Key Points
-
G protein-coupled receptors (GPCRs) adopt multiple conformational states that can activate or block distinct intracellular signalling pathways, such as those regulated by heterotrimeric G proteins or β-arrestins.
-
Different agonists for the same receptor can stabilize distinct GPCR conformational states. Agonists that preferentially activate certain intracellular pathways relative to others are referred to as biased agonists.
-
Structural studies support a model in which GPCRs act as allosteric microprocessors that integrate diverse extracellular and intracellular stimuli to generate distinct conformations that result in varied intracellular responses.
-
In addition to biased agonists, biased signalling may be encoded by the receptor ('receptor bias') or by the relative expression levels of transducers ('system bias').
-
Biased signalling is also observed in other receptor families, such as nuclear hormone receptors and receptor tyrosine kinases.
-
Recent preclinical and clinical work suggests that by more selectively targeting signalling pathways of interest, biased agonists have the potential to increase clinical efficacy while reducing undesirable side effects.
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR–transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



References
- 1
Lagerstrom, M. C. & Schioth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).
- 2
Luttrell, L. M., Maudsley, S. & Bohn, L. M. Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol. Pharmacol. 88, 579–588 (2015).
- 3
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
- 4
Smith, J. S. & Rajagopal, S. The β-arrestins: multifunctional regulators of G protein-coupled receptors. J. Biol Chem. 291, 8969–8977 (2016).
- 5
Benovic, J. L., Strasser, R. H., Caron, M. G. & Lefkowitz, R. J. β-Adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl Acad. Sci. USA 83, 2797–2801 (1986).
- 6
Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. & Lefkowitz, R. J. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 1547–1550 (1990).
- 7
Goodman, O. B. Jr et al. β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996).
- 8
Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S. & Caron, M. G. Association of β-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J. Biol Chem. 274, 32248–32257 (1999).
- 9
Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S. & Caron, M. G. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol Chem. 275, 23120–23126 (2000). References 7–9 are seminal papers describing the role of β-arrestin in GPCR endocytosis.
- 10
Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).
- 11
Gao, H. et al. Identification of β-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-κB pathways. Mol. Cell 14, 303–317 (2004).
- 12
Shenoy, S. K. et al. β-Arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol Chem. 281, 1261–1273 (2006).
- 13
Beaulieu, J. M. et al. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 (2005).
- 14
Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999). This is one of the first studies describing the signalling functions of β-arrestins.
- 15
Ahn, S., Kim, J., Hara, M. R., Ren, X. R. & Lefkowitz, R. J. β-Arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J. Biol Chem. 284, 8855–8865 (2009).
- 16
Kendall, R. T. et al. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis. J. Biol Chem. 289, 26155–26166 (2014).
- 17
Eichel, K., Jullie, D. & von Zastrow, M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18, 303–310 (2016).
- 18
Coffa, S., Breitman, M., Spiller, B. W. & Gurevich, V. V. A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50, 6951–6958 (2011).
- 19
Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).
- 20
Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol. 7, e1000172 (2009).
- 21
Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). References 19–21 are impactful studies demonstrating sustained G protein signalling from endosomes following endocytosis regulated by β-arrestins.
- 22
Roth, B. L. & Chuang, D. M. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41, 1051–1064 (1987).
- 23
Luttrell, L. M. Minireview: More than just a hammer: ligand “bias” and pharmaceutical discovery. Mol. Endocrinol. 28, 281–294 (2014).
- 24
Jarpe, M. B. et al. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P acts as a biased agonist toward neuropeptide and chemokine receptors. J. Biol Chem. 273, 3097–3104 (1998).
- 25
Urban, J. D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).
- 26
Violin, J. D. & Lefkowitz, R. J. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci. 28, 416–422 (2007).
- 27
Spengler, D. et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170–175 (1993).
- 28
Kenakin, T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci. 16, 232–238 (1995).
- 29
Gurwitz, D. et al. Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. Eur. J. Pharmacol. 267, 21–31 (1994).
- 30
Wei, H. et al. Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl Acad. Sci. USA 100, 10782–10787 (2003).
- 31
Whalen, E. J., Rajagopal, S. & Lefkowitz, R. J. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol. Med. 17, 126–139 (2011).
- 32
Violin, J. D., Crombie, A. L., Soergel, D. G. & Lark, M. W. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci. 35, 308–316 (2014).
- 33
Wisler, J. W., Xiao, K., Thomsen, A. R. & Lefkowitz, R. J. Recent developments in biased agonism. Curr. Opin. Cell Biol. 27, 18–24 (2014).
- 34
Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373–386 (2010).
- 35
Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol Chem. 268, 4625–4636 (1993).
- 36
Changeux, J. P. & Edelstein, S. J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005).
- 37
Kenakin, T. P. Biased signalling and allosteric machines: new vistas and challenges for drug discovery. Br. J. Pharmacol. 165, 1659–1669 (2012).
- 38
De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol Chem. 255, 7108–7117 (1980).
- 39
Gentry, P. R., Sexton, P. M. & Christopoulos, A. Novel allosteric modulators of G protein-coupled receptors. J. Biol Chem. 290, 19478–19488 (2015).
- 40
Onaran, H. O., Rajagopal, S. & Costa, T. What is biased efficacy? Defining the relationship between intrinsic efficacy and free energy coupling. Trends Pharmacol Sci. 35, 639–647 (2014).
- 41
Kenakin, T. Gaddum Memorial Lecture 2014: receptors as an evolving concept: from switches to biased microprocessors. Br. J. Pharmacol. 172, 4238–4253 (2015).
- 42
Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci. 28, 423–430 (2007).
- 43
Wardell, S. E., Marks, J. R. & McDonnell, D. P. The turnover of estrogen receptor α by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochem. Pharmacol. 82, 122–130 (2011).
- 44
Norris, J. D. et al. Peptide antagonists of the human estrogen receptor. Science 285, 744–746 (1999).
- 45
Paige, L. A. et al. Estrogen receptor (ER) modulators each induce distinct conformational changes in ERα and ERβ. Proc. Natl Acad. Sci. USA 96, 3999–4004 (1999).
- 46
Heldring, N. et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 87, 905–931 (2007).
- 47
Kovalenko, M. et al. Phosphorylation site-specific inhibition of platelet-derived growth factor β-receptor autophosphorylation by the receptor blocking tyrphostin AG1296. Biochemistry 36, 6260–6269 (1997).
- 48
Girnita, L. et al. β-Arrestin and Mdm2 mediate IGF-1 receptor-stimulated ERK activation and cell cycle progression. J. Biol Chem. 282, 11329–11338 (2007).
- 49
Arey, B. J. et al. Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol. Endocrinol. 11, 517–526 (1997).
- 50
Arey, B. J. et al. Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem. Biophys. Res. Commun. 368, 723–728 (2008).
- 51
Yanofsky, S. D. et al. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists. J. Biol Chem. 281, 13226–13233 (2006).
- 52
Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G. & Lefkowitz, R. J. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J. Biol Chem. 267, 1430–1433 (1992).
- 53
Chen, X., Bai, B., Tian, Y., Du, H. & Chen, J. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling. J. Biol Chem. 289, 31173–31187 (2014).
- 54
Wanka, L. et al. C-Terminal motif of human neuropeptide Y4 receptor determines internalization and arrestin recruitment. Cell. Signal. 29, 233–239 (2017).
- 55
Rajagopal, S. et al. β-Arrestin-but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc. Natl Acad. Sci. USA 107, 628–632 (2010).
- 56
Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F. & Lagane, B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113, 6085–6093 (2009).
- 57
Decaillot, F. M. et al. CXCR7/CXCR4 heterodimer constitutively recruits β-arrestin to enhance cell migration. J. Biol Chem. 286, 32188–32197 (2011).
- 58
Wang, Y. et al. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 69, 61–76 (2011).
- 59
Smith, J. S. et al. C-X-C motif chemokine receptor 3 splice variants differentially activate beta-arrestins to regulate downstream signaling pathways. Mol. Pharmacol. 92, 136–150 (2017).
- 60
Berchiche, Y. A. & Sakmar, T. P. CXC chemokine receptor 3 alternative splice variants selectively activate different signaling pathways. Mol. Pharmacol. 90, 483–495 (2016).
- 61
Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).
- 62
Nakajima, K. & Wess, J. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol. Pharmacol. 82, 575–582 (2012).
- 63
Hu, J. et al. A G protein-biased designer G protein-coupled receptor useful for studying the physiological relevance of Gq/11-dependent signaling pathways. J. Biol Chem. 291, 7809–7820 (2016).
- 64
Siuda, E. R. et al. Optodynamic simulation of beta-adrenergic receptor signalling. Nat. Commun. 6, 8480 (2015).
- 65
Spangler, S. M. & Bruchas, M. R. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr. Opin. Pharmacol. 32, 56–70 (2017).
- 66
Reiter, E. & Lefkowitz, R. J. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165 (2006).
- 67
Zidar, D. A., Violin, J. D., Whalen, E. J. & Lefkowitz, R. J. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc. Natl Acad. Sci. USA 106, 9649–9654 (2009).
- 68
Riggs, B. L. & Hartmann, L. C. Selective estrogen-receptor modulators — mechanisms of action and application to clinical practice. N. Engl. J. Med. 348, 618–629 (2003).
- 69
Urs, N. M. et al. Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc. Natl Acad. Sci. USA 113, E8178–E8186 (2016). This paper presents a physiological example of how system bias can influence β-arrestin signalling.
- 70
Schattauer, S. S., Kuhar, J. R., Song, A. & Chavkin, C. Nalfurafine is a G-protein biased agonist having significantly greater bias at the human than rodent form of the kappa opioid receptor. Cell. Signal. 32, 59–65 (2017).
- 71
Shenoy, S. K. & Lefkowitz, R. J. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci. 32, 521–533 (2011).
- 72
Kim, J. et al. Functional antagonism of different G protein-coupled receptor kinases for β-arrestin-mediated angiotensin II receptor signaling. Proc. Natl Acad. Sci. USA 102, 1442–1447 (2005).
- 73
Busillo, J. M. et al. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J. Biol Chem. 285, 7805–7817 (2010).
- 74
Nobles, K. N. et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).
- 75
Butcher, A. J. et al. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol Chem. 286, 11506–11518 (2011). References 72–75 are some of the key papers demonstrating 'barcode' patterns, indicating how site-specific phosphorylation regulates GPCR signalling.
- 76
Poulin, B. et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl Acad. Sci. USA 107, 9440–9445 (2010).
- 77
Luo, J., Busillo, J. M., Stumm, R. & Benovic, J. L. G. Protein-coupled receptor kinase 3 and protein kinase C phosphorylate the distal C-terminal tail of the chemokine receptor CXCR4 and mediate recruitment of β-arrestin. Mol. Pharmacol. 91, 554–566 (2017).
- 78
Shukla, A. K. et al. Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl Acad. Sci. USA 105, 9988–9993 (2008).
- 79
Charest, P. G., Terrillon, S. & Bouvier, M. Monitoring agonist-promoted conformational changes of β-arrestin in living cells by intramolecular BRET. EMBO Rep. 6, 334–340 (2005).
- 80
Namkung, Y. et al. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat. Commun. 7, 12178 (2016).
- 81
Lee, M. H. et al. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016).
- 82
Nuber, S. et al. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016). References 81 and 82 are studies that link β-arrestin conformation with function.
- 83
Hernandez, P. A. et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet. 34, 70–74 (2003).
- 84
Balabanian, K. et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105, 2449–2457 (2005).
- 85
Barak, L. S., Oakley, R. H., Laporte, S. A. & Caron, M. G. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA 98, 93–98 (2001).
- 86
Wootten, D. et al. The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism. Cell 165, 1632–1643 (2016). This paper presents important mechanistic work on how receptor mutants can bias signalling responses.
- 87
Wootten, D. et al. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem. Pharmacol. 118, 68–87 (2016).
- 88
Wootten, D. et al. A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures. Mol. Pharmacol. 89, 335–347 (2016).
- 89
Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).
- 90
Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016).
- 91
Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. 33, 17–27 (2012).
- 92
Zhang, H. et al. Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell 161, 833–844 (2015).
- 93
Zhang, H. et al. Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J. Biol Chem. 290, 29127–29139 (2015).
- 94
Choe, H. W. et al. Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011).
- 95
Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011).
- 96
Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).
- 97
Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).
- 98
Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).
- 99
Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).
- 100
Manglik, A. et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).
- 101
Huang, W. et al. Structural insights into micro-opioid receptor activation. Nature 524, 315–321 (2015).
- 102
Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).
- 103
Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465 (2016).
- 104
Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).
- 105
Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277 (2016).
- 106
Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).
- 107
Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).
- 108
Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017). References 107 and 108 are structural studies utilizing cryo-EM to solve GPCR structures in complex with G proteins. Cryo-EM technology will likely play an important role in providing critical structural insights into biased signalling.
- 109
Zhang, H. et al. Structural basis for selectivity and diversity in angiotensin II receptors. Nature 544, 327–332 (2017).
- 110
Burg, J. S. et al. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347, 1113–1117 (2015).
- 111
Carpenter, B., Nehme, R., Warne, T., Leslie, A. G. & Tate, C. G. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536, 104–107 (2016).
- 112
Staus, D. P. et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016).
- 113
Kim, Y. J. et al. Crystal structure of pre-activated arrestin p44. Nature 497, 142–146 (2013).
- 114
Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).
- 115
Szczepek, M. et al. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5, 4801 (2014).
- 116
Renaud, J. P. et al. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15, 679–698 (2016).
- 117
Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011).
- 118
Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).
- 119
Kumari, P. et al. Functional competence of a partially engaged GPCR-β-arrestin complex. Nat. Commun. 7, 13416 (2016).
- 120
Cahill, T. J. et al. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl Acad. Sci. USA 114, 2562–2567 (2017).
- 121
Thomsen, A. R. et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016). This is a negative stain EM study that provides a potential structural basis for how β-arrestin and G proteins can orchestrate prolonged intracellular GPCR signalling.
- 122
Kahsai, A. W. et al. Multiple ligand-specific conformations of the β2-adrenergic receptor. Nat. Chem. Biol. 7, 692–700 (2011).
- 123
Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).
- 124
Perez-Aguilar, J. M., Shan, J., LeVine, M. V., Khelashvili, G. & Weinstein, H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J. Am. Chem. Soc. 136, 16044–16054 (2014).
- 125
Kim, I. M. et al. β-Blockers alprenolol and carvedilol stimulate β-arrestin-mediated EGFR transactivation. Proc. Natl Acad. Sci. USA 105, 14555–14560 (2008).
- 126
Kim, I. M. et al. β-Arrestin1-biased β1-adrenergic receptor signaling regulates microRNA processing. Circ. Res. 114, 833–844 (2014).
- 127
Wisler, J. W. et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007).
- 128
Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wuthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).
- 129
Kahsai, A. W. et al. Conformationally selective RNA aptamers allosterically modulate the β2-adrenoceptor. Nat. Chem. Biol. 12, 709–716 (2016).
- 130
Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).
- 131
Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).
- 132
Mary, S. et al. Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc. Natl Acad. Sci. USA 109, 8304–8309 (2012).
- 133
Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).
- 134
Yang, F. et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat. Commun. 6, 8202 (2015).
- 135
Ariens, E. J. Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory. Arch. Intern. Pharmacodynamie Therapie 99, 32–49 (1954).
- 136
Stephenson, R. P. A modification of receptor theory. Br. J. Pharmacol. Chemother. 11, 379–393 (1956).
- 137
Furchgott, R. F. in in Advances in Drug Research Vol. 3 (eds Harper, N. J. & Simmonds, A. B.) 21–55 (Academic Press, 1966).
- 138
Black, J. W. & Leff, P. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B Biol Sci. 220, 141–162 (1983).
- 139
Rajagopal, S. et al. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377 (2011).
- 140
Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A. & Novick, S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3, 193–203 (2012).
- 141
Griffin, M. T., Figueroa, K. W., Liller, S. & Ehlert, F. J. Estimation of agonist activity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o, Gs, and G15 . J. Pharmacol. Exp. Ther. 321, 1193–1207 (2007).
- 142
Snyder, J. C., Rochelle, L. K., Lyerly, H. K., Caron, M. G. & Barak, L. S. Constitutive internalization of the leucine-rich G protein-coupled receptor-5 (LGR5) to the trans-Golgi network. J. Biol Chem. 288, 10286–10297 (2013).
- 143
Onaran, H. O. et al. Systematic errors in detecting biased agonism: analysis of current methods and development of a new model-free approach. Sci. Rep. 7, 44247 (2017). This is a detailed comparison of different methods to quantify biased signalling.
- 144
Gregory, K. J., Hall, N. E., Tobin, A. B., Sexton, P. M. & Christopoulos, A. Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J. Biol Chem. 285, 7459–7474 (2010).
- 145
Strachan, R. T. et al. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR). J. Biol. Chem. 289, 14211–14224 (2014).
- 146
Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).
- 147
Jones, L. H. & Bunnage, M. E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov. 16, 285–296 (2017).
- 148
Horvath, P. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15, 751–769 (2016).
- 149
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).
- 150
Whistler, J. L., Chuang, H. H., Chu, P., Jan, L. Y. & von Zastrow, M. Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23, 737–746 (1999).
- 151
Zhang, J. et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of μ-opioid receptor responsiveness. Proc. Natl Acad. Sci. USA 95, 7157–7162 (1998).
- 152
Melief, E. J., Miyatake, M., Bruchas, M. R. & Chavkin, C. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. Proc. Natl Acad. Sci. USA 107, 11608–11613 (2010).
- 153
Bohn, L. M., Gainetdinov, R. R., Lin, F. T., Lefkowitz, R. J. & Caron, M. G. μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720–723 (2000).
- 154
Bohn, L. M. et al. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286, 2495–2498 (1999).
- 155
Groer, C. E. et al. An opioid agonist that does not induce μ-opioid receptor-arrestin interactions or receptor internalization. Mol. Pharmacol. 71, 549–557 (2007).
- 156
Soergel, D. G. et al. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155, 1829–1835 (2014).
- 157
Viscusi, E. R. et al. A randomized, phase 2 study investigating TRV130, a biased ligand of the μ-opioid receptor, for the intravenous treatment of acute pain. Pain 157, 264–272 (2016).
- 158
Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016). This is a manuscript describing the design of a biased agonist, from a structure-based approach to physiological effects.
- 159
Land, B. B. et al. The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J. Neurosci. 28, 407–414 (2008).
- 160
White, K. L. & Roth, B. L. Psychotomimetic effects of kappa opioid receptor agonists. Biol Psychiatry 72, 797–798 (2012).
- 161
Bruchas, M. R. et al. Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71, 498–511 (2011).
- 162
Land, B. B. et al. Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc. Natl Acad. Sci. USA 106, 19168–19173 (2009).
- 163
Ehrich, J. M. et al. Kappa opioid receptor-induced aversion requires p38 MAPK activation in VTA dopamine neurons. J. Neurosci. 35, 12917–12931 (2015).
- 164
Brust, T. F. et al. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci. Signal. 9, ra117 (2016).
- 165
White, K. L. et al. The G protein-biased κ-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 352, 98–109 (2015).
- 166
Maillet, E. L. et al. Noribogaine is a G-protein biased κ-opioid receptor agonist. Neuropharmacology 99, 675–688 (2015).
- 167
White, K. L. et al. Identification of novel functionally selective κ-opioid receptor scaffolds. Mol. Pharmacol. 85, 83–90 (2014).
- 168
Rives, M. L., Rossillo, M., Liu-Chen, L. Y. & Javitch, J. A. 6′-Guanidinonaltrindole (6′-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment. J. Biol Chem. 287, 27050–27054 (2012).
- 169
Lovell, K. M. et al. Structure-activity relationship studies of functionally selective kappa opioid receptor agonists that modulate ERK 1/2 phosphorylation while preserving G protein over βarrestin2 signaling bias. ACS Chem. Neurosci. 6, 1411–1419 (2015).
- 170
Zhou, L. et al. Development of functionally selective, small molecule agonists at kappa opioid receptors. J. Biol Chem. 288, 36703–36716 (2013).
- 171
Melief, E. J. et al. Duration of action of a broad range of selective κ-opioid receptor antagonists is positively correlated with c-Jun N-terminal kinase-1 activation. Mol. Pharmacol. 80, 920–929 (2011).
- 172
Munro, T. A. et al. Long-acting kappa opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity. BMC Pharmacol. 12, 5 (2012).
- 173
Carroll, F. I. & Carlezon, W. A. Jr. Development of kappa opioid receptor antagonists. J. Med. Chem. 56, 2178–2195 (2013).
- 174
Chavkin, C. & Koob, G. F. Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology 41, 373–374 (2016).
- 175
Van't Veer, A. & Carlezon, W. A. Jr. Role of κ-opioid receptors in stress and anxiety-related behavior. Psychopharmacology 229, 435–452 (2013).
- 176
Howes, O. D. & Kapur, S. The dopamine hypothesis of schizophrenia: version III — the final common pathway. Schizophr. Bull. 35, 549–562 (2009).
- 177
Free, R. B. et al. Discovery and characterization of a G protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol. Pharmacol. 86, 96–105 (2014).
- 178
Shonberg, J. et al. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem. 56, 9199–9221 (2013).
- 179
Chen, X. et al. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J. Med. Chem. 55, 7141–7153 (2012).
- 180
Allen, J. A. et al. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl Acad. Sci. USA 108, 18488–18493 (2011).
- 181
Park, S. M. et al. Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology 41, 704–715 (2016).
- 182
Urs, N. M., Peterson, S. M. & Caron, M. G. New concepts in dopamine D2 receptor biased signaling and implications for schizophrenia therapy. Biol Psychiatry 81, 78–85 (2016).
- 183
Sexton, P. M., Findlay, D. M. & Martin, T. J. Calcitonin. Curr. Med. Chem. 6, 1067–1093 (1999).
- 184
Andreassen, K. V. et al. Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias. PLoS ONE 9, e92042 (2014).
- 185
Furness, S. G. et al. Ligand-dependent modulation of G protein conformation alters drug efficacy. Cell 167, 739–749.e11 (2016).
- 186
Bachelerie, F. et al. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 66, 1–79 (2014).
- 187
Steen, A., Larsen, O., Thiele, S. & Rosenkilde, M. M. Biased and G protein-independent signaling of chemokine receptors. Front. Immunol. 5, 277 (2014).
- 188
Muller, M., Carter, S., Hofer, M. J. & Campbell, I. L. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity — a tale of conflict and conundrum. Neuropathol. Appl. Neurobiol. 36, 368–387 (2010).
- 189
Groom, J. R. & Luster, A. D. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89, 207–215 (2011).
- 190
Rashighi, M. et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci. Transl Med. 6, 223ra23 (2014).
- 191
Rajagopal, S. et al. Biased agonism as a mechanism for differential signaling by chemokine receptors. J. Biol Chem. 288, 35039–35048 (2013).
- 192
Zohar, Y. et al. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J. Clin. Invest. 124, 2009–2022 (2014).
- 193
Kohout, T. A. et al. Differential desensitization, receptor phosphorylation, β-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J. Biol Chem. 279, 23214–23222 (2004).
- 194
Drury, L. J. et al. Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc. Natl Acad. Sci. USA 108, 17655–17660 (2011).
- 195
Corbisier, J., Gales, C., Huszagh, A., Parmentier, M. & Springael, J. Y. Biased signaling at chemokine receptors. J. Biol Chem. 290, 9542–9554 (2015).
- 196
Corbisier, J., Huszagh, A., Gales, C., Parmentier, M. & Springael, J. Y. Partial agonist and biased signaling properties of the synthetic enantiomers J113863/UCB35625 at chemokine receptors CCR2 and CCR5. J. Biol Chem. 292, 575–584 (2016).
- 197
Felker, G. M. et al. Heart failure therapeutics on the basis of a biased ligand of the angiotensin-2 type 1 receptor. Rationale and design of the BLAST-AHF study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure). JACC Heart Fail. 3, 193–201 (2015).
- 198
Abraham, D. M. et al. β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility. Proc. Natl Acad. Sci. USA 113, 14426–14431 (2016).
- 199
Liu, C. H. et al. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nat. Commun. 8, 14335 (2017).
- 200
Donato, M. & Gelpi, R. J. Adenosine and cardioprotection during reperfusion — an overview. Mol. Cell. Biochem. 251, 153–159 (2003).
- 201
Welihinda, A. A., Kaur, M., Greene, K., Zhai, Y. & Amento, E. P. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell. Signal. 28, 552–560 (2016).
- 202
Vecchio, E. A. et al. The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochem. Pharmacol. 117, 46–56 (2016).
- 203
Aurelio, L. et al. Allosteric modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of 4-substituted 2-amino-3-benzoylthiophenes. J. Med. Chem. 52, 4543–4547 (2009).
- 204
Valant, C. et al. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc. Natl Acad. Sci. USA 111, 4614–4619 (2014).
- 205
Chuo, C. H. et al. VCP746, a novel A1 adenosine receptor biased agonist, reduces hypertrophy in a rat neonatal cardiac myocyte model. Clin. Exp. Pharmacol. Physiol. 43, 976–982 (2016).
- 206
Baltos, J. A. et al. Structure-activity analysis of biased agonism at the human adenosine A3 receptor. Mol. Pharmacol. 90, 12–22 (2016).
- 207
Barak, L. S. et al. ML314: a biased neurotensin receptor ligand for methamphetamine abuse. ACS Chem. Biol. 11, 1880–1890 (2016).
- 208
Peddibhotla, S. et al. Discovery of ML314, a brain penetrant non-peptidic β-arrestin biased agonist of the neurotensin NTR1 receptor. ACS Med. Chem. Lett. 4, 846–851 (2013).
- 209
Quoyer, J. et al. Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. Proc. Natl Acad. Sci. USA 110, E5088–E5097 (2013).
- 210
Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017).
- 211
Mallipeddi, S., Janero, D. R., Zvonok, N. & Makriyannis, A. Functional selectivity at G-protein coupled receptors: advancing cannabinoid receptors as drug targets. Biochem. Pharmacol. 128, 1–11 (2016).
- 212
Ahn, K. H., Mahmoud, M. M., Shim, J. Y. & Kendall, D. A. Distinct roles of β-arrestin 1 and β-arrestin 2 in ORG27569-induced biased signaling and internalization of the cannabinoid receptor 1 (CB1). J. Biol Chem. 288, 9790–9800 (2013).
- 213
Fay, J. F. & Farrens, D. L. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1. Proc. Natl Acad. Sci. USA 112, 8469–8474 (2015).
- 214
Mancini, A. D. et al. β-Arrestin recruitment and biased agonism at free fatty acid receptor 1. J. Biol Chem. 290, 21131–21140 (2015).
- 215
Christopoulos, A. Advances in G protein-coupled receptor allostery: from function to structure. Mol. Pharmacol. 86, 463–478 (2014).
- 216
Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205–216 (2013).
- 217
Rajagopal, S. Quantifying biased agonism: understanding the links between affinity and efficacy. Nat. Rev. Drug Discov. 12, 483 (2013).
- 218
Kenakin, T. & Christopoulos, A. Measurements of ligand bias and functional affinity. Nat. Rev. Drug Discov. 12, 483 (2013).
- 219
Breton, B. et al. Multiplexing of multicolor bioluminescence resonance energy transfer. Biophys. J. 99, 4037–4046 (2010).
- 220
Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).
- 221
Devost, D. et al. Conformational profiling of the AT1 angiotensin II receptor reflects biased agonism, G protein coupling, and cellular context. J. Biol Chem. 292, 5443–5456 (2017).
- 222
Barak, L. S., Ferguson, S. S., Zhang, J. & Caron, M. G. A β-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol Chem. 272, 27497–27500 (1997).
- 223
Inoue, A. et al. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021–1029 (2012).
Acknowledgements
The authors thank J. Silverman for helpful discussion on error propagation and for design and implementation of the online biased calculator resource. We thank T. Pack, M. Caron and C. Chavkin for comments on sections of the manuscript. This work is supported by NIH Grants T32GM7171 (J.S.S.), HL16037 (R.J.L.), HL114643 (S.R.) and GM122798 (S.R.); the Duke Medical Scientist Training Program (J.S.S.); a Burroughs Wellcome Career Award for Medical Scientists (S.R.). R.J.L. is an HHMI Investigator.
Author information
Affiliations
Corresponding authors
Ethics declarations
Competing interests
R.J.L. is a co-founder and shareholder of Trevena.
Related links
FURTHER INFORMATION
Glossary
- G protein-coupled receptor kinases
-
(GRKs). A family of serine/threonine kinases that phosphorylate the intracellular residues of a G protein-coupled receptor following agonist binding, which is often required for β-arrestin recruitment and signalling.
- β-Arrestins
-
Multifunctional adaptor proteins that regulate G protein-coupled receptor (GPCR) signalling through desensitization and internalization and by promoting signalling through a wide variety of pathways. They also regulate non-GPCR targets, such as receptor tyrosine kinases.
- Efficacy
-
The ability of a ligand to generate a quantifiable response after binding to a receptor.
- Affinity
-
A measurement of how well a ligand binds to a receptor, commonly expressed in terms of a dissociation constant (Kd). Affinity depends on cellular context, and therefore affinity for a G protein-coupled receptor is influenced by transducers, such as G proteins and β-arrestins.
- Ligand bias
-
Biased signalling encoded in the ligand that generates a distinct ligand–receptor conformation relative to a reference ligand.
- Allosteric modulators
-
Ligands that bind to an allosteric site of the receptor and affect receptor responses to orthosteric ligands. Some allosteric modulators are capable of generating biased responses.
- Biased agonists
-
Ligands that selectively enhance or attenuate some, but not all, of the signalling pathways available to a receptor compared with a reference ligand (usually an endogenous agonist).
- Receptor bias
-
Biased signalling encoded by differences in receptor structure or conformation compared with the 'wild-type' receptor.
- System bias
-
Biased signalling directed by the relative expression of receptor transducers, such as increased expression of G proteins, G protein-coupled receptor kinases and/or β-arrestins.
- Orthosteric site
-
The site on a receptor to which the endogenous ligand binds.
- Allosteric site
-
A binding site on a receptor that is different from the orthosteric site.
Rights and permissions
About this article
Cite this article
Smith, J., Lefkowitz, R. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17, 243–260 (2018). https://doi.org/10.1038/nrd.2017.229
Published:
Issue Date:
Further reading
-
Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias
Molecular Pharmacology (2021)
-
Key Metabolic Functions of β-Arrestins: Studies with Novel Mouse Models
Trends in Endocrinology & Metabolism (2021)
-
Variously substituted 2-oxopyridine derivatives: Extending the structure-activity relationships for allosteric modulation of the cannabinoid CB2 receptor
European Journal of Medicinal Chemistry (2021)
-
Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias
Frontiers in Pharmacology (2021)
-
Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data
Drug Discovery Today (2021)