice treated chronically with Δ9-tetrahydrocannabinol. PLOS ONE 10, e0144270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Geurts, L. et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 6, 6495 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bruce-Keller, A. J., Salbaum, J. M. & Berthoud, H. R. Harnessing gut microbes for mental health: getting from here to there. Biol. Psychiatry 83, 214–223 (2018).

    Article  PubMed  Google Scholar 

  225. Guida, F. et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 67, 230–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. de Lago, E. et al. Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochem. Pharmacol. 70, 446–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  227. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Karwad, M. A. et al. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J. 31, 469–481 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. McPartland, J. M., Guy, G. W. & Di Marzo, V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLOS ONE 9, e89566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ferreira, R. C. M. et al. The involvement of the endocannabinoid system in the peripheral antinociceptive action of ketamine. J. Pain 19, 487–495 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Petrosino, S. & Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br. J. Pharmacol. 174, 1349–1365 (2017).

    Article  CAS  PubMed  Google Scholar 

  232. Gonsiorek, W. et al. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol. Pharmacol. 57, 1045–1050 (2000).

    CAS  PubMed  Google Scholar 

  233. Iannotti, F. A. et al. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels. Proc. Natl Acad. Sci. USA 111, E2472–E2481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Dhopeshwarkar, A. et al. Two Janus cannabinoids that are both CB2 agonists and CB1 antagonists. J. Pharmacol. Exp. Ther. 360, 300–311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bauer, M. et al. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J. Biol. Chem. 287, 36944–36967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Petrucci, V. et al. Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci. Rep. 7, 9560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Vallée, M. et al. Pregnenolone can protect the brain from cannabis intoxication. Science 343, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Busquets-Garcia, A. et al. Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice. Mol. Psychiatry 22, 1594–1603 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Liang, Y. et al. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. Br. J. Pharmacol. 154, 1079–1093 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Haj-Dahmane, S. et al. Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc. Natl Acad. Sci. USA 115, 3482–3487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Oddi, S. et al. Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem. Biol. 16, 624–632 (2009).

    Article  CAS  PubMed  Google Scholar 

  242. Herman, T. S. et al. Superiority of nabilone over prochlorperazine as an antiemetic in patients receiving cancer chemotherapy. N. Engl. J. Med. 300, 1295–1297 (1979).

    Article  CAS  PubMed  Google Scholar 

  243. Topol, E. J. et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet 376, 517–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  244. Ostenfeld, T. et al. A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW842166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. Clin. J. Pain 27, 668–676 (2011).

    Article  PubMed  Google Scholar 

  245. Odan, M. et al. Discovery of S-777469: an orally available CB2 agonist as an antipruritic agent. Bioorg. Med. Chem. Lett. 22, 2803–2806 (2012).

    Article  CAS  PubMed  Google Scholar 

  246. Tepper, M. A., Zurier, R. B. & Burstein, S. H. Ultrapure ajulemic acid has improved CB2 selectivity with reduced CB1 activity. Bioorg. Med. Chem. 22, 3245–3251 (2014).

    Article  CAS  PubMed  Google Scholar 

  247. Bird Rock Bio. Press release on namacizumab. Birdrock Bio http://www.birdrockbio.com/our-pipeline/namacizumab/

  248. Dziadulewicz, E. K. et al. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J. Med. Chem. 50, 3851–3856 (2007).

    Article  CAS  PubMed  Google Scholar 

  249. Neomed. Press release on NEO1940. Neomed neomed.ca/en/projects/neo1940

  250. Abide Therapeutics. Press release on ABX-1431. Abide Therapeutics http://abidetx.com/news/abide-therapeutics-presents-positive-data-from-a-phase-1b-study-of-abx-1431-in-tourette-syndrome-at-the-american-academy-of-neurology-70th-annual-meeting/

  251. Meiri, E. et al. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr. Med. Res. Opin 23, 533–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  252. Thiele, E. A. et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391, 1085–1096 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Gentry, C., Andersson, D. A. & Bevan, S. TRPA1 mediates the hypothermic action of acetaminophen. Sci. Rep. 5, 12771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Maione, S. et al. Effects of metabolites of the analgesic agent dipyrone (metamizol) on rostral ventromedial medulla cell activity in mice. Eur. J. Pharmacol. 748, 115–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  255. Qin, N. et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 28, 6231–6238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. De Petrocellis, L. et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. De Petrocellis, L. et al. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. 204, 255–266 (2012).

    Article  CAS  Google Scholar 

  258. Laprairie, R. B. et al. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 172, 4790–4805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Laun, A. S. & Song, Z. H. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun. 490, 17–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Maione, S. et al. Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br. J. Pharmacol. 162, 584–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Nadal, X. et al. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br. J. Pharmacol. 174, 4263–4276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bolognini, D. et al. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br. J. Pharmacol. 168, 1456–1470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Cascio, M. G. et al. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects. Br. J. Pharmacol. 172, 1305–1318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Rock, E. M. et al. Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology 215, 505–512 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author dedicates this article to R. Mechoulam, the father of endocannabinoid research, on the occasion of his 88th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Marzo.

Ethics declarations

Competing interests

V.D. acts as a consultant for, and is a recipient of research grants from, GW Pharmaceuticals, UK.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17, 623–639 (2018). https://doi.org/10.1038/nrd.2018.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.115

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research