Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of a five-dimensional framework on R&D productivity at AstraZeneca

Abstract

In 2011, AstraZeneca embarked on a major revision of its research and development (R&D) strategy with the aim of improving R&D productivity, which was below industry averages in 2005–2010. A cornerstone of the revised strategy was to focus decision-making on five technical determinants (the right target, right tissue, right safety, right patient and right commercial potential). In this article, we describe the progress made using this '5R framework' in the hope that our experience could be useful to other companies tackling R&D productivity issues. We focus on the evolution of our approach to target validation, hit and lead optimization, pharmacokinetic/pharmacodynamic modelling and drug safety testing, which have helped improve the quality of candidate drug nomination, as well as the development of the right culture, where 'truth seeking' is encouraged by more rigorous and quantitative decision-making. We also discuss where the approach has failed and the lessons learned. Overall, the continued evolution and application of the 5R framework are beginning to have an impact, with success rates from candidate drug nomination to phase III completion improving from 4% in 2005–2010 to 19% in 2012–2016.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The 5R framework.
Figure 2: Number and phase of active preclinical projects in the portfolio from 2005 to 2016 and their target class composition.
Figure 3: Metrics for preclinical projects reaching the lead optimization phase.
Figure 4: Human pharmacokinetics prediction accuracy and impact of proof of mechanism on project success rate.
Figure 5: Project success rates and reasons for failure.
Figure 6: Impact of personalized health care on the portfolio.
Figure 7: Metrics for project costs, cycle times, publications and investor sentiment.

References

  1. 1

    Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    CAS  PubMed  Google Scholar 

  2. 2

    Garnier, J. Rebuilding the R&D engine in big pharma. Harvard Bus. Rev. 86, 68–76 (2008).

    Google Scholar 

  3. 3

    Peck, R. W., Lendrem, D. W., Grant, I., Lendrem, B. C. & Isaacs, J. D. Why is it hard to terminate failing R&D projects in pharmaceutical R&D? Nat. Rev. Drug Discov. 14, 663–664 (2015).

    CAS  PubMed  Google Scholar 

  4. 4

    O'Hagan, P. & Farkas, C. Bringing pharma R&D back to health. Bain Brief http://www.bain.com/publications/articles/bringing-pharma-r-and-d-back-to-health.aspx (2009).

  5. 5

    Scannell, J. W., Blanckley, A., Bolden, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    CAS  PubMed  Google Scholar 

  6. 6

    Ringel, M., Tollman, P., Hersch, G. & Schulze, U. Does size matter in R&D productivity? If not, what does? Nat. Rev. Drug Discov. 12, 901–902 (2013).

    CAS  PubMed  Google Scholar 

  7. 7

    Cook, D. et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    CAS  PubMed  Google Scholar 

  8. 8

    Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. 9

    Scannell, J. W. & Bosley, J. When quality beats quantity: decision theory, drug discovery and the reproducibility crisis. PLoS ONE 11, e0147215 (2016).

    PubMed Central  PubMed  Google Scholar 

  10. 10

    Rask-Andersen, M., Almén, M. S. & Schiöth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. 11

    Verkhivker, G. M. Leveraging structural diversity and allosteric regulatory mechanisms of protein kinases in the discovery of small molecule inhibitors. Curr. Med. Chem. http://dx.doi.org/10.2174/0929867323666161006113418 (2016).

  12. 12

    Rees, S., Gribbon, P., Birmingham, K., Janzen, W. P. & Pairaudeau, G. Towards a hit for every target. Nat. Rev. Drug Discov. 15, 1–2 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. 13

    Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Mol. Cell Biol. 17, 170–182 (2016).

    CAS  Google Scholar 

  14. 14

    Swinney, D. C. & Antony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    CAS  PubMed  Google Scholar 

  15. 15

    Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. 16

    Womak, C. & Mager, S. R. Human biological sample biobanking to support tissue biomarkers in pharmaceutical research and development. Methods 70, 3–11 (2014).

    Google Scholar 

  17. 17

    Bantscheff, M. & Drewes, G. Chemproteomic approaches to drug target identification and drug profiling. Bioorg. Med. Chem. 20, 1973–1978 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. 18

    Molina, D. M. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    CAS  Google Scholar 

  19. 19

    Hsu, P. D., Lander, E. S. & Zhang, F. Development and application of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. 20

    Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. 21

    [No authors listed.] AstraZeneca adopts CRISPR across drug discovery. Nat. Biotechnol. 33, 226 (2015).

  22. 22

    Kettle, J. G. et al. Potent and selective inhibitors of MTH1 probe its role in cancer cell survival. J. Med. Chem. 59, 2346–2361 (2016).

    CAS  PubMed  Google Scholar 

  23. 23

    Kawamura, K. et al. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci. Rep. 6, 26521 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24

    Goransson, M., Schinwald, A., Stjernborg, L., Madeyski-Bengtson, K. & Karabelas, K. SIK inhibition: a novel opportunity to modulate disease phenotype in COPD [abstract]. Am. J. Respir. Crit. Care Med. 193, A5837 (2016).

    Google Scholar 

  25. 25

    Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  26. 26

    Dewy, F. E. et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377, 211–221 (2017).

    Google Scholar 

  27. 27

    Marx, V. The DNA of a nation. Nature 524, 503–505 (2015).

    CAS  PubMed  Google Scholar 

  28. 28

    Ledford, H. AstraZeneca launches project to sequence 2 million genomes. Nature 532, 437 (2016).

    Google Scholar 

  29. 29

    Bray, M. A., Fraser, A. N., Hasaka, T. P. & Carpenter, A. E. Workflow and metrics for image quality control in large-scale high-content screens. J. Biomol. Screen. 17, 266–274 (2012).

    CAS  PubMed  Google Scholar 

  30. 30

    Yu, H., Li, M., Wang, W. & Wang, X. High throughput screening technologies for ion channels. Acta Pharmacol. Sin. 37, 34–43 (2016).

    CAS  PubMed  Google Scholar 

  31. 31

    Edwards, B. S. & Sklar, A. Flow cytometry: impact on early drug discovery. J. Biomol. Screen. 20, 689–707 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. 32

    Geshwinder, S., Carlsson, J. F. & Knecht, W. Application of optical biosensors in small-molecule screening activities. Sensors 4, 4311–4323 (2012).

    Google Scholar 

  33. 33

    Bittker, J. A. High-Throughput RT-PCR for small-molecule screening assays Curr. Protoc. Chem. Biol. 4, 49–63 (2012).

    PubMed Central  PubMed  Google Scholar 

  34. 34

    Sinclair, I. et al. Novel acoustic loading of a mass spectrometer. J. Lab. Autom. 21, 19–26 (2016).

    PubMed  Google Scholar 

  35. 35

    Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. 36

    Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery — an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    CAS  PubMed  Google Scholar 

  37. 37

    Lovering, F., Bikker, J. & Humblet, C. Escape from flatland:increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  38. 38

    Doak, B. C., Zheng, J., Dobritzsch, D. & Kihlberg, J. How beyond rule of 5 drugs and clinical candidates bind to their targets. J. Med. Chem. 59, 2312–2327 (2016).

    CAS  PubMed  Google Scholar 

  39. 39

    van Hattum, H. & Waldmann, H. Biology-oriented synthesis: harnessing the power of evolution. J. Am. Chem. Soc. 136, 11853–11859 (2014).

    CAS  PubMed  Google Scholar 

  40. 40

    Kojel, T. et al. Big pharma screening collections: more of the same or unique libraries? The AstraZeneca-Bayer AG Pharma case. Drug Discov. Today 18, 1014–1024 (2013).

    Google Scholar 

  41. 41

    Mullard, A. European lead factory opens for business. Nat. Rev. Drug Discov. 12, 173–175 (2013).

    PubMed  Google Scholar 

  42. 42

    Franzini, R. M. & Randolph, C. Chemical space of DNA encoded libraries. J. Med. Chem. 59, 6629–6644 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. 43

    Goodnow, R. A. Jr., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    CAS  PubMed  Google Scholar 

  44. 44

    Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. 45

    Cheng, R. K. Y. et al. Structural insight into allosteric modulation of protease-activated receptor-2. Nature 545, 112–115 (2017).

    CAS  PubMed  Google Scholar 

  46. 46

    Jazayeri, A. et al. The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology 60, 36–44 (2011).

    PubMed  Google Scholar 

  47. 47

    Whitebread, S. et al. Secondary pharmacology: screening and interpretation of off-target activities — focus on translation. Drug Discov. Today. 21, 1232–1242 (2016).

    CAS  PubMed  Google Scholar 

  48. 48

    Winter, J. J. G. et al. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation. J. Med. Chem. 58, 2265–2274 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. 49

    Ostrem, J. M. L. & Shokat, K. M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov. 15, 771–785 (2016).

    CAS  PubMed  Google Scholar 

  50. 50

    Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible. Nat. Rev. Drug Discov. 13, 828–851 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. 51

    Patricelli, M. P. et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 6, 316–329 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. 52

    Lito, P., Solomon, M., Li, S., Hansen, R. & Rosen, N. Allelle-specific inhibitors inactivate mutant KRAS G12C by trapping mechanism. Science 351, 604–608 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. 53

    Ross, S. J. et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl Med. 9, eaal5253 (2017).

    PubMed  Google Scholar 

  54. 54

    Richards, D. A. et al. A proteomic signature predicts response to a therapeutic vaccine in pancreas cancer; analysis from the GI-4000-02 trial [abstract]. Cancer Res. 74 (Suppl.), 5314 (2014).

    Google Scholar 

  55. 55

    Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utliity. Nat. Biotechnol. 35, 238–248 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. 56

    Lai, A. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    CAS  PubMed  Google Scholar 

  57. 57

    Toure, M. & Crews, C. M. Small-molecule PROTACS: New approaches to protein degradation. Angew. Chem. Int. Ed. Engl. 55, 1966–1973 (2016).

    CAS  PubMed  Google Scholar 

  58. 58

    Bunnage, M. E., Gilber, A. M., Jones, L. H. & Hett, E. C. Know your target, know your molecule. Nat. Chem. Biol. 11, 368–372 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. 59

    Benson, N. & van der Graaf, P. H. The rise of systems pharmacology in drug discovery and development. Future Med. Chem. 6, 1731–1734 (2014).

    CAS  PubMed  Google Scholar 

  60. 60

    Morgan, P. et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov. Today 17, 419–424 (2012).

    CAS  PubMed  Google Scholar 

  61. 61

    Visser, S. A. G. et al. Model-based drug discovery: implementation and impact. Drug Discov. Today 18, 764–775 (2013).

    CAS  PubMed  Google Scholar 

  62. 62

    Carlson, T. J. & Fisher, M. B. Recent advances in high throughput screening for ADME properties. Comb. Chem. High Throughput Screen. 11, 258–264 (2008).

    CAS  PubMed  Google Scholar 

  63. 63

    Macarron, R. Critical review of the role of HTS in drug discovery. Drug Discov. Today 11, 277–279 (2006).

    PubMed  Google Scholar 

  64. 64

    Smith, D. A. Evolution of ADME science: where else can modelling and simulation contribute? Mol. Pharm. 10, 1162–1170 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Grime, K., Barton, P. & McGinnity, D. Application of in silico. in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Mol. Pharm. 10, 1191–1206 (2013).

    CAS  PubMed  Google Scholar 

  66. 66

    Ballard, P. et al. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug. Metab. Rev. 44, 224–252 (2012).

    CAS  PubMed  Google Scholar 

  67. 67

    Van den Bergh, A. et al. Prediction of human oral plasma concentration-time profiles using preclinical data. Clin. Pharmacokinet. 50, 505–517 (2011).

    CAS  PubMed  Google Scholar 

  68. 68

    Jones, H. M. et al. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin. Pharmacokinet. 50, 331–334 (2011).

    CAS  PubMed  Google Scholar 

  69. 69

    Zhang, T., Heimbach, T., Lin, W., Zhang, J. & He, H. Prospective predictions of human pharmacokinetics for eighteen compounds. J. Pharm. Sci. 104, 2795–2806 (2015).

    CAS  PubMed  Google Scholar 

  70. 70

    De Savi, C. et al. Discovery of the clinical candidate AZD9496: a potent and orally bioavailable selective estrogen receptor downregulator and antagonist [abstract]. Cancer Res. 75 (Suppl.), 3650 (2015).

    Google Scholar 

  71. 71

    Hultman, I., Vedin, C., Abrahamsson, A., Winiwarter, S. & Darnell, M. Use of HuREL human coculture system for prediction of intrinsic clearance and metabolite formation for slowly metabolized compounds. Mol. Pharm. 13, 2796–2807 (2016).

    CAS  PubMed  Google Scholar 

  72. 72

    Jones, B. C. et al. Managing the risk of CYP3A induction in drug development: a strategic approach. Drug Metab. Dispos. 45, 35–41 (2017).

    CAS  PubMed  Google Scholar 

  73. 73

    Townsend, M. J. & Arron, J. R. Reducing the risk of failure: biomarker-guided trial design. Nat. Rev. Drug Discov. 15, 517–518 (2016).

    CAS  PubMed  Google Scholar 

  74. 74

    Fidock, M. D. et al. The innate immune response, clinical outcomes, and ex vivo HCV antiviral efficacy of a TLR7 agonist (PF-4878691). Clin. Pharmacol. Ther. 89, 821–829 (2011).

    CAS  PubMed  Google Scholar 

  75. 75

    Padovan, E., Spagnoli, G. C., Ferrantini, M. & Heberer, M. IFN-α2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol. 71, 669–676 (2002).

    CAS  PubMed  Google Scholar 

  76. 76

    Greiff, L. et al. Biological effects and clinical efficacy of a topical Toll-like receptor 7 agonist in seasonal allergic rhinitis: a parallel group controlled phase IIa study. Inflamm. Res. 64, 903–915 (2015).

    CAS  PubMed  Google Scholar 

  77. 77

    Hornberg, J. J. et al. Exploratory toxicology as an integrated part of our drug discovery. Part 1: Why and how. Drug Discov. Today 19, 1131–1136 (2014).

    CAS  PubMed  Google Scholar 

  78. 78

    Proctor, W. R. et al. Utility of spherical humna liver microsomes for prediction of clinical drug-induced liver injury. Arch. Toxicol. 91, 2849–2863 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. 79

    Pointon, A. et al. Assessment of cardiomycte contraction in human-induced pluripotent stem cell-derived cardiomyctes. Toxicol. Sci. 144, 227–237 (2015).

    CAS  PubMed  Google Scholar 

  80. 80

    Collins, T. A. et al. Modeling and simulation approaches for cardiovascular function and their role in safety assessment. CPT Pharmacometrics Syst. Pharmacol. 4, 175–188 (2015).

    Google Scholar 

  81. 81

    Horner, S., Robinson, S., Lees, D., Callander, R. & Roberts, R. Target organ profiles in toxicity studies supporting human dosing: an assessment of recovery and chronic dosing. Regul. Toxicol. Pharmacol. 70, 270–285 (2014).

    CAS  PubMed  Google Scholar 

  82. 82

    Collins, T. A. et al. Translational modeling of drug-induced myelosuppression and effect of pretreatment myelosuppression for AZD5153, a selective BRD4 inhibitor. CPT Pharmacometrics Syst. Pharmacol. 6, 357–364 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. 83

    Rhyasen, G. W. et al. AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies. Mol. Cancer Ther. 15, 2563–2574 (2016).

    CAS  PubMed  Google Scholar 

  84. 84

    Bradbury, R. H. et al. Optimization of a series of bivalent triazolopyridazine based bromodomain and extraterminal inhibitors: The discovery of (3R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-4-piperidyl]phenoxy]ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153). J. Med. Chem. 59, 7801–7817 (2016).

    CAS  PubMed  Google Scholar 

  85. 85

    Wagoner, M. et al. Bromodomain and extraterminal domain inhibitors induce a loss of intestinal stem cells and villous atrophy. Toxicol. Lett. 229, S75–S76 (2014).

    Google Scholar 

  86. 86

    Amorim, S. et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 3, e196–e204 (2016).

    PubMed  Google Scholar 

  87. 87

    Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015).

    CAS  PubMed  Google Scholar 

  88. 88

    Oleaga, C. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. 89

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  PubMed  Google Scholar 

  90. 90

    Hirsch, F. R. et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12, 208–222 (2017).

    PubMed  Google Scholar 

  91. 91

    Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    CAS  PubMed  Google Scholar 

  92. 92

    Carbognin, L. et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): Sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 10, e0130142 (2015).

    PubMed Central  PubMed  Google Scholar 

  93. 93

    Banerji, U. et al. Results of two phase I multicenter trials of AZD5363, an inhibitor of AKT1, 2 and 3: biomarker and early clinical evaluation in Western and Japanese patients with advanced solid tumors [abstract]. Cancer Res. 73 (Suppl.), LB-66 (2013).

    Google Scholar 

  94. 94

    Sangai, T. et al. Biomarkers of response to AKT inhibitor MK-2206 in breast cancer Clin. Cancer Res. 18, 5816–5828 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. 95

    Rodon, J., Dienstmann, R., Serra, V. & Tabernero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials Nat. Rev. Clin. Oncol. 10, 143–153 (2013).

    CAS  PubMed  Google Scholar 

  96. 96

    Choueiri, T. K. et al. Biomarker-based phase II trial of savolitinib in patients with advanced papillary renal cell cancer. J. Clin. Oncol. 35, 2993–3001 (2017).

    CAS  PubMed  Google Scholar 

  97. 97

    Peters, S. & Adjei, A. A. MET: a promising anticancer therapeutic target. Nat. Rev. Clin. Oncol. 9, 314–326 (2012).

    CAS  PubMed  Google Scholar 

  98. 98

    Schuler, M. H. et al. Phase (Ph) I study of the safety and efficacy of the cMET inhibitor capmatinib (INC280) in patients (pts) with advanced cMET+ non-small cell lung cancer (NSCLC). J. Clin. Oncol. 34 (Suppl.), 9067 (2016).

    Google Scholar 

  99. 99

    Landi, L. & Cappuzzo, F. Targeting MET in NSCLC: Looking for a needle in a haystack. Trans. Lung Cancer Res. 6, 389–391 (2014).

    Google Scholar 

  100. 100

    Negewo, N. A. et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 11, 1495–1504 (2016).

    PubMed Central  PubMed  Google Scholar 

  101. 101

    Ortega, H. G. et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir. Med. 7, 549–556 (2016).

    Google Scholar 

  102. 102

    Katz, L. E., Gleich, G. J., Hartley, B. F., Yancey, S. W. & Ortega, H. G. Blood eosinophil count is a useful biomarker to identify patients with severe eosinophilic asthma. Ann. Thorac. Soc. 11, 531–536 (2014).

    Google Scholar 

  103. 103

    Castro, M. et al. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir. Med. 2, 878–890 (2014).

    Google Scholar 

  104. 104

    Hanania, N. A. et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax 70, 748–756 (2015).

    PubMed Central  PubMed  Google Scholar 

  105. 105

    Hanania, N. A. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4, 781–796 (2016).

    CAS  PubMed  Google Scholar 

  106. 106

    St John, A. & Price, C. P. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35, 155–157 (2014).

    PubMed Central  PubMed  Google Scholar 

  107. 107

    Steingart, K. R. et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst. Rev. 1, CD009593 (2014).

    Google Scholar 

  108. 108

    Balendran, C. A. et al. Prothrombin time is predictive of low plasma prothrombin concentration and clinical outcome of patients with trauma hemorrhage: analysis of prospective observational cohort studies. Scand. J. Trauma Resusc. Emerg. Med. 25, 30 (2017).

    PubMed Central  PubMed  Google Scholar 

  109. 109

    Paraskos, J. et al. An analytical comparison between point-of-care uric acid testing meters. Expert Rev. Mol. Diagn. 16, 373–382 (2016).

    CAS  PubMed  Google Scholar 

  110. 110

    Fulkerson, P. C. & Rothenberg, M. E. Targeting eosinophils in allergy, inflammation and beyond. Nat. Rev. Drug Discov. 12, 117–129 (2013).

    CAS  PubMed  Google Scholar 

  111. 111

    Donelan, R., Walker, S. & Salek, S. Factors influencing quality decision-making: regulatory and pharmaceutical industry perspectives. Pharmacoepidemiol. Drug Saf. 24, 319–328 (2015).

    PubMed  Google Scholar 

  112. 112

    Owens, P. K. et al. A decade of innovation in pharmaceutical R&D: the Chorus model. Nat. Rev. Drug Discov. 14, 17–28 (2015).

    CAS  PubMed  Google Scholar 

  113. 113

    Lalonde, R. L. et al. Model-based drug development. Clin. Pharm. Ther. 82, 21–32 (2007).

    CAS  Google Scholar 

  114. 114

    Frewer, P., Mitchell, P., Watkins, C. & Matcham, J. Decision-making in early clinical drug development. Pharm. Stat. 15, 255–263 (2016).

    PubMed  Google Scholar 

  115. 115

    Pommier, Y., O'Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanism of action. Sci. Transl Med. 8, 362ps17 (2016).

    PubMed  Google Scholar 

  116. 116

    Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  117. 117

    Omlin, A. R. et al. AZD3514, an oral selective androgen receptor down-regulator in patients with castration-resistant prostate cancer — results of two parallel first-in-human phase I studies. Invest. New Drugs 33, 679–690 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  118. 118

    Sanacora, G. et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study. Neuropsychopharmacology 42, 844–853 (2017).

    CAS  PubMed  Google Scholar 

  119. 119

    Make, B. J. et al. A randomized controlled trial of AZD7624, an inhaled p38 MAP kinase inhibitor, in COPD patients on ICS/LABA with a history of frequent exacerbations. Am. J. Resp. Crit. Care Med. 195, A6741 (2017).

    Google Scholar 

  120. 120

    Dawes, P. et al. in 2013 ACR/ARHP Annual Meeting abstr. 455 (San Diego, 2013).

    Google Scholar 

  121. 121

    Vieta, E. et al. Efficacy and tolerability of flexibly-dosed adjunct TC-5214 (dexmecamylamine) in patients with major depressive disorder and inadequate response to prior antidepressant. Eur. Neuropsychopharmacol. 24, 564–574 (2014).

    CAS  PubMed  Google Scholar 

  122. 122

    Jänne, P. A. et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study Lancet Oncol. 14, 38–47 (2013).

    PubMed  Google Scholar 

  123. 123

    Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    PubMed Central  PubMed  Google Scholar 

  124. 124

    Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. 125

    Finlay, M. R. et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem. 57, 8249–8267 (2014).

    CAS  PubMed  Google Scholar 

  126. 126

    Yates, J. W. et al. Irreversible Inhibition of EGFR: modeling the combined pharmacokinetic-pharmacodynamic relationship of osimertinib and its active metabolite AZ5104. Mol. Cancer Ther. 15, 2378–2387 (2016).

    CAS  PubMed  Google Scholar 

  127. 127

    Ballard, P. et al. Preclinical comparison of Osimertinib with other EGFR-TKIs in EGFR-Mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 22, 5130–5140 (2016).

    CAS  PubMed  Google Scholar 

  128. 128

    Anderton, M. J. et al. Influence of early toxicology assessment on the selection of azd9291 [abstract]. Cancer Res. 74 (Suppl.), 3676 (2014).

    Google Scholar 

  129. 129

    Jänne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 372, 1689–1699 (2015).

    PubMed  Google Scholar 

  130. 130

    Jenkins, S. et al. Plasma ctDNA analysis for detection of EGFR T790M mutation in patients (pts) with EGFR mutation-positive advanced non-small cell lung cancer (aNSCLC) [abstract]. J. Thorac. Oncol. 11 (Suppl.), 134O_PR (2016).

    Google Scholar 

  131. 131

    Eberlein, C. et al. Acquired resistannce to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependance on RAS signalling in preclinical models. Cancer Res. 75, 2489–2500 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  132. 132

    Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the following collaborators at AstraZeneca for their significant contribution to this manuscript: M. Davies, S. Delaney, K. Grime, D. Hayes, O. Jones, A. Kohlmann, R. Krestin, S. McGinty, D. McGinnity, C. Priestley, G. Schiavon, D. Stanski, M. Wagoner and J. Yates.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dean G. Brown or Menelas N. Pangalos.

Ethics declarations

Competing interests

All authors are employees and shareholders of AstraZeneca.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Example structures from lead generation approaches (PDF 367 kb)

Supplementary information S2 (figure)

Target engagement and tolerability of AZD8848 (TLR7 agonist) and AZD1419 (TLR9 agonist) in healthy volunteers. (PDF 498 kb)

Supplementary information S3 (figure)

Comparison of interspecies gastrointestinal toxicity with BRD4 inhibitors. (PDF 1022 kb)

Supplementary information S4 (figure)

Decision plot for combination of AZD8186 and AZD2014. (PDF 378 kb)

Supplementary information S5 (table)

EGFR-m versus insulin receptor affinity for a series of EGFR-m inhibitors (PDF 198 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morgan, P., Brown, D., Lennard, S. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 17, 167–181 (2018). https://doi.org/10.1038/nrd.2017.244

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing