Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene therapy for neurological disorders: progress and prospects

An Erratum to this article was published on 12 September 2018

This article has been updated

Abstract

Adeno-associated viral (AAV) vectors are a rapidly emerging gene therapy platform for the treatment of neurological diseases. In preclinical studies, transgenes encoding therapeutic proteins, microRNAs, antibodies or gene-editing machinery have been successfully delivered to the central nervous system with natural or engineered viral capsids via various routes of administration. Importantly, initial clinical studies have demonstrated encouraging safety and efficacy in diseases such as Parkinson disease and spinal muscular atrophy, as well as durability of transgene expression. Here, we discuss key considerations and challenges in the future design and development of therapeutic AAV vectors, highlighting the most promising targets and recent clinical advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AAV engineering through high-throughput selection.
Figure 2: Recombinant AAV genome design.
Figure 3: Delivery of AAV gene therapy with intraparenchymal administration.

Similar content being viewed by others

Change history

  • 12 September 2018

    Details related to the copyright permissions for the images shown in Figure 3 have been added to the figure legend.

References

  1. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017). This seminal clinical study demonstrates the safety and early efficacy of the first intravenously administered AAV-based therapy designed to correct the SMN deficiency in the CNS.

    Article  CAS  PubMed  Google Scholar 

  2. Dominguez, E. et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum. Mol. Genet. 20, 681–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomsen, G. M. et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J. Neurosci. 34, 15587–15600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borel, F. et al. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum. Gene Ther. 27, 19–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Foust, K. D. et al. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol. Ther. 21, 2148–2159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McBride, J. L. et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc. Natl Acad. Sci. USA 105, 5868–5873 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stanek, L. M. et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease. Hum. Gene Ther. 25, 461–474 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boudreau, R. L. et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice. Mol. Ther. 17, 1053–1063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hocquemiller, M., Giersch, L., Audrain, M., Parker, S. & Cartier, N. Adeno-associated virus-based gene therapy for CNS diseases. Hum. Gene Ther. 27, 478–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katz, M. L. et al. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease. Sci. Transl Med. 7, 313ra180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenberg, J. B. et al. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase A cDNA to nonhuman primates. Hum. Gene Ther. Clin. Dev. 25, 164–177 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu, H., Dirosario, J., Killedar, S., Zaraspe, K. & McCarty, D. M. Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol. Ther. 19, 1025–1033 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weismann, C. M. et al. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum. Mol. Genet. 24, 4353–4364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bailey, R. M., Armao, D., Nagabhushan Kalburgi, S. & Gray, S. J. Development of intrathecal AAV9 gene therapy for giant axonal neuropathy. Mol. Ther. Methods Clin. Dev. 9, 160–171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haurigot, V. et al. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. J. Clin. Invest. 123, 3254–3271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garg, S. K. et al. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J. Neurosci. 33, 13612–13620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gadalla, K. K. et al. Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol. Ther. 21, 18–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Gadalla, K. K. E. et al. Development of a novel AAV gene therapy cassette with improved safety features and efficacy in a mouse model of Rett syndrome. Mol. Ther. Methods Clin. Dev. 5, 180–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valori, C. F. et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci. Transl Med. 2, 35ra42 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Gerard, C. et al. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol. Ther. Methods Clin. Dev. 1, 14044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, W. et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J. Neurosci. 36, 12425–12435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ising, C. et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J. Exp. Med. 214, 1227–1238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davidson, B. L. et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl Acad. Sci. USA 97, 3428–3432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein, R. L., Dayton, R. D., Tatom, J. B., Henderson, K. M. & Henning, P. P. AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol. Ther. 16, 89–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Hutson, T. H., Verhaagen, J., Yáñez-Muñoz, R. J. & Moon, L. D. F. Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Ther. 19, 49–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Bartlett, J. S., Samulski, R. J. & McCown, T. J. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum. Gene Ther. 9, 1181–1186 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Passini, M. A. Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J. Neurosci. 26, 1334–1342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Passini, M. et al. Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of β-glucuronidase-deficient mice. J. Virol. 77, 7034 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Federici, T. et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther. 19, 852–859 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Cearley, C. N. et al. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther. 16, 1710–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, G., Martins, I. H., Chiorini, J. A. & Davidson, B. L. Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther. 12, 1503–1508 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Taymans, J.-M. et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. 18, 195–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Samaranch, L. et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the CSF of non-human primates. Hum. Gene Ther. 24, 526–532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vite, C. H., Passini, M. A., Haskins, M. E. & Wolfe, J. H. Adeno-associated virus vector-mediated transduction in the cat brain. Gene Ther. 10, 1874–1881 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Richardson, R. M. et al. T2 imaging in monitoring of intraparenchymal real-time convection-enhanced delivery. Neurosurgery 69, 154–163; discussion 163 (2011).

    Article  PubMed  Google Scholar 

  40. Passini, M. A. et al. Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum. Gene Ther. 25, 619–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Miyanohara, A. et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol. Ther. Methods Clin. Dev. 3, 16046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gibson, L. A. et al. Adeno-associated viral gene therapy using PHP.B:NPC1 ameliorates disease phenotype in mouse model of Niemann-Pick C1 disease. Mol. Ther. 25, 1–363 (2017).

    Google Scholar 

  43. Morabito, G. et al. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol. Ther. 25, 2727–2742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balazs, A. B. et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 81–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balazs, A. B., Bloom, J. D., Hong, C. M., Rao, D. S. & Baltimore, D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat. Biotechnol. 31, 647–652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016). A novel, cell-type-specific, functional in vivo selection system enables the identification of several engineered AAV capsids that provide up to 40-fold greater CNS transduction than the previous standard, AAV9, after IV administration in adult mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ravina, B. et al. Intraputaminal AADC gene therapy for advanced Parkinson's disease: interim results of a phase 1b Trial [abstract]. Hum. Gene Ther. 28, OR12 (2017).

    Google Scholar 

  48. Hwu, W. L. et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci. Transl Med. 4, 134ra61 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Mittermeyer, G. et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson's disease. Hum. Gene Ther. 23, 377–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sehara, Y. et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson's disease. Hum. Gene Ther. Clin. Dev. 28, 74–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Grieger, J. C., Soltys, S. M. & Samulski, R. J. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol. Ther. 24, 287–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Kotin, R. M. & Snyder, R. O. Manufacturing clinical grade recombinant adeno-associated virus using invertebrate cell lines. Hum. Gene Ther. 28, 350–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    CAS  PubMed  Google Scholar 

  54. Cartier, N. et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol. 507, 187–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Petrs-Silva, H. et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol. Ther. 17, 463–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965). The first identification of small viruses now known as AAVs as contaminants of adenovirus preparations.

    Article  CAS  PubMed  Google Scholar 

  58. Hoggan, M. D., Blacklow, N. R. & Rowe, W. P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc. Natl Acad. Sci. USA 55, 1467–1474 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parks, W. P., Green, M., Pina, M. & Melnick, J. L. Physicochemical characterization of adeno-associated satellite virus type 4 and its nucleic acid. J. Virol. 1, 980–987 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiorini, J. A., Yang, L., Liu, Y., Safer, B. & Kotin, R. M. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Virol. 71, 6823–6833 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Handa, A., Muramatsu, S., Qiu, J., Mizukami, H. & Brown, K. E. Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J. Gen. Virol. 81, 2077–2084 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao, G. et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc. Natl Acad. Sci. USA 100, 6081–6086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sabatino, D. E. et al. Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol. Ther. 12, 1023–1033 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Arbetman, A. E. et al. Novel caprine adeno-associated virus (AAV) capsid (AAV-Go.1) is closely related to the primate AAV-5 and has unique tropism and neutralization properties. J. Virol. 79, 15238–15245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Markakis, E. A. et al. Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol. Ther. 18, 588–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Bevan, A. K. et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19, 1971–1980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gray, S. J., Nagabhushan Kalburgi, S., McCown, T. J. & Jude Samulski, R. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther. 20, 450–459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Samaranch, L. et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum. Gene Ther. 23, 382–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Hinderer, C. et al. Evaluation of intrathecal routes of administration for adeno-associated viral vectors in large animals. Hum. Gene Ther. 29, 15–24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hinderer, C. et al. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna. Mol. Ther. Methods Clin. Dev. 1, 14051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009). This report is one of two studies to first demonstrate that AAV vectors can cross the BBB and provide widespread gene expression throughout the neonatal and adult CNS; this study focuses on the mouse.

    Article  CAS  PubMed  Google Scholar 

  73. Duque, S. et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 17, 1187–1196 (2009). This report is one of two studies to first demonstrate that AAV vectors can cross the BBB and provide widespread gene expression throughout the neonatal and adult CNS; this study includes the cat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, D. B. et al. Expansive gene transfer in the rat CNS rapidly produces amyotrophic lateral sclerosis relevant sequelae when TDP-43 is overexpressed. Mol. Ther. 18, 2064–2074 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gray, S. J. et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 19, 1058–1069 (2011). This study highlights the species-specific tropism differences between mouse and NHPs that may complicate translational efforts of engineered AAV capsids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Samaranch, L. et al. AAV9 transduction in the central nervous system of non-human primates. Hum. Gene Ther. 23, 382–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, L. Y., Halder, S. & Agbandje-McKenna, M. Parvovirus glycan interactions. Curr. Opin. Virol. 7, 108–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Masamizu, Y. et al. Local and retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and 9. Neuroscience 193, 249–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, L. Y. et al. Characterization of the adeno-associated virus 1 and 6 sialic acid binding site. J. Virol. 90, 5219–5230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kern, A. et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J. Virol. 77, 11072–11081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Opie, S. R. et al. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J. Virol. 77, 6995–7006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, Z. et al. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J. Virol. 80, 11393–11397 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shen, S., Bryant, K. D., Brown, S. M., Randell, S. H. & Asokan, A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J. Biol. Chem. 286, 13532–13540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bell, C. L., Gurda, B. L., Van Vliet, K., Agbandje-Mckenna, M. & Wilson, J. M. Identification of the galactose binding domain of the AAV9 capsid. J. Virol. 86, 7326–7333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Murlidharan, G., Corriher, T., Ghashghaei, H. T. & Asokan, A. Unique glycan signatures regulate adeno-associated virus tropism in the developing brain. J. Virol. 89, 3976–3987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Adachi, K., Enoki, T., Kawano, Y., Veraz, M. & Nakai, H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat. Commun. 5, 3075 (2014). In this tour de force study, the authors use alanine-scanning mutagenesis and AAV genome barcoding to map onto the linear AAV capsid sequence key functional features, including glycan binding, circulating half-life and liver and other organ transduction.

    Article  CAS  PubMed  Google Scholar 

  87. Albright, B. H. et al. Mapping the structural determinants required for AAVrh.10 transport across the blood-brain barrier. Mol. Ther. 26, 510–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, W. et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. 16, 1252–1260 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Perabo, L. et al. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J. Gene Med. 8, 155–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Excoffon, K. J. D. A. et al. Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc. Natl Acad. Sci. USA 106, 3865–3870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Muller, O. J. et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat. Biotechnol. 21, 1040–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl Med. 5, 189ra76 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Korbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koerber, J. T., Maheshri, N., Kaspar, B. K. & Schaffer, D. V. Construction of diverse adeno-associated viral libraries for directed evolution of enhanced gene delivery vehicles. Nat. Protoc. 1, 701–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Pulicherla, N. et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol. Ther. 19, 1070–1078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ojala, D. S. et al. In vivo selection of a computationally designed SCHEMA AAV library yields a novel variant for infection of adult neural stem cells in the SVZ. Mol. Ther. 26, 304–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao, Y., Geng, L., Chen, V. P. & Brimijoin, S. Therapeutic delivery of butyrylcholinesterase by brain-wide viral gene transfer to mice. Molecules 22, E1145 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jackson, K. L., Dayton, R. D., Deverman, B. E. & Klein, R. L. Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP.B. Front. Mol. Neurosci. 9, 116 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Matsuzaki, Y. et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci. Lett. 665, 182–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Hordeaux, J. et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol. Ther. 26, 664–668 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Samaranch, L. et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol. Ther. 22, 329–337 (2014). This study highlights the risk of expressing the GFP transgene in the CNS with inflammation and immune responses as well as ataxia after direct CNS delivery in NHPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sah, D. et al. Translation of intravenous delivery of AAV gene therapy for the treatment of CNS diseases [abstract]. Hum. Gene Ther. 28, P209 (2017).

    Google Scholar 

  108. Sah, D. et al. Safety and increased transduction efficiency in the adult nonhuman primate central nervous system with intravenous delivery of two novel adeno-associated virus capsids [abstract 661]. Mol. Ther. (2018).

  109. Ferrari, F. K., Samulski, T., Shenk, T. & Samulski, R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, Y. H., Claflin, K., Geoghegan, J. C. & Davidson, B. L. Sialic acid deposition impairs the utility of AAV9, but not peptide-modified AAVs for brain gene therapy in a mouse model of lysosomal storage disease. Mol. Ther. 20, 1393–1399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lawlor, P. A., Bland, R. J., Mouravlev, A., Young, D. & During, M. J. Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol. Ther. 17, 1692–1702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. von Jonquieres, G. et al. Glial promoter selectivity following AAV-delivery to the immature brain. PLoS ONE 8, e65646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dirren, E. et al. Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord. Hum. Gene Ther. 25, 109–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Zolotukhin, S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985 (1999). This paper describes a simple and universally applicable purification protocol for AAV comprising an iodixanol step gradient, which has become a commonly used alternative to caesium chloride gradients.

    Article  CAS  PubMed  Google Scholar 

  115. Perdomini, M. et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat. Med. 20, 542–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Miniarikova, J. et al. Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington's disease. Mol. Ther. Nucleic Acids 5, e297 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Monteys, A. M., Ebanks, S. A., Keiser, M. S. & Davidson, B. L. CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol. Ther. 25, 12–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McPhee, S. W. et al. Immune responses to AAV in a phase I study for Canavan disease. J. Gene Med. 8, 577–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Leone, P. et al. Long-term follow-up after gene therapy for canavan disease. Sci. Transl Med. 4, 165ra163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Eberling, J. L. et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70, 1980–1983 (2008). This article presents the initial results from one of the first CNS-targeted gene therapy trials and highlights the safety of IPa AAV delivery and AADC transgene expression in patients with PD.

    Article  CAS  PubMed  Google Scholar 

  121. LeWitt, P. A. et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Bartus, R. T. et al. Issues regarding gene therapy products for Parkinson's disease: the development of CERE-120 (AAV-NTN) as one reference point. Parkinsonism Relat. Disord. 13 (Suppl. 3), S469–S477 (2007).

    Article  PubMed  Google Scholar 

  123. Limberis, M. P. et al. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci. Transl Med. 5, 187ra72 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang, X. et al. Genome editing abrogates angiogenesis in vivo. Nat. Commun. 8, 112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yu, W. et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat. Commun. 8, 14716 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Laoharawee, K. et al. Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol. Ther. 26, 1127–1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zeitler, B. J. et al. Designed zinc finger protein transcription factors for single-gene regulation throughout the central nervous system [abstract 949]. Mol. Ther. (2018).

  128. Charlesworth, C. T. et al. Identification of pre-existing adaptive immunity to Cas9 proteins in humans. Preprint at bioRxiv https://doi.org/10.1101/243345 (2018).

  129. van Dyck, C. H. Anti-amyloid-beta monoclonal antibodies for Alzheimer's disease: pitfalls and promise. Biol. Psychiatry 83, 311–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Paul, S. M. Therapeutic antibodies for brain disorders. Sci. Transl Med. 3, 84ps20 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, J. S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 324–327 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Harmatz, P. et al. Update on phase 1/2 clinical trials for MPS I and MPS II using ZFN-mediated in vivo genome editing. Mol. Genet. Metab. 123, S59–S60 (2018).

    Article  CAS  Google Scholar 

  144. Cullen, B. R. RNAi the natural way. Nat. Genet. 37, 1163–1165 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Keiser, M. S., Geoghegan, J. C., Boudreau, R. L., Lennox, K. A. & Davidson, B. L. RNAi or overexpression: alternative therapies for spinocerebellar ataxia type 1. Neurobiol. Dis. 56, 6–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rodriguez-Lebron, E. et al. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol. Ther. 21, 1909–1918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tardieu, M. et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: results of a phase I/II trial. Hum. Gene Ther. 25, 506–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, Y., Messing, A., Su, M. & Brenner, M. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56, 481–493 (2008).

    Article  PubMed  Google Scholar 

  149. Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. de Leeuw, C. N. et al. rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Mol. Brain 9, 52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gray, S. J. et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 22, 1143–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tornoe, J., Kusk, P., Johansen, T. E. & Jensen, P. R. Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites. Gene 297, 21–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Adriaansen, J. et al. Reduction of arthritis following intra-articular administration of an adeno-associated virus serotype 5 expressing a disease-inducible TNF-blocking agent. Ann. Rheum. Dis. 66, 1143–1150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Geurts, J. et al. Application of a disease-regulated promoter is a safer mode of local IL-4 gene therapy for arthritis. Gene Ther. 14, 1632–1638 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Chtarto, A. et al. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-kappaB activation for disease-inducible gene transfer. PLoS ONE 8, e53156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bockstael, O. et al. Intracisternal delivery of NFkappaB-inducible scAAV2/9 reveals locoregional neuroinflammation induced by systemic kainic acid treatment. Front. Mol. Neurosci. 7, 92 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Shen, F. et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther. 15, 30–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Huang, M. T. & Gorman, C. M. Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 18, 937–947 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lacy-Hulbert, A. et al. Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Ther. 8, 649–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Choi, J. H. et al. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol. Brain 7, 17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xie, J. et al. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol. Ther. 19, 526–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Majowicz, A. et al. Mir-142-3p target sequences reduce transgene-directed immunogenicity following intramuscular adeno-associated virus 1 vector-mediated gene delivery. J. Gene Med. 15, 219–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Ferreira, J. P., Overton, K. W. & Wang, C. L. Tuning gene expression with synthetic upstream open reading frames. Proc. Natl Acad. Sci. USA 110, 11284–11289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ward, N. J. et al. Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 117, 798–807 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Radcliffe, P. A. et al. Analysis of factor VIII mediated suppression of lentiviral vector titres. Gene Ther. 15, 289–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Weinberg, M. S., Samulski, R. J. & McCown, T. J. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 69, 82–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Hadaczek, P. et al. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington's disease. Mol. Ther. Methods Clin. Dev. 3, 16037 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kells, A. P. et al. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc. Natl Acad. Sci. USA 106, 2407–2411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cearley, C. N. & Wolfe, J. H. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J. Neurosci. 27, 9928–9940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Castle, M. J., Gershenson, Z. T., Giles, A. R., Holzbaur, E. L. & Wolfe, J. H. Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum. Gene Ther. 25, 705–720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Green, F. et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther. 23, 520–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zerah, M. et al. Intracerebral gene therapy using AAVrh.10-hARSA recombinant vector to treat patients with early-onset forms of metachromatic leukodystrophy: preclinical feasibility and safety assessments in nonhuman primates. Hum. Gene Ther. Clin. Dev. 26, 113–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Tardieu, M. et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol. 16, 712–720 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Lieberman, D. M., Laske, D. W., Morrison, P. F., Bankiewicz, K. S. & Oldfield, E. H. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 82, 1021–1029 (1995).

    Article  CAS  PubMed  Google Scholar 

  175. Kanaan, N. M. et al. Rationally engineered AAV capsids improve transduction and volumetric spread in the CNS. Mol. Ther. Nucleic Acids 8, 184–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hinderer, C. et al. Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I. Mol. Ther. 22, 2018–2027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, H. et al. Several rAAV vectors efficiently cross the blood–brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol. Ther. 19, 1440–1448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yang, B. et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol. Ther. 22, 1299–1309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Varadi, K. et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther. 19, 800–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kondratov, O. et al. Direct head-to-head evaluation of recombinant adeno-associated viral vectors manufactured in human versus insect cells. Mol. Ther. 25, 2661–2675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Adamson-Small, L. et al. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol. Ther. Methods Clin. Dev. 3, 16031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Conway, J. E. et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther. 6, 986–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Clément, N., Knop, D. R. & Byrne, B. J. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum. Gene Ther. 20, 796–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Liu, X., Voulgaropoulou, F., Chen, R., Johnson, P. R. & Clark, K. R. Selective Rep-Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol. Ther. 2, 394–403 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Clark, K. R., Voulgaropoulou, F. & Johnson, P. R. A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors. Gene Ther. 3, 1124–1132 (1996).

    CAS  PubMed  Google Scholar 

  187. Clark, K. R., Voulgaropoulou, F., Fraley, D. M. & Johnson, P. R. Cell lines for the production of recombinant adeno-associated virus. Hum. Gene Ther. 6, 1329–1341 (1995).

    Article  CAS  PubMed  Google Scholar 

  188. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Zhao, L. et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models. Neurobiol. Aging 44, 159–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Bartus, R. T. & Johnson, E. M. Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? Neurobiol. Dis. 97, 156–168 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Glass, J. D. et al. Transplantation of spinal cord-derived neural stem cells for ALS: analysis of phase 1 and 2 trials. Neurology 87, 392–400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Li, C. et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 19, 288–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Halbert, C. L. et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum. Gene Ther. 17, 440–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Calcedo, R. et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin. Vaccine Immunol. 18, 1586–1588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lugtenberg, D. et al. Chromosomal copy number changes in patients with non-syndromic X linked mental retardation detected by array CGH. J. Med. Genet. 43, 362–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Hanchard, N. A. et al. A partial MECP2 duplication in a mildly affected adult male: a putative role for the 3' untranslated region in the MECP2 duplication phenotype. BMC Med. Genet. 13, 71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Friez, M. J. et al. Recurrent infections, hypotonia, and mental retardation caused by duplication of MECP2 and adjacent region in Xq28. Pediatrics 118, e1687-95 (2006).

    Article  PubMed  Google Scholar 

  198. Van Esch, H. et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Meins, M. et al. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42, e12 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ariani, F. et al. Real-time quantitative PCR as a routine method for screening large rearrangements in Rett syndrome: report of one case of MECP2 deletion and one case of MECP2 duplication. Hum. Mutat. 24, 172–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Na, E. S. et al. A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J. Neurosci. 32, 3109–3117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    Article  CAS  PubMed  Google Scholar 

  203. White, J. K. et al. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat. Genet. 17, 404–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  204. McBride, J. L. et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease. Mol. Ther. 19, 2152–2162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Benatar, M. et al. Randomized, double-blind, placebo-controlled trial of arimoclomol in rapidly progressive SOD1 ALS. Neurology 90, e565–e574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ross, C. A. et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10, 204–216 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kolb, S. J. et al. Natural history of infantile-onset spinal muscular atrophy. Ann. Neurol. 82, 883–891 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Summerford, C., Bartlett, J. S. & Samulski, R. J. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat. Med. 5, 78–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  211. Ling, C. et al. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum. Gene Ther. 21, 1741–1747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Di Pasquale, G. et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat. Med. 9, 1306–1312 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Akache, B. et al. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J. Virol. 80, 9831–9836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Dudek, A. M. et al. An alternate route for adeno-associated virus entry independent of AAVR. J. Virol. 92, e02213-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Pillay, S. et al. AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR. J. Virol. 91, e00391-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bleker, S., Sonntag, F. & Kleinschmidt, J. A. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J. Virol. 79, 2528–2540 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Grieger, J. C., Johnson, J. S., Gurda-Whitaker, B., Agbandje-Mckenna, M. & Samulski, R. J. Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions. J. Virol. 81, 7833–7843 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Grieger, J. C., Snowdy, S. & Samulski, R. J. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J. Virol. 80, 5199–5210 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Salganik, M. et al. Adeno-associated virus capsid proteins may play a role in transcription and second-strand synthesis of recombinant genomes. J. Virol. 88, 1071–1079 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Aydemir, F. et al. Mutants at the 2-fold interface of adeno-associated virus type 2 (AAV2) structural proteins suggest a role in viral transcription for AAV capsids. J. Virol. 90, 7196–7204 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rabinowitz, J. E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Dong, J. Y., Fan, P. D. & Frizzell, R. A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum. Gene Ther. 7, 2101–2112 (1996).

    Article  CAS  PubMed  Google Scholar 

  223. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  224. Miao, C. H. et al. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J. Virol. 74, 3793–3803 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hirata, R. K. & Russell, D. W. Design and packaging of adeno-associated virus gene targeting vectors. J. Virol. 74, 4612–4620 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. McCarty, D. M. et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118 (2003). This paper presents the first study to describe the now commonly used self-complementary AAV vectors that improve the rate and efficiency of transduction by overcoming the requirement for second-strand synthesis.

    Article  CAS  PubMed  Google Scholar 

  227. Nathwani, A. C. et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol. Ther. 19, 876–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Valles, F. et al. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery 67, 1377–1385 (2010).

    Article  PubMed  Google Scholar 

  229. Bankiewicz, K. S. et al. AAV viral vector delivery to the brain by shape-conforming MR-guided infusions. J. Control. Release 240, 434–442 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liao, F. et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J. Clin. Invest. 128, 2144–2155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Dodart, J.-C. et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 1211–1216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sevigny, J. et al. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Chiang, A. C. A. et al. Combination anti-Abeta treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J. Exp. Med. 215, 1349–1364 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Arrant, A. E., Onyilo, V. C., Unger, D. E. & Roberson, E. D. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J. Neurosci. 38, 2341–2358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mis, M. S. C. et al. Development of therapeutics for C9ORF72 ALS/FTD-related disorders. Mol. Neurobiol. 54, 4466–4476 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Choudhury, S. R. et al. Widespread central nervous system gene transfer and silencing after systemic delivery of novel AAV-AS vector. Mol. Ther. 24, 726–735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Muramatsu, S. et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol. Ther. 18, 1731–1735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Rocha, E. M. et al. Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons. Neurobiol. Dis. 82, 495–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  240. Bae, E. J. et al. Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lee, J. S. & Lee, S. J. Mechanism of anti-alpha-synuclein immunotherapy. J. Mov. Disord. 9, 14–19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Khodr, C. E. et al. An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson's disease, but displays toxicity in dopamine neurons. Brain Res. 1395, 94–107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zharikov, A. D. et al. shRNA targeting alpha-synuclein prevents neurodegeneration in a Parkinson's disease model. J. Clin. Invest. 125, 2721–2735 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Ramachandran, P. S., Boudreau, R. L., Schaefer, K. A., La Spada, A. R. & Davidson, B. L. Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol. Ther. 22, 1635–1642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Biferi, M. G. et al. A new AAV10-U7-mediated gene therapy prolongs survival and restores function in an ALS mouse model. Mol. Ther. 25, 2038–2052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Towne, C., Setola, V., Schneider, B. L. & Aebischer, P. Neuroprotection by gene therapy targeting mutant SOD1 in individual pools of motor neurons does not translate into therapeutic benefit in fALS mice. Mol. Ther. 19, 274–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  247. Wang, H. et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum. Mol. Genet. 23, 668–681 (2014).

    Article  CAS  PubMed  Google Scholar 

  248. Scotter, E. L., Chen, H. J. & Shaw, C. E. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12, 352–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cai, W. et al. shRNA mediated knockdown of Nav1.7 in rat dorsal root ganglion attenuates pain following burn injury. BMC Anesthesiol. 16, 59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues at Voyager Therapeutics for numerous discussions on adeno-associated viral (AAV) gene therapy for central nervous system (CNS) disorders and the Parkinson disease team and P. Larson for their work on the delivery of AAV2–aromatic-L-amino-acid decarboxylase (AADC) gene therapy in patients with Parkinson disease with intraparenchymal brain administration. The authors also thank E. Smith, W. Yen and M. Lawrence for assistance with the figures, tables and text, respectively. B.E.D. was supported by the Beckman Institute for the CLARITY, Optogenetics and Vector Engineering Research Center (CLOVER) at the California Institute of Technology, the Friedreich's Ataxia Research Alliance (FARA) and FARA Australasia and the CHDI Foundation and is currently supported by the Stanley Center for Psychiatric Research at Broad Institute. K.S.B. was supported by the Michael J. Fox Foundation. B.M.R., S.M.P. and D.W.Y.S. are currently employees of Voyager Therapeutics, a CNS gene therapy company working on AAV vectors for the treatment of severe neurological diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinah W. Y. Sah.

Ethics declarations

Competing interests

The authors declare competing financial interests in the form of funding from Voyager Therapeutics, employment by Voyager Therapeutics and/or personal financial interests in Voyager Therapeutics.

Related links

RELATED LINKS

ClinicalTrials.gov

PowerPoint slides

Glossary

Capsid

The protein shell of the virus that protects the adeno-associated viral genome and mediates entry into and trafficking within the host cell.

Intraparenchymal

(IPa). Direct delivery of an agent into the tissue of interest.

Intrathecal

(IT). A route of access into the spinal cord cerebrospinal fluid via the space under the arachnoid membrane.

Intracerebroventricular

(ICV). A route of access into the CSF via the cerebral ventricles (typically the lateral ventricle).

Tropism

Specificity for a particular host tissue or cell type.

Serotypes

Capsid variants or groups of capsids that have distinct neutralization properties.

Intracisternal

A route of access into the CSF via the cerebellomedullary cistern.

Dependoviruses

Genus of parvoviruses that are replication-incompetent in the absence of co-infection of the host cell with a second virus such as an adenovirus or HSV.

Self-complementary AAV

An AAV genome that has been modified by elimination of the 5′ terminal resolution site and can fold into double-stranded DNA without the requirement for DNA synthesis.

Convection enhanced delivery

(CED). Infusion of adeno-associated viral vectors or other molecules into the parenchyma under positive pressure to increase the distribution volume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deverman, B., Ravina, B., Bankiewicz, K. et al. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 17, 641–659 (2018). https://doi.org/10.1038/nrd.2018.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.110

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research