Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New approaches and challenges to targeting the endocannabinoid system

A Corrigendum to this article was published on 30 August 2018

Abstract

The endocannabinoid signalling system was discovered because receptors in this system are the targets of compounds present in psychotropic preparations of Cannabis sativa. The search for new therapeutics that target endocannabinoid signalling is both challenging and potentially rewarding, as endocannabinoids are implicated in numerous physiological and pathological processes. Hundreds of mediators chemically related to the endocannabinoids, often with similar metabolic pathways but different targets, have complicated the development of inhibitors of endocannabinoid metabolic enzymes but have also stimulated the rational design of multi-target drugs. Meanwhile, drugs based on botanical cannabinoids have come to the clinical forefront, synthetic agonists designed to bind cannabinoid receptor 1 with very high affinity have become a societal threat and the gut microbiome has been found to signal in part through the endocannabinoid network. The current development of drugs that alter endocannabinoid signalling and how this complex system could be pharmacologically manipulated in the future are described in this Opinion article.

Figure 1: Endocannabinoidome mediators and receptors.
Figure 2: Synthesis of the endocannabinoidome mediators.
Figure 3: Catabolism of the endocannabinoidome mediators.

References

  1. 1

    Alexander, S. P. Therapeutic potential of cannabis-related drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 157–166 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Loewe, S. [Active principals of the cannabis and the pharmacology of the cannabinols]. Naunyn. Schmiedebergs Arch. Exp. Pathol. Pharmakol. 211, 175–193 (1950).

    CAS  Article  Google Scholar 

  3. 3

    Mechoulam, R. & Shvo, Y. Hashish. I. The structure of cannabidiol. Tetrahedron 19, 2073–2078 (1963).

    CAS  Article  Google Scholar 

  4. 4

    Gaoni, R. & Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647 (1964).

    CAS  Article  Google Scholar 

  5. 5

    Mechoulam, R. et al. Chemical basis of hashish activity. Science 169, 611–612 (1970).

    CAS  Article  Google Scholar 

  6. 6

    Varvel, S. A. et al. Δ9-tetrahydrocannbinol accounts for the antinociceptive, hypothermic, and cataleptic effects of marijuana in mice. J. Pharmacol. Exp. Ther. 314, 329–337 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Matsuda, L. A. et al. Structure of a cannabinoid receptor and functional expression of a cloned cDNA. Nature 346, 561–564 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Munro, S., Thomas, K. L. & Abushaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 31–65 (1993).

    Article  Google Scholar 

  9. 9

    Howlett, A. C. in Cannabinoids: Handbook of Experimental Pharmacology (ed. Pertwee R. G.) 53–79 (Springer, Berlin, 2005).

    Google Scholar 

  10. 10

    Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Di Marzo, V. & Fontana, A. Anandamide, an endogenous cannabinomimetic eicosanoid: 'killing two birds with one stone'. Prostaglandins Leukot. Essent. Fatty Acids 53, 1–11 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Okamoto, Y. et al. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Ligresti, A., De Petrocellis, L. & Di Marzo, V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol. Rev. 96, 1593–1659 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Devinsky, O. et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15, 270–278 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Keating, G. M. Δ9-Tetrahydrocannabinol/Cannabidiol oromucosal spray (Sativexâ): a review in multiple sclerosis-related spasticity. Drugs 77, 563–574 (2017).

    CAS  Article  Google Scholar 

  22. 22

    Lötsch, J., Weyer-Menkhoff, I. & Tegeder, I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur. J. Pain 22, 471–484 (2017).

    Article  Google Scholar 

  23. 23

    Tambaro, S. & Bortolato, M. Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. Recent Pat. CNS Drug Discov. 7, 25–40 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Fernández-Ruiz, J., Romero, J. & Ramos, J. A. Endocannabinoids and neurodegenerative disorders: Parkinson's disease, Huntington's chorea, Alzheimer's disease, and others. Handb. Exp. Pharmacol. 231, 233–259 (2015).

    Article  CAS  Google Scholar 

  25. 25

    Hasenoehrl, C. Storr, M. & Schicho, R. Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert Rev. Gastroenterol. Hepatol. 11, 329–337 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Richey, J. M. & Woolcott, O. Re-visiting the endocannabinoid system and its therapeutic potential in obesity and associated diseases. Curr. Diab. Rep. 17, 99 (2017).

    Article  CAS  Google Scholar 

  27. 27

    Roser, P., Vollenweider, F. X. & Kawohl, W. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists. World J. Biol. Psychiatry 11, 208–219 (2010).

    Article  Google Scholar 

  28. 28

    Puighermanal, E. et al. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Phil. Trans. R. Soc. B 367, 3254–3263 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Sharma, M. K. et al. Prospective therapeutic agents for obesity: molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists. Eur. J. Med. Chem. 79, 298–339 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Badowski, M. E. A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: a focus on pharmacokinetic variability and pharmacodynamics. Cancer Chemother. Pharmacol. 80, 441–449 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Tam, J. et al. The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur. J. Intern. Med. 49, 23–29 (2018).

    CAS  Article  Google Scholar 

  32. 32

    Fowler, C. J. The potential of inhibitors of endocannabinoid metabolism for drug development: a critical review. Handb. Exp. Pharmacol. 231, 95–128 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Lodola, A. et al. Fatty acid amide hydrolase inhibitors: a patent review (2009–2014). Expert Opin. Ther. Pat. 25, 1247–1266 (2015).

    CAS  PubMed  Google Scholar 

  34. 34

    Huggins, J. P. et al. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 153, 1837–1846 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Kerbrat, A. et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N. Engl. J. Med. 375, 1717–1725 (2016).

    CAS  Article  Google Scholar 

  36. 36

    van Esbroeck, A. C. M. et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10–2474. Science 356, 1084–1087 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Nguyen, T. et al. Allosteric modulation: An alternate approach targeting the cannabinoid CB1 receptor. Med. Res. Rev. 37, 441–474 (2017).

    CAS  Article  Google Scholar 

  38. 38

    Ignatowska-Jankowska, B. M. et al. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 40, 2948–2959 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Slivicki, R. A. et al. Positive allosteric modulation of cannabinoid receptor type 1 suppresses pathological pain without producing tolerance or dependence. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2017.06.032 (2017).

    CAS  Article  Google Scholar 

  40. 40

    Appiah, K. K. et al. Identification of small molecules that selectively inhibit diacylglycerol lipase-α activity. J. Biomol. Screen 19, 595–605 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Hsu, K.-L. et al. Optimization and characterization of a triazole urea inhibitor for diacylglycerol lipase beta (DAGL-β). Probe reports from the NIH molecular libraries program (National Center for Biotechnology Information, Bethesda, 2013).

  42. 42

    Baggelaar, M. P. et al. Highly selective, reversible inhibitor identified by comparative chemoproteomics modulates diacylglycerol lipase activity in neurons. J. Am. Chem. Soc. 137, 8851–8857 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Greig, I. R. et al. Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators. Bioorg. Med. Chem. Lett. 26, 4403–4407 (2016).

    CAS  Article  Google Scholar 

  44. 44

    Bisogno, T. et al. A novel fluorophosphonate inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol with potential anti-obesity effects. Br. J. Pharmacol. 169, 784–793 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Janssen, F. J. & van der Stelt, M. Inhibitors of diacylglycerol lipases in neurodegenerative and metabolic disorders. Bioorg. Med. Chem. Lett. 26, 3831–3837 (2016).

    CAS  Article  Google Scholar 

  46. 46

    Wilkerson, J. L. et al. Diacylglycerol lipase β inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br. J. Pharmacol. 173, 1678–1692 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Navarro, G. et al. Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front. Neurosci. 10, 406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Morales, P. et al. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin. Ther. Pat. 26, 843–856 (2016).

    CAS  Article  Google Scholar 

  49. 49

    Gruden, G. et al. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 173, 1116–1127 (2016).

    CAS  Article  Google Scholar 

  50. 50

    Johnson, D. E. et al. Isolation, identification and synthesis of an endogenous arachidonic amide that inhibits calcium channel antagonist 1,4-dihydropyridine binding. Prostaglandins Leukot. Essent. Fatty Acids 48, 429–437 (1993).

    CAS  Article  Google Scholar 

  51. 51

    Shimasue, K. et al. Effects of anandamide and arachidonic acid on specific binding of (+) -PN200-110, diltiazem and (−)-desmethoxyverapamil to L-type Ca2+ channel. Eur. J. Pharmacol. 296, 347–350 (1996).

    CAS  Article  Google Scholar 

  52. 52

    Di Marzo, V. et al. Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: evidence for non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 75, 2434–2444 (2000).

    CAS  Article  Google Scholar 

  53. 53

    Breivogel, C. S. et al. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol. Pharmacol. 60, 155–163 (2001).

    CAS  Article  Google Scholar 

  54. 54

    Monory, K. et al. Novel, not adenylyl cyclase-coupled cannabinoid binding site in cerebellum of mice. Biochem. Biophys. Res. Commun. 292, 231–235 (2002).

    CAS  Article  Google Scholar 

  55. 55

    Offertáler, L. et al. Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol. Pharmacol. 63, 699–705 (2003).

    Article  Google Scholar 

  56. 56

    Ryberg, E. et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 152, 1092–1101 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Lauckner, J. E. et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl Acad. Sci. USA 105, 2699–2704 (2008).

    CAS  Article  Google Scholar 

  58. 58

    McHugh, D. et al. Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. Br. J. Pharmacol. 165, 2414–2424 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Lee, J. W. et al. Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function. Nat. Commun. 7, 13123 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Oka, S. et al. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem. Biophys. Res. Commun. 362, 928–934 (2007).

    CAS  Article  Google Scholar 

  61. 61

    Finlay, D. B. et al. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-arachidonoyl glycine. PeerJ. 4, e1835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Hanuš, L. O. et al. Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 33, 1357–1392 (2016).

    Article  Google Scholar 

  63. 63

    De Petrocellis, L., Nabissi, M., Santoni, G. & Ligresti, A. Actions and regulation of ionotropic cannabinoid receptors. Adv. Pharmacol. 80, 249–289 (2017).

    CAS  Article  Google Scholar 

  64. 64

    Bisogno, T. et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 134, 845–852 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Hu, S. S. et al. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot. Essent. Fatty Acids 81, 291–301 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Raboune, S. et al. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front. Cell. Neurosci. 8, 195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    De Petrocellis, L. et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J. Pharmacol. Exp. Ther. 325, 1007–1015 (2008).

    CAS  Article  Google Scholar 

  68. 68

    Iannotti, F. A. et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem. Neurosci 5, 1131–1141 (2014).

    CAS  Article  Google Scholar 

  69. 69

    De Petrocellis, L. et al. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB1 receptors and endovanilloids. Exp. Cell Res. 313, 1911–1920 (2007).

    CAS  Article  Google Scholar 

  70. 70

    Lam, P. M., McDonald, J. & Lambert, D. G. Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. Br. J. Anaesth. 94, 649–656 (2005).

    CAS  Article  Google Scholar 

  71. 71

    Di Marzo, V. et al. Hypolocomotor effects in rats of capsaicin and two long chain capsaicin homologues. Eur. J. Pharmacol. 25 420, 123–131 (2001).

    CAS  Article  Google Scholar 

  72. 72

    Starowicz, K. et al. Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism. PLOS ONE 8, e60040 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Maione, S. et al. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J. Pharmacol. Exp. Ther. 316, 969–982 (2006).

    CAS  Article  Google Scholar 

  74. 74

    Morgese, M. G. et al. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB1 and TRPV1 receptors. Exp. Neurol. 208, 110–119 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Benito, C. et al. β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB1 or CB2 receptors. Br. J. Pharmacol. 166, 1474–1489 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Schmid, H. H. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem. Phys. Lipids 108, 71–87 (2000).

    CAS  Article  Google Scholar 

  77. 77

    Jin, X. H. et al. Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J. Biol. Chem. 282, 3614–3623 (2007).

    CAS  Article  Google Scholar 

  78. 78

    Ogura, Y. et al. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat. Chem. Biol. 12, 669–671 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Tsuboi, K. et al. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J. Biol. Chem. 280, 11082–11092 (2005).

    CAS  Article  Google Scholar 

  80. 80

    Fowler, C. J. Oleamide: a member of the endocannabinoid family? Br. J. Pharmacol. 141, 195–196 (2004).

    CAS  Article  Google Scholar 

  81. 81

    Saghatelian, A. et al. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 45, 9007–9015 (2006).

    CAS  Article  Google Scholar 

  82. 82

    Labar, G. et al. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Chembiochem 11, 218–227 (2010).

    CAS  Article  Google Scholar 

  83. 83

    Navia-Paldanius, D., Savinainen, J. R. & Laitinen, J. T. Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J. Lipid Res. 53, 2413–2424 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Kozak, K. R., Prusakiewicz, J. J. & Marnett, L. J. Oxidative metabolism of endocannabinoids by COX-2. Curr. Pharm. Des. 10, 659–667 (2004).

    CAS  Article  Google Scholar 

  85. 85

    Ueda, N. et al. Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Biochim. Biophys. Acta 1254, 127–134 (1995).

    Article  Google Scholar 

  86. 86

    Snider, N. T., Walker, V. J. & Hollenberg, P. F. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol. Rev. 62, 136–154 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Granchi, C. et al. A patent review of Monoacylglycerol Lipase (MAGL) inhibitors Expert Opin. Ther. Pat. 27, 1341–1351 (2017).

    CAS  Article  Google Scholar 

  88. 88

    Bedse, G. et al. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry. 8, 92 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Feledziak, M. et al. Inhibitors of the endocannabinoid-degrading enzymes, or how to increase endocannabinoid's activity by preventing their hydrolysis. Recent Pat. CNS Drug Discov. 7, 49–70 (2012).

    CAS  Article  Google Scholar 

  90. 90

    Sagar, D. R., Kendall, D. A. & Chapman, V. Inhibition of fatty acid amide hydrolase produces PPARα-mediated analgesia in a rat model of inflammatory pain. Br. J. Pharmacol. 155, 1297–1306 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Luchicchi, A. et al. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict. Biol. 15, 277–288 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Kawahara, H., Drew, G. M., Christie, M. J., Vaughan, C. W. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. Br. J. Pharmacol. 163, 1214–1222 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Hansen, H. S. et al. GPR119 as a fat sensor. Trends Pharmacol. Sci. 33, 374–381 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Wilkerson, J. L. et al. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 114, 156–167 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Ghosh, S. et al. The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model. Life Sci. 92, 498–505 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Bandoh, K. et al. Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett. 478, 159–165 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Nakane, S. et al. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch. Biochem. Biophys. 402, 51–58 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Nomura, D. K. et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem. Biol. 18, 846–856 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100

    Gatta, L. et al. Discovery of prostamide F2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. PLOS ONE 7, e31111 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Alhouayek, M., Masquelier, J. & Muccioli, G. G. Controlling 2-arachidonoylglycerol metabolism as an anti-inflammatory strategy. Drug Discov. Today 19, 295–304 (2014).

    CAS  Article  Google Scholar 

  102. 102

    Valdeolivas, S. et al. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis. 4, e862 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Brüser, A. et al. Prostaglandin E2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y6. Sci. Rep. 7, 2380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Hu, S. S. et al. Prostaglandin E2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates NFκB activity. Br. J. Pharmacol. 153, 1538–1549 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105

    Cristino, L. et al. Orexin/endocannabinoid/leptin interaction affects hypothalamic tau phosphorilation by glycogen synthase kinase-3β activation. 10th FENS Forum of Neuroscience (Copenhagen, Denmark, 2016).

    Google Scholar 

  106. 106

    Gillum, M. P. et al. N-Acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell 135, 813–824 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Weber, A. et al. Formation of prostamides from anandamide in FAAH knockout mice analyzed by HPLC with tandem mass spectrometry. J. Lipid Res. 45, 757–763 (2004).

    CAS  Article  Google Scholar 

  108. 108

    Moreira, F. A., Kaiser, N., Monory, K. & Lutz, B. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54, 141–150 (2008).

    CAS  Article  Google Scholar 

  109. 109

    Navia-Paldanius, D., et al. Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. Eur. J. Pharm. Sci. 77, 180–188 (2015).

    CAS  Article  Google Scholar 

  110. 110

    Imperatore, R., et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1R signaling and anxiety-like behavior. J. Neurochem. 135, 799–813 (2015).

    CAS  Article  Google Scholar 

  111. 111

    Huang, S. M. et al. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J. Biol. Chem. 276, 42639–42644 (2001).

    CAS  Article  Google Scholar 

  112. 112

    Kohno, M. et al. Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347, 827–832 (2006).

    CAS  Article  Google Scholar 

  113. 113

    Chemin, J. et al. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 20, 7033–7040 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Cazade, M. et al. Cross-modulation and molecular interaction at the Cav3.3 protein between the endogenous lipids and the T-type calcium channel antagonist TTA-A2. Mol. Pharmacol. 85, 218–225 (2014).

    Article  CAS  Google Scholar 

  115. 115

    Mann, A. et al. Palmitoyl Serine: An endogenous neuroprotective endocannabinoid-like entity after traumatic brain injury. J. Neuroimmune Pharmacol. 10, 356–363 (2015).

    Article  Google Scholar 

  116. 116

    Smoum, R. et al. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc. Natl Acad. Sci. USA 107, 17710–17715 (2010).

    CAS  Article  Google Scholar 

  117. 117

    Bisogno, T. et al. N-Acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem. J. 351, 817–824 (2010).

    Article  Google Scholar 

  118. 118

    Huang, S. M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl Acad. Sci. USA 99, 8400–8405 (2002).

    CAS  Article  Google Scholar 

  119. 119

    Chu, C. J. et al. N-Oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633–13639 (2003).

    CAS  Article  Google Scholar 

  120. 120

    Ross, H. R., Gilmore, A. J. & Connor, M. Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine. Br. J. Pharmacol. 156, 740–750 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Barbara, G. et al. T-Type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J. Neurosci. 29, 13106–13114 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Verhoeckx, K. C. et al. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim. Biophys. Acta 1811, 578–586 (2011).

    CAS  Article  Google Scholar 

  123. 123

    Bisogno, T. et al. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem. Biophys. Res. Commun. 248, 515–522 (1998).

    CAS  Article  Google Scholar 

  124. 124

    Maione, S. et al. Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors. Br. J. Pharmacol. 150, 766–781 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Gilmore, A. J. et al. Inhibition of human recombinant T-type calcium channels by N-arachidonoyl 5-HT. Br. J. Pharmacol. 167, 1076–1088 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Dempsey, D. R. et al. Identification of an arylalkylamine N-acyltransferase from Drosophila melanogaster that catalyzes the formation of long-chain N-acylserotonins. FEBS Lett. 588, 594–599 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Bradshaw, H. B., Raboune, S. & Hollis, J. L. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 92, 404–409 (2013).

    CAS  Article  Google Scholar 

  128. 128

    Connor, M., Vaughan, C. W. & Vandenberg, R. J. N-Acyl amino acids and N-acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets. Br. J. Pharmacol. 160, 1857–1871 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    Di Marzo, V. & Wang, J. (eds) The Endocannabinoidome: The World of Endocannabinoids and Related Mediators (Elsevier Academic Press, London, 2015).

    Google Scholar 

  130. 130

    Piscitelli, F. et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr. Metab. (Lond.) 8, 51 (2011).

    CAS  Article  Google Scholar 

  131. 131

    Witkamp, R. Fatty acids, endocannabinoids and inflammation. Eur. J. Pharmacol. 785, 96–107 (2016).

    CAS  Article  Google Scholar 

  132. 132

    Piazza, P. V., Cota, D. & Marsicano, G. The CB1 receptor as the cornerstone of exostasis. Neuron 93, 1252–1274 (2017).

    CAS  Article  Google Scholar 

  133. 133

    Hasenoehrl, C. et al. G protein-coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. Int. J. Cancer 142, 121–132 (2018).

    CAS  Article  Google Scholar 

  134. 134

    Ramer, R. & Hinz, B. Cannabinoids as anticancer drugs. Adv. Pharmacol. 80, 397–436 (2017).

    CAS  Article  Google Scholar 

  135. 135

    Tsujiuchi, T. et al. Lysophosphatidic acid receptors in cancer pathobiology. Histol. Histopathol. 29, 313–321 (2014).

    CAS  PubMed  Google Scholar 

  136. 136

    Velasco, M., O'Sullivan, C. & Sheridan, G. K. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain. Neuropharmacology 113, 608–617 (2017).

    CAS  Article  Google Scholar 

  137. 137

    Deliu, E. et al. The lysophosphatidylinositol receptor GPR55 modulates pain perception in the periaqueductal gray. Mol. Pharmacol. 88, 265–272 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    McKillop, A. M. et al. Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal β-cells, isolated pancreatic islets and mice. Br. J. Pharmacol. 170, 978–990 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Piras, A. et al. Effects of dietary CLA on n-3 HUFA score and N-acylethanolamides biosynthesis in the liver of obese Zucker rats. Prostaglandins Leukot. Essent. Fatty Acids 98, 15–19 (2015).

    CAS  Article  Google Scholar 

  140. 140

    Melis, M. & Pistis, M. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Pharmacol. Res. 86, 42–49 (2014).

    CAS  Article  Google Scholar 

  141. 141

    Silvestri, C. et al. Anandamide-derived prostamide F2α negatively regulates adipogenesis. J. Biol. Chem. 288, 23307–22332 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. 142

    Bisogno, T., Piscitelli, F. & Di Marzo, V. Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: Endocannabinoidomics. Eur. J. Lipid Sci. Technol. 111, 53–63 (2008).

    Article  CAS  Google Scholar 

  143. 143

    Piscitelli, F. in The Endocannabinoidome: The World of Endocannabinoids and Related Mediators ( eds Di Marzo, V. & Wang, J. ) 137–152 (Elsevier Academic Press, London, 2015).

    Google Scholar 

  144. 144

    Di Marzo, V. et al. Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Lett. 436, 449–454 (1998).

    CAS  Article  Google Scholar 

  145. 145

    Ligresti, A. et al. Exploiting nanotechnologies and TRPV1 channels to investigate the putative anandamide membrane transporter. PLOS ONE 5, e10239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Chicca, A. et al. Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc. Natl Acad. Sci. USA 114, E5006–E5015 (2017).

    CAS  Article  Google Scholar 

  147. 147

    Zygmunt, P. M. et al. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur. J. Pharmacol. 396, 39–42 (2000).

    CAS  Article  Google Scholar 

  148. 148

    Högestätt, E. D. et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J. Biol. Chem. 280, 31405–31412 (2005).

    Article  CAS  Google Scholar 

  149. 149

    Sharma, C. V. et al. First evidence of the conversion of paracetamol to AM404 in human cerebrospinal fluid. J. Pain Res. 10, 2703–2709 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. 150

    Ohashi, N. et al. Acetaminophen metabolite N-acylphenolamine induces analgesia via transient receptor potential vanilloid 1 receptors expressed on the primary afferent terminals of C-fibers in the spinal dorsal horn. Anesthesiology 127, 355–371 (2017).

    CAS  Article  Google Scholar 

  151. 151

    Eberhardt, M. J. et al. Reactive metabolites of acetaminophen activate and sensitize the capsaicin receptor TRPV1. Sci. Rep. 7, 12775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Ottani, A. et al. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur. J. Pharmacol. 531, 280–281 (2006).

    CAS  Article  Google Scholar 

  153. 153

    Costa, B. et al. The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. Pharmacol.Res. 61, 537–546 (2010).

    CAS  Article  Google Scholar 

  154. 154

    Malek, N. et al. The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. Pharmacol. Res. 111, 251–263 (2016).

    CAS  Article  Google Scholar 

  155. 155

    Micale, V. et al. Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology 34, 593–606 (2009).

    CAS  Article  Google Scholar 

  156. 156

    Navarria, A. et al. The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol. Res. 87, 151–159 (2014).

    CAS  Article  Google Scholar 

  157. 157

    Bashashati, M. et al. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT). Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13148 (2017).

    Article  CAS  Google Scholar 

  158. 158

    Maione, S. et al. Piperazinyl carbamate fatty acid amide hydrolase inhibitors and transient receptor potential channel modulators as “dual-target” analgesics. Pharmacol. Res. 76, 98–105 (2013).

    CAS  Article  Google Scholar 

  159. 159

    Malek, N. et al. A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis. Pain 156, 890–903 (2015).

    CAS  Article  Google Scholar 

  160. 160

    Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci. 27, 832–839 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. 161

    Abdelhamid, R. E. et al. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol. Res. 79, 21–27 (2014).

    CAS  Article  Google Scholar 

  162. 162

    Alhouayek, M. & Muccioli, G. G. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol. Sci. 35, 284–292 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. 163

    Ligresti, A. et al. Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition. Br. J. Pharmacol. 171, 1408–1419 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. 164

    Fowler, C. J. et al. Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide. J. Enzyme Inhib. Med. Chem. 28, 172–182 (2013).

    CAS  Article  Google Scholar 

  165. 165

    Cipriano, M. et al. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen. Eur. J. Pharmacol. 720, 383–390 (2013).

    CAS  Article  Google Scholar 

  166. 166

    Migliore, M. et al. Potent multitarget FAAH-COX inhibitors: Design and structure-activity relationship studies. Eur. J. Med. Chem. 109, 216–237 (2016).

    CAS  Article  Google Scholar 

  167. 167

    Duggan, K. C. et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat. Chem. Biol. 7, 803–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Bishay, P. et al. R-Flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLOS ONE 5, e10628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Gouveia-Figueira, S. et al. Characterisation of (R)-2-(2-Fluorobiphenyl-4-yl)-N-(3-Methylpyridin-2-yl)Propanamide as a dual fatty acid amide hydrolase: Cyclooxygenase inhibitor. PLOS ONE 10, e0139212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Chicca, A. et al. Functionalization of β-caryophyllene generates novel polypharmacology in the endocannabinoid system. ACS Chem. Biol. 9, 1499–1507 (2014).

    CAS  Article  Google Scholar 

  171. 171

    Sasso, O. et al. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage. FASEB J. 29, 2616–2627 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172

    Ligresti, A. et al. Targeting pain and inflammation by combining two therapeutic modalities in a single molecule: inhibition of FAAH and antagonism of multiple prostanoid receptors. Proc. Bioactive Lipids Conf. (2015).

  173. 173

    Pérez-Fernández, R. et al. Discovery of potent dual PPARα agonists/CB1 ligands. ACS Med. Chem. Lett. 2, 793–797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Long, J. Z. et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl Acad. Sci. USA 106, 20270–20275 (2009).

    CAS  Article  Google Scholar 

  175. 175

    Ramesh, D. et al. Dual inhibition of endocannabinoid catabolic enzymes produces enhanced antiwithdrawal effects in morphine-dependent mice. Neuropsychopharmacology 38, 1039–1049 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Sakin, Y. S. et al. The effect of FAAH, MAGL, and dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in rodents. Neurogastroenterol. Motil 27, 936–944 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. 177

    Parker, L. A. et al. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models. Psychopharmacology 233, 2265–2275 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. 178

    Yesilyurt, O. et al. Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice. Arch. Dermatol. Res. 308, 335–345 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. 179

    Novotna, A. et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativexâ), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur. J. Neurol. 18, 1122–1131 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. 180

    Comelli, F. et al. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother. Res. 22, 1017–1024 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  181. 181

    Marcu, J. P. et al. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol. Cancer Ther. 9, 180–189 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. 182

    Valdeolivas, S. et al. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors. ACS Chem. Neurosci. 3, 400–406 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. 183

    Johnson, J. R. et al. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manage. 39, 167–179 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  184. 184

    Lichtman, A. H. et al. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as a adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom. Manage. 55, 179–188 (2018).

    Article  Google Scholar 

  185. 185

    López-Sendón Moreno, J. L. et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's disease. J. Neurol. 263, 1390–1400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. 186

    Baker, D. et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404, 84–87 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. 187

    Schubart, C. D. et al. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr. Res. 130, 216–221 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Englund, A. et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J. Psychopharmacol. 27, 19–27 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. 189

    Gomes, F. V., Del Bel, E. A. & Guimarães, F. S. Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 43–47 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  190. 190

    Hilliard, A. et al. Evaluation of the effects of Sativex (THC BDS: CBD BDS) on inhibition of spasticity in a chronic relapsing experimental allergic autoimmune encephalomyelitis: a model of multiple sclerosis. ISRN Neurol. 2012, 802649 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  191. 191

    McPartland, J. M. et al. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 172, 737–753 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  192. 192

    Wargent, E. T. et al. The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes 3, e68 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  193. 193

    Silvestri, C. et al. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J. Hepatol. 62, 1382–1390 (2015).

    CAS  Article  Google Scholar 

  194. 194

    Jadoon, K. A. et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind,placebo-controlled, parallel group pilot study. Diabetes Care 39, 1777–1786 (2016).

    CAS  Article  Google Scholar 

  195. 195

    Leweke, F. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2, e94 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. 196

    McGuire, P. et al. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am. J. Psychiatry 175, 225–231 (2017).

    Article  Google Scholar 

  197. 197

    Devinsky, O. et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017).

    CAS  Article  Google Scholar 

  198. 198

    Katona, I. Cannabis and endocannabinoid signaling in epilepsy. Handb. Exp. Pharmacol. 231, 285–316 (2015).

    CAS  Article  Google Scholar 

  199. 199

    Turner, S. E. et al. Molecular pharmacology of phytocannabinoids. Prog. Chem. Org. Nat. Prod. 103, 61–101 (2017).

    CAS  PubMed  Google Scholar 

  200. 200

    Brodie, J. S., Di Marzo, V. & Guy, G. W. Polypharmacology shakes hands with complex aetiopathology. Trends Pharmacol. Sci. 36, 802–821 (2015).

    CAS  Article  Google Scholar 

  201. 201

    Di Marzo, V. & Piscitelli, F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics 12, 692–698 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  202. 202

    Pistis, M. & O'Sullivan, S. E. The role of nuclear hormone receptors in cannabinoid function. Adv. Pharmacol. 80, 291–328 (2017).

    CAS  Article  Google Scholar 

  203. 203

    Paronis, C. A. et al. Δ9-Tetrahydrocannabinol acts as a partial agonist/antagonist in mice. Behav. Pharmacol. 23, 802–805 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  204. 204

    Wiley, J. L., Marusich, J. A. & Huffman, J. W. Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci. 97, 55–63 (2014).

    CAS  Article  Google Scholar 

  205. 205

    Atwood, B. K. et al. JWH018, a common constituent of 'Spice' herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br. J. Pharmacol. 160, 585–593 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  206. 206

    Maccarrone, M., Guzmán, M., Mackie, K., Doherty, P. & Harkany, T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat. Rev. Neurosci. 15, 786–801 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  207. 207

    Pacher, P., Steffens, S., Haskó, G., Schindler, T. H. & Kunos, G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat. Rev. Cardiol. 15, 151–166 (2018).

    CAS  Article  Google Scholar 

  208. 208

    Armenian, P. et al. Intoxication from the novel synthetic cannabinoids AB-PINACA and ADB-PINACA: A case series and review of the literature. Neuropharmacology 134, 82–91 (2017).

    Article  CAS  Google Scholar 

  209. 209

    Debruyne, D. & Le Boisselier, R. Emerging drugs of abuse: current perspectives on synthetic cannabinoids. Subst. Abuse Rehabil. 6, 113–129 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. 210

    Paul, A. B. M. et al. Teens and spice: a review of adolescent fatalities associated with synthetic cannabinoid use. J. Forens. Sci. 63, 1321–1324 (2017).

    Article  CAS  Google Scholar 

  211. 211

    Hruba, L. & McMahon, L. R. Apparent affinity estimates and reversal of the effects of synthetic cannabinoids AM-2201, CP-47,497, JWH-122, and JWH-250 by rimonabant in Rhesus Monkeys. J. Pharmacol. Exp. Ther. 362, 278–286 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  212. 212

    Martinez, K. B., Leone, V. & Chang, E. B. Microbial metabolites in health and disease: Navigating the unknown in search of function. J. Biol. Chem. 292, 8553–8559 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  213. 213

    Rousseaux, C. et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13, 35–37 (2007).

    CAS  Article  Google Scholar 

  214. 214

    Karwad, M. A. et al. The role of CB1 in intestinal permeability and inflammation. FASEB J. 31, 3267–3277 (2017).

    CAS  Article  Google Scholar 

  215. 215

    Kang, C. et al. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio 8, e00470-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. 216

    Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  217. 217

    Mehrpouya-Bahrami, P. et al. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 7, 15645 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. 218

    Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).

    CAS  Article  Google Scholar 

  219. 219

    Wu, D. F. et al. Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J. Neurochem. 104, 1132–1143 (2008).

    CAS  Article  Google Scholar 

  220. 220

    Cluny, N. L. et al. Prevention of diet-induced obesity effects on body weight and gut microbiota in mice treated chronically with Δ9-tetrahydrocannabinol. PLOS ONE 10, e0144270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. 221

    Geurts, L. et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 6, 6495 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  222. 222

    Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  223. 223

    Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    CAS  Article  Google Scholar 

  224. 224

    Bruce-Keller, A. J., Salbaum, J. M. & Berthoud, H. R. Harnessing gut microbes for mental health: getting from here to there. Biol. Psychiatry 83, 214–223 (2018).

    Article  Google Scholar 

  225. 225

    Guida, F. et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 67, 230–245 (2018).

    CAS  Article  Google Scholar 

  226. 226

    de Lago, E. et al. Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochem. Pharmacol. 70, 446–452 (2005).

    CAS  Article  Google Scholar 

  227. 227

    Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  228. 228

    Karwad, M. A. et al. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J. 31, 469–481 (2017).

    CAS  Article  Google Scholar 

  229. 229

    McPartland, J. M., Guy, G. W. & Di Marzo, V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLOS ONE 9, e89566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. 230

    Ferreira, R. C. M. et al. The involvement of the endocannabinoid system in the peripheral antinociceptive action of ketamine. J. Pain 19, 487–495 (2017).

    Article  CAS  Google Scholar 

  231. 231

    Petrosino, S. & Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br. J. Pharmacol. 174, 1349–1365 (2017).

    CAS  Article  Google Scholar 

  232. 232

    Gonsiorek, W. et al. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol. Pharmacol. 57, 1045–1050 (2000).

    CAS  PubMed  Google Scholar 

  233. 233

    Iannotti, F. A. et al. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels. Proc. Natl Acad. Sci. USA 111, E2472–E2481 (2014).

    CAS  Article  Google Scholar 

  234. 234

    Dhopeshwarkar, A. et al. Two Janus cannabinoids that are both CB2 agonists and CB1 antagonists. J. Pharmacol. Exp. Ther. 360, 300–311 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  235. 235

    Bauer, M. et al. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J. Biol. Chem. 287, 36944–36967 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  236. 236

    Petrucci, V. et al. Pepcan-12 (RVD-hemopressin) is a CB2 receptor positive allosteric modulator constitutively secreted by adrenals and in liver upon tissue damage. Sci. Rep. 7, 9560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. 237

    Vallée, M. et al. Pregnenolone can protect the brain from cannabis intoxication. Science 343, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. 238

    Busquets-Garcia, A. et al. Pregnenolone blocks cannabinoid-induced acute psychotic-like states in mice. Mol. Psychiatry 22, 1594–1603 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  239. 239

    Liang, Y. et al. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. Br. J. Pharmacol. 154, 1079–1093 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  240. 240

    Haj-Dahmane, S. et al. Fatty-acid-binding protein 5 controls retrograde endocannabinoid signaling at central glutamate synapses. Proc. Natl Acad. Sci. USA 115, 3482–3487 (2018).

    Article  Google Scholar 

  241. 241

    Oddi, S. et al. Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem. Biol. 16, 624–632 (2009).

    CAS  Article  Google Scholar 

  242. 242

    Herman, T. S. et al. Superiority of nabilone over prochlorperazine as an antiemetic in patients receiving cancer chemotherapy. N. Engl. J. Med. 300, 1295–1297 (1979).

    CAS  Article  Google Scholar 

  243. 243

    Topol, E. J. et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet 376, 517–523 (2010).

    CAS  Article  Google Scholar 

  244. 244

    Ostenfeld, T. et al. A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW842166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. Clin. J. Pain 27, 668–676 (2011).

    Article  Google Scholar 

  245. 245

    Odan, M. et al. Discovery of S-777469: an orally available CB2 agonist as an antipruritic agent. Bioorg. Med. Chem. Lett. 22, 2803–2806 (2012).

    CAS  Article  Google Scholar 

  246. 246

    Tepper, M. A., Zurier, R. B. & Burstein, S. H. Ultrapure ajulemic acid has improved CB2 selectivity with reduced CB1 activity. Bioorg. Med. Chem. 22, 3245–3251 (2014).

    CAS  Article  Google Scholar 

  247. 247

    Bird Rock Bio. Press release on namacizumab. Birdrock Bio http://www.birdrockbio.com/our-pipeline/namacizumab/

  248. 248

    Dziadulewicz, E. K. et al. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J. Med. Chem. 50, 3851–3856 (2007).

    CAS  Article  Google Scholar 

  249. 249

    Neomed. Press release on NEO1940. Neomed neomed.ca/en/projects/neo1940

  250. 250

    Abide Therapeutics. Press release on ABX-1431. Abide Therapeutics http://abidetx.com/news/abide-therapeutics-presents-positive-data-from-a-phase-1b-study-of-abx-1431-in-tourette-syndrome-at-the-american-academy-of-neurology-70th-annual-meeting/

  251. 251

    Meiri, E. et al. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr. Med. Res. Opin 23, 533–543 (2007).

    CAS  Article  Google Scholar 

  252. 252

    Thiele, E. A. et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391, 1085–1096 (2018).

    CAS  Article  Google Scholar 

  253. 253

    Gentry, C., Andersson, D. A. & Bevan, S. TRPA1 mediates the hypothermic action of acetaminophen. Sci. Rep. 5, 12771 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  254. 254

    Maione, S. et al. Effects of metabolites of the analgesic agent dipyrone (metamizol) on rostral ventromedial medulla cell activity in mice. Eur. J. Pharmacol. 748, 115–122 (2015).

    CAS  Article  Google Scholar 

  255. 255

    Qin, N. et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 28, 6231–6238 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  256. 256

    De Petrocellis, L. et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  257. 257

    De Petrocellis, L. et al. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. 204, 255–266 (2012).

    CAS  Article  Google Scholar 

  258. 258

    Laprairie, R. B. et al. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 172, 4790–4805 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  259. 259

    Laun, A. S. & Song, Z. H. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun. 490, 17–21 (2017).

    CAS  Article  Google Scholar 

  260. 260

    Maione, S. et al. Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br. J. Pharmacol. 162, 584–596 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  261. 261

    Nadal, X. et al. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br. J. Pharmacol. 174, 4263–4276 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  262. 262

    Bolognini, D. et al. Cannabidiolic acid prevents vomiting in Suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br. J. Pharmacol. 168, 1456–1470 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  263. 263

    Cascio, M. G. et al. The phytocannabinoid, Δ9-tetrahydrocannabivarin, can act through 5-HT1A receptors to produce antipsychotic effects. Br. J. Pharmacol. 172, 1305–1318 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  264. 264

    Rock, E. M. et al. Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology 215, 505–512 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author dedicates this article to R. Mechoulam, the father of endocannabinoid research, on the occasion of his 88th birthday.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Marzo.

Ethics declarations

Competing interests

V.D. acts as a consultant for, and is a recipient of research grants from, GW Pharmaceuticals, UK.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 17, 623–639 (2018). https://doi.org/10.1038/nrd.2018.115

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing