Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease

A Corrigendum to this article was published on 30 October 2017

This article has been updated

Key Points

  • Idiopathic pulmonary fibrosis (IPF) is a chronic lethal lung disease, the prevalence and incidence of which dramatically increase with age.

  • Novel therapeutic interventions for IPF are necessary as approved therapies are limited to slowing the progression of the disease.

  • Similar to other age-related diseases, cell perturbations present in ageing cells are found in epithelial and mesenchymal cells from IPF lungs, including telomere shortening, senescence, stem cell exhaustion and mitochondrial dysfunction.

  • The development of novel therapies for IPF has been hampered by inadequate animal models, the lack of interventions that promote epithelial repair, and the lack of understanding of the contribution of the ageing process to damage and fibrosis.

  • Further insights into the pathogenesis of IPF, the mechanisms involved in ageing as a risk factor and the genetic predisposition to this disease are crucial to overcome current therapeutic obstacles.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease that is characterized by progressive and irreversible scarring of the lung. The pathogenesis of IPF is not completely understood and current therapies are limited to those that reduce the rate of functional decline in patients with mild-to-moderate disease. In this context, new therapeutic approaches that substantially improve the survival time and quality of life of these patients are urgently needed. Our incomplete understanding of the pathogenic mechanisms of IPF and the lack of appropriate experimental models that reproduce the key characteristics of the human disease are major challenges. As ageing is a major risk factor for IPF, age-related cell perturbations such as telomere attrition, senescence, epigenetic drift, stem cell exhaustion, loss of proteostasis and mitochondrial dysfunction are becoming targets of interest for IPF therapy. In this Review, we discuss current and emerging therapies for IPF, particularly those targeting age-related mechanisms, and discuss future therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of idiopathic pulmonary fibrosis pathogenesis.
Figure 2: Overview of the main clinical trials focused on idiopathic pulmonary fibrosis.
Figure 3: Selected emerging therapeutic interventions that target age-related cell perturbations in lung fibrosis.

Similar content being viewed by others

Change history

  • 30 October 2017

    In the original version, navitoclax was incorrectly referred to as an apoptosis inhibitor in Figure 3. The error has been corrected online.

References

  1. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Idiopathic Pulmonary Fibrosis Clinical Research Network et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366, 1968–1977 (2012). This study clearly demonstrated that patients with IPF treated with a combination of prednisone, azathioprine and NAC have an increased risk of death and hospitalization, supporting the notion that IPF is not an inflammatory-driven disease.

  4. King, T. E. Jr. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014). This phase III study confirms and extends the findings that pirfenidone reduces disease progression in IPF patients with mild-to-moderate physiological impairment with an acceptable side-effect profile.

    Article  CAS  PubMed  Google Scholar 

  5. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014). In both INPULSIS trials, it was shown that nintedanib, a potent kinase inhibitor blocking the effects of growth factors implicated in the pathogenesis of IPF, reduced the decline of FEV in patients with mild-to-moderate impairment of pulmonary function, which is consistent with a slowing of disease progression, and in general with tolerable adverse events.

    Article  CAS  PubMed  Google Scholar 

  6. Selman, M. & Pardo, A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am. J. Respir. Crit. Care Med. 189, 1161–1172 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F. & Blasco, M. A. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Naikawadi, R. P. et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1, e86704 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abbadie, C., Pluquet, O. & Pourtier, A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-017-2587-9 (2017).

  10. Baumgartner, K. B., Samet, J. M., Stidley, C. A., Colby, T. V. & Waldron, J. A. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 155, 242–248 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Steele, M. P. et al. Clinical and pathologic features of familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 172, 1146–1152 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taskar, V. S. & Coultas, D. B. Is idiopathic pulmonary fibrosis an environmental disease? Proc. Am. Thorac. Soc. 3, 293–298 (2006).

    Article  PubMed  Google Scholar 

  13. Stewart, J. P. et al. The detection of Epstein-Barr virus DNA in lung tissue from patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 159, 1336–1341 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Richeldi, L., Collard, H. R. & Jones, M. G. Idiopathic pulmonary fibrosis. Lancet 389, 1941–1952 (2017).

    Article  PubMed  Google Scholar 

  15. Fernandez, B. A. et al. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir. Res. 13, 64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Sancho, C. et al. Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir. Med. 105, 1902–1907 (2011).

    Article  PubMed  Google Scholar 

  17. Coghlan, M. A. et al. Sequencing of idiopathic pulmonary fibrosis-related genes reveals independent single gene associations. BMJ Open Respir. Res. 1, e000057 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mulugeta, S., Nguyen, V., Russo, S. J., Muniswamy, M. & Beers, M. F. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am. J. Respir. Cell Mol. Biol. 32, 521–530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawson, W. E. et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L1119–L1126 (2008). This report shows that ER stress and UPR activation are found in alveolar epithelial cells in the lungs of patients with sporadic and familial IPF and may contribute to its pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, Q. et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am. J. Respir. Cell Mol. Biol. 45, 498–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am. J. Hum. Genet. 84, 52–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Moorsel, C. H. et al. SFTPA2 mutations in familial and sporadic idiopathic interstitial pneumonia. Am. J. Respir. Crit. Care Med. 192, 1249–1252 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Tsakiri, K. D. et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl Acad. Sci. USA 104, 7552–7557 (2007). References 23 and 24 demonstrate that mutations in the genes encoding telomerase components that result in telomere shortening confer an increase in susceptibility to adult-onset familial IPF.

    Article  CAS  PubMed  Google Scholar 

  25. Kropski, J. A. et al. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest 146, e1–e7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alder, J. K. et al. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 147, 1361–1368 (2015).

    Article  PubMed  Google Scholar 

  27. Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kannengiesser, C. et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur. Respir. J. 46, 474–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Alder, J. K. et al. Telomere dysfunction causes alveolar stem cell failure. Proc. Natl Acad. Sci. USA 112, 5099–5104 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nat. Rev. Cancer 8, 450–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fingerlin, T. E. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 45, 613–620 (2013). This report is a large case–control GWAS and provides evidence that common genetic variations are important contributors to increased risk of idiopathic interstitial pneumonia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noth, I. et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med. 1, 309–317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seibold, M. A. et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 364, 1503–1512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, I. V., Fingerlin, T. E., Evans, C. M., Schwarz, M. I. & Schwartz, D. A. MUC5B and idiopathic pulmonary fibrosis. Ann. Am. Thorac. Soc. 12 (Suppl. 2), S193–S199 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Xu, Y. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1, e90558 (2016). This is an in-depth transcriptome report of normal human AEC2s and IPF epithelial cells at the single-cell level. This study revealed a diversity of transcriptional 'states' of individual IPF cells, challenging the concept of precise epithelial cell identities.

  36. Zhang, H., Chen, Y., Keane, F. M. & Gorrell, M. D. Advances in understanding the expression and function of dipeptidyl peptidase 8 and 9. Mol. Cancer Res. 11, 1487–1496 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Mathai, S. K. et al. Desmoplakin variants are associated with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 193, 1151–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cronkhite, J. T. et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178, 729–737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petrovski, S. et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 82–93 (2017).

    CAS  Google Scholar 

  40. Zhu, L. et al. Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-beta signaling pathway. J. Biol. Chem. 287, 39653–39663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Somia, N. & Verma, I. M. Gene therapy: trials and tribulations. Nat. Rev. Genet. 1, 91–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bernardes de Jesus, B. et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cerbini, T. et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE 10, e0116032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Selman, M. et al. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 134, 136–151 (2001). This is a seminal position paper that challenged the long-prevailing hypothesis that chronic inflammation has an essential role in the pathogenesis of IPF and proposed a new hypothesis highlighting the role of alveolar epithelial cells in the development of the disease.

    Article  CAS  PubMed  Google Scholar 

  46. King, T. E. Jr., Pardo, A. & Selman, M. Idiopathic pulmonary fibrosis. Lancet 378, 1949–1961 (2011).

    Article  PubMed  Google Scholar 

  47. Antoniades, H. N. et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J. Clin. Invest. 86, 1055–1064 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khalil, N., O'Connor, R. N., Flanders, K. C. & Unruh, H. TGF-beta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am. J. Respir. Cell. Mol. Biol. 14, 131–138 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Piguet, P. F., Ribaux, C., Karpuz, V., Grau, G. E. & Kapanci, Y. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am. J. Pathol. 143, 651–655 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Saleh, D. et al. Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: possible involvement of proinflammatory cytokines. Am. J. Respir. Cell Mol. Biol. 16, 187–193 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Pan, L. H. et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur. Respir. J. 17, 1220–1227 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Andersson-Sjoland, A. et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int. J. Biochem. Cell Biol. 40, 2129–2140 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Pardo, A. et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med. 2, e251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, Y. D. et al. Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L527–L539 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Horan, G. S. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Cosgrove, G. P. et al. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am. J. Respir. Crit. Care Med. 170, 242–251 (2004).

    Article  PubMed  Google Scholar 

  58. Kotani, I. et al. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb. Res. 77, 493–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Scotton, C. J. et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J. Clin. Invest. 119, 2550–2563 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vaughan, A. E. et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Smirnova, N. F. et al. Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respir. Res. 17, 83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Willis, B. C. et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166, 1321–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, K. K. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103, 13180–13185 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  PubMed  Google Scholar 

  65. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. King, T. E. Jr. et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet 374, 222–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Raghu, G. et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 178, 948–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. King, T. E. Jr. et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 184, 92–99 (2011).

    Article  PubMed  Google Scholar 

  69. Raghu, G. et al. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur. Respir. J. 42, 1622–1632 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Idiopathic Pulmonary Fibrosis Clinical Research Network et al. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N. Engl. J. Med. 363, 620–628 (2010).

  71. Daniels, C. E. et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Raghu, G. et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann. Intern. Med. 158, 641–649 (2013).

    Article  PubMed  Google Scholar 

  73. Malouf, M. A., Hopkins, P., Snell, G., Glanville, A. R. & Everolimus in IPF Study Investigators. An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology 16, 776–783 (2011).

    Article  PubMed  Google Scholar 

  74. Noth, I. et al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186, 88–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moore, B. B. et al. Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE2 . Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L342–L349 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Klinger, J. R. Group III pulmonary hypertension: pulmonary hypertension associated with lung disease: epidemiology, pathophysiology, and treatments. Cardiol. Clin. 34, 413–433 (2016).

    Article  PubMed  Google Scholar 

  77. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Dohi, M., Hasegawa, T., Yamamoto, K. & Marshall, B. C. Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 162, 2302–2307 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Gazdhar, A. et al. HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic. PLoS ONE 8, e65453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yaekashiwa, M. et al. Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin. A morphologic study. Am. J. Respir. Crit. Care Med. 156, 1937–1944 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Dong, L. H. et al. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2 . Sci. Rep. 5, 8713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gazdhar, A. et al. The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res. Ther. 5, 123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yoon, Y. S., Lee, Y. J., Choi, J. Y., Cho, M. S. & Kang, J. L. Coordinated induction of cyclooxygenase-2/prostaglandin E2 and hepatocyte growth factor by apoptotic cells prevents lung fibrosis. J. Leukoc. Biol. 94, 1037–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Becerril, C. et al. Acidic fibroblast growth factor induces an antifibrogenic phenotype in human lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 20, 1020–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Ramos, C. et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am. J. Phys. Lung Cell. Mol. Physiol. 299, L222–L231 (2010).

    Article  CAS  Google Scholar 

  86. Shimbori, C. et al. Fibroblast growth factor-1 attenuates TGF-beta1-induced lung fibrosis. J. Pathol. 240, 197–210 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Gupte, V. V. et al. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med. 180, 424–436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sakamoto, S. et al. Keratinocyte growth factor gene transduction ameliorates pulmonary fibrosis induced by bleomycin in mice. Am. J. Respir. Cell Mol. Biol. 45, 489–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Aguilar, S. et al. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS ONE 4, e8013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shyamsundar, M. et al. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. Am. J. Respir. Crit. Care Med. 189, 1520–1529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shi, M. et al. Latent TGF-beta structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Henderson, N. C. et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Lear, T. et al. Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4. J. Exp. Med. 213, 1029–1046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Evans, I. C. et al. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis. Clin. Sci. (Lond.) 130, 575–586 (2016).

    Article  CAS  Google Scholar 

  97. Dackor, R. T. et al. Prostaglandin E(2) protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L645–L655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu, Y. et al. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respir. Res. 11, 34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ivanova, V. et al. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur. J. Pharm. Biopharm. 84, 335–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Warsinske, H. C. et al. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis. Front. Pharmacol. 7, 183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsang, A. R., Wyatt, H. D., Ting, N. S. & Beattie, T. L. hTERT mutations associated with idiopathic pulmonary fibrosis affect telomerase activity, telomere length, and cell growth by distinct mechanisms. Aging Cell 11, 482–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Diaz de Leon, A. et al. Subclinical lung disease, macrocytosis, and premature graying in kindreds with telomerase (TERT) mutations. Chest 140, 753–763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Silhan, L. L. et al. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. Eur. Respir. J. 44, 178–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Diaz de Leon, A. et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS ONE 5, e10680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bayne, S. et al. Estrogen deficiency leads to telomerase inhibition, telomere shortening and reduced cell proliferation in the adrenal gland of mice. Cell Res. 18, 1141–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Calado, R. T. et al. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood 114, 2236–2243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ziegler, P. et al. Telomere elongation and clinical response to androgen treatment in a patient with aplastic anemia and a heterozygous hTERT gene mutation. Ann. Hematol. 91, 1115–1120 (2012).

    Article  PubMed  Google Scholar 

  108. Townsley, D. M. et al. Danazol treatment for telomere diseases. N. Engl. J. Med. 374, 1922–1931 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khincha, P. P., Wentzensen, I. M., Giri, N., Alter, B. P. & Savage, S. A. Response to androgen therapy in patients with dyskeratosis congenita. Br. J. Haematol. 165, 349–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Minagawa, S. et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L391–L401 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci. Transl Med. 6, 231ra247 (2014). Genetic and pharmacological targeting of NOX4 in ageing mice diminished the senescence of fibroblasts and reversed persistent fibrosis.

    Article  CAS  Google Scholar 

  113. Yanai, H. et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging 7, 664–672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017). Studies using the bleomycin lung fibrosis model showed that deletion of p16INK4-positive cells or the use of the senolytic cocktail dasatinib plus quercetin improved lung function and reduced the secretion of SASP factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alvarez, D. et al. IPF lung fibroblasts have a senescence phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol. http://dx.doi.org/10.1152/ajplung.00220.2017 (2017).

  116. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lehmann, M. et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Respir. J. 50, 1602367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Jarman, E. R. et al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am. J. Respir. Cell Mol. Biol. 50, 158–169 (2014).

    PubMed  Google Scholar 

  122. Eid, A. A. et al. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem. 285, 37503–37512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Feng, L., Hollstein, M. & Xu, Y. Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5, 2812–2819 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Kuwano, K. et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 154, 477–483 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Jiang, C. et al. Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell. http://dx.doi.org/10.1111/acel.12643 (2017).

  126. Disayabutr, S. et al. miR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS ONE 11, e0158367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Malaquin, N., Martinez, A. & Rodier, F. Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp. Gerontol. 82, 39–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Iglesias-Bartolome, R. et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ferrand, M. et al. Screening of a kinase library reveals novel pro-senescence kinases and their common NF-kappaB-dependent transcriptional program. Aging 7, 986–1003 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Isoda, K. et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler. Thromb. Vasc. Biol. 26, 611–617 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Pechkovsky, D. V. et al. STAT3-mediated signaling dysregulates lung fibroblast-myofibroblast activation and differentiation in UIP/IPF. Am. J. Pathol. 180, 1398–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Lv, X. X. et al. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents. PLoS ONE 8, e68631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Yang, I. V. et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 190, 1263–1272 (2014). This study identified methylation–gene expression relationships within genes that are either involved in fibroproliferation or are probable candidates in this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Selman, M., Lopez-Otin, C. & Pardo, A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur. Respir. J. 48, 538–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Cisneros, J. et al. Hypermethylation-mediated silencing of p14(ARF) in fibroblasts from idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L295–L303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu, B., Gharaee-Kermani, M., Wu, Z. & Phan, S. H. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am. J. Pathol. 177, 21–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sanders, Y. Y. et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 39, 610–618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Coward, W. R., Watts, K., Feghali-Bostwick, C. A., Knox, A. & Pang, L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol. Cell. Biol. 29, 4325–4339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sanders, Y. Y. et al. Epigenetic regulation of Caveolin-1 gene expression in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 56, 50–61 (2016).

    Article  Google Scholar 

  144. Huang, S. K. et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 4, e621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dakhlallah, D. et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 187, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pandit, K. V. et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 182, 220–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, G. et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207, 1589–1597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang, T. et al. miR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J. Cell. Biochem. 114, 1336–1342 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635 (2014). This study provides direct insight into the effect of fibrotic ECM on the upregulation of selected fibroblast genes that are targeted by miR-29 in response to the low expression of this miRNA by fibrotic ECM. These findings support an ECM-driven positive feedback loop that can redirect fibroblast ECM gene expression by reducing miR-29 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jones, P. A., Issa, J. P. & Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Huan, C. et al. Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Sci. Rep. 5, 14910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Neary, R., Watson, C. J. & Baugh, J. A. Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair 8, 18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zahnow, C. A. et al. Inhibitors of DNA methylation, histone deacetylation, and histone demethylation: a perfect combination for cancer therapy. Adv. Cancer Res. 130, 55–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Korfei, M. et al. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax 70, 1022–1032 (2015).

    Article  PubMed  Google Scholar 

  155. Sanders, Y. Y. et al. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur. Respir. J. 43, 1448–1458 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Rao, S. S. et al. Suberoylanilide hydroxamic acid attenuates paraquat-induced pulmonary fibrosis by preventing Smad7 from deacetylation in rats. J. Thorac. Dis. 8, 2485–2494 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Khan, S., Ahirwar, K. & Jena, G. Anti-fibrotic effects of valproic acid: role of HDAC inhibition and associated mechanisms. Epigenomics 8, 1087–1101 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Kawaoka, K. et al. Valproic acid attenuates renal fibrosis through the induction of autophagy. Clin. Exp. Nephrol. http://dx.doi.org/10.1007/s10157-016-1365-6 (2016).

  159. Seet, L. F. et al. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis. J. Mol. Med. (Berl.) 94, 321–334 (2016).

    Article  CAS  Google Scholar 

  160. Tough, D. F., Tak, P. P., Tarakhovsky, A. & Prinjha, R. K. Epigenetic drug discovery: breaking through the immune barrier. Nat. Rev. Drug Discov. 15, 835–853 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Yang, S. et al. Participation of miR-200 in pulmonary fibrosis. Am. J. Pathol. 180, 484–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xiao, J. et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol. Ther. 20, 1251–1260 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Montgomery, R. L. et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 6, 1347–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Das, S. et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-beta in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 50, 882–892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. van der Ree, M. H. et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res. 111, 53–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Korfei, M. et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178, 838–846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Torres-Gonzalez, E. et al. Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am. J. Respir. Cell Mol. Biol. 46, 748–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pereira, E. R., Frudd, K., Awad, W. & Hendershot, L. M. Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF). J. Biol. Chem. 289, 3352–3364 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Das, I. et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239–242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Feng, H. L. et al. Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 155, 567–572 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D. C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Diamant, S., Eliahu, N., Rosenthal, D. & Goloubinoff, P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276, 39586–39591 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Keohane, D., Schwartz, J., Gundapaneni, B., Stewart, M. & Amass, L. Tafamidis delays disease progression in patients with early stage transthyretin familial amyloid polyneuropathy: additional supportive analyses from the pivotal trial. Amyloid 24, 30–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Mu, T. W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mu, T. W., Fowler, D. M. & Kelly, J. W. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol. 6, e26 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kusaczuk, M., Bartoszewicz, M. & Cechowska-Pasko, M. Phenylbutyric acid: simple structure - multiple effects. Curr. Pharm. Des. 21, 2147–2166 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Zhao, H. et al. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis. Toxicol. Lett. 232, 213–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Plate, L. et al. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 5, e15550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Romero, Y. et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell http://dx.doi.org/10.1111/acel.12514 (2016).

  181. Mora, A. L., Bueno, M. & Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Invest. 127, 405–414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Frantz, M. C. & Wipf, P. Mitochondria as a target in treatment. Environ. Mol. Mutag. 51, 462–475 (2010).

    CAS  Google Scholar 

  183. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25, 1670–1674 (2010).

    Article  PubMed  Google Scholar 

  184. Rehman, H. et al. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. Int. J. Physiol., Pathophysiol. Pharmacol. 8, 14–27 (2016).

    CAS  Google Scholar 

  185. Jain, M. et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J. Biol. Chem. 288, 770–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, S. J. et al. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radic. Biol. Med. 101, 482–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Xun, Z. et al. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease. Cell Rep. 2, 1137–1142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nguyen, T. N., Padman, B. S. & Lazarou, M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26, 733–744 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Narendra, D., Walker, J. E. & Youle, R. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 4, a011338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bueno, M. et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Invest. 125, 521–538 (2015). This study shows morphological and functional abnormalities in the mitochondria of AEC2s from IPF lungs. Mitochondrial abnormalities and dysfunction were found to increase with age and ER stress and were associated with the low expression of PINK1, a crucial regulator of mitochondrial homeostasis.

    Article  PubMed  Google Scholar 

  192. Patel, A. S. et al. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PLoS ONE 10, e0121246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sosulski, M. L. et al. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFbeta1. Aging Cell 14, 774–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kobayashi, K. et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J. Immunol. 197, 504–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Larson-Casey, J. L., Deshane, J. S., Ryan, A. J., Thannickal, V. J. & Carter, A. B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44, 582–596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hertz, N. T. et al. A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1. Cell 154, 737–747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Axelrod, F. B. et al. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr. Res. 70, 480–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shetty, R. S. et al. Specific correction of a splice defect in brain by nutritional supplementation. Hum. Mol. Genet. 20, 4093–4101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sundaresan, N. R. et al. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3beta. Mol. Cell. Biol. 36, 678–692 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  200. Kwon, Y., Kim, J., Lee, C. Y. & Kim, H. Expression of SIRT1 and SIRT3 varies according to age in mice. Anat. Cell Biol. 48, 54–61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Akamata, K. et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget 7, 69321–69336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Sosulski, M. L., Gongora, R., Feghali-Bostwick, C., Lasky, J. A. & Sanchez, C. G. Sirtuin 3 deregulation promotes pulmonary fibrosis. J. Gerontol. A, Biol. Sci. Med. Sci. 72, 595–602 (2016).

    Google Scholar 

  203. Bindu, S. et al. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L68–L78 (2017).

    Article  PubMed  Google Scholar 

  204. Cheng, Y. et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 4, e731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kim, S. J. et al. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J. Biol. Chem. 289, 6165–6176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lee, Y. L. et al. Mitochondrial DNA damage initiates acute lung injury and multi-organ system failure evoked in rats by intra-tracheal pseudomonas aeruginosa. Shock 48, 54–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Haffner, C. D. et al. Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J. Med. Chem. 58, 3548–3571 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Oh, G. S. et al. Increased cellular NAD+ level through NQO1 enzymatic action has protective effects on bleomycin-induced lung fibrosis in mice. Tuberc. Respir. Dis. (Seoul) 79, 257–266 (2016).

    Article  Google Scholar 

  210. Rojas, M. et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol. 33, 145–152 (2005). Initial study in mouse models of lung injury showing that MSCs are required for lung tissue repair after injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Alvarez, D., Levine, M. & Rojas, M. Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells Cloning 8, 61–65 (2015).

    PubMed  PubMed Central  Google Scholar 

  212. Wang, W. et al. Intravenous administration of bone marrow mesenchymal stromal cells is safe for the lung in a chronic myocardial infarction model. Regen. Med. 6, 179–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Zanetti, A. et al. Suspension-expansion of bone marrow results in small mesenchymal stem cells exhibiting increased transpulmonary passage following intravenous administration. Tissue Eng. Part C Methods 21, 683–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lu, H. et al. Pulmonary retention of adipose stromal cells following intravenous delivery is markedly altered in the presence of ARDS. Cell Transplant. 25, 1635–1643 (2016).

    Article  PubMed  Google Scholar 

  215. Ortiz, L. A. et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl Acad. Sci. USA 100, 8407–8411 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Chambers, D. C. et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology 19, 1013–1018 (2014).

    Article  PubMed  Google Scholar 

  217. Glassberg, M. K. et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I, safety, clinical trial. Chest 151, 971–981 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Dadrich, M. et al. Combined inhibition of TGFbeta and PDGF signaling attenuates radiation-induced pulmonary fibrosis. Oncoimmunology 5, e1123366 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Oldham, J. M. et al. TOLLIP, MUC5B, and the response to N-Acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 192, 1475–1482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Raghu, G. et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur. Respir. J. 47, 1481–1491 (2016).

    Article  PubMed  Google Scholar 

  221. Wilkes, D. S. et al. Oral immunotherapy with type V collagen in idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1393–1402 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Couluris, M. et al. Treatment of idiopathic pulmonary fibrosis with losartan: a pilot project. Lung 190, 523–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. van den Blink, B. et al. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. Eur. Respir. J. 47, 889–897 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Raghu, G. et al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. Eur. Respir. J. 46, 1740–1750 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. van der Velden, J. L. et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin. Transl Med. 5, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Raghu, G. et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir. Med. 5, 22–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Parker, J. M. et al. Phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. http://dx.doi.org/10.1164/rccm.201704-078OC (2017).

Download references

Acknowledgements

The authors thank E. Chiang for assistance and production of the figures. A.L.M. is funded by NIH R01 HL131789A; the Aging Institute, University of Pittsburgh; the Institute for Transfusion Medicine; and the Hemophilia Center for Western Pennsylvania. M.R. is funded by NIH R01 HL123766-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Mora.

Ethics declarations

Competing interests

M.S. contributes to the Adjudication Committee in a clinical trial on idiopathic pulmonary fibrosis conducted by Celgene. M.R., A.P. and A.L.M. declare no competing interests.

PowerPoint slides

Glossary

Alveolar epithelial cells

The alveolar epithelium consists of alveolar epithelial type 1 cells (AEC1s) and type 2 cells (AEC2s). Squamous AEC1s are flat and constitute ~95% of the surface area of the lung but account for a minor proportion of the total cell population. AEC1s closely interact with the alveolar capillary system and are the primary site for gas exchange and the regulation of fluid homoeostasis.

Fibroblasts

Connective tissue cells of mesenchymal origin located in the lungs beneath epithelial cells or scattered throughout the interstitium between the epithelial and endothelial layers. They secrete extracellular matrix (ECM) proteins, especially fibrillar collagens. Fibroblasts and the ECM form the structural framework of tissues in animals and have a crucial role in tissue physiology and repair.

Epithelial–mesenchymal transition

(EMT). The biological process that allows differentiated epithelial cells to assume a mesenchymal phenotype, which includes enhanced migratory capacity and increased production of extracellular matrix components. This process has been associated with tissue repair, fibrosis and metastasis.

Alveolar epithelial type 2 cells

(AEC2s). Cuboidal cells scattered within the alveolar walls that synthesize and secrete the surfactant that regulates alveolar surface tension. AEC2s also regulate fluid balance, coagulation and fibrinolysis, and the immune response and host defence. AEC2s proliferate and differentiate into AEC1s, functioning as self-renewing cells and precursors of AEC1s, thus contributing to epithelial repair.

Mucin

Member of a family of gel- forming glycoproteins characterized by the presence of tandem repeat domains. Mucins are produced by epithelial cells and classified as membrane- bound or secreted. Mucins are the main component of mucus.

Conducting airways

The airways of the lung provide a pathway for bringing air to the gas exchange surfaces of the lung, but do not exchange gas. Mucins and host-defence molecules are secreted by submucosal glands into the periciliary fluids of the conducting airways, so they are important for defence against pathogens.

Alveoli

These structures are the ultimate unit of respiratory gas exchange and consist of a specialized epithelium surrounded by a rich network of pulmonary capillaries, embedded in a delicate meshwork of connective tissue.

Desmosomes

Intercellular tight junctions that provide a connection between intermediate filaments of the cytoskeletons of adjacent cells. These structures give strength to epithelial cells and contribute to resistance against shearing forces.

Myofibroblast

A cell type resulting from the differentiation of fibroblasts (and other mesenchymal cells) following injury, cellular distress or inflammation. Myofibroblasts are crucial for normal tissue wound repair but, under persistent or repeated insult, drive the accumulation of extracellular matrix and the disruption of the basement membrane, thus contributing to aberrant remodelling. In this context, myofibroblasts are key effector cells in fibrotic diseases.

Fibrocytes

Bone marrow-derived circulating cells that express both fibroblasts and leukocyte markers and produce components of the extracellular matrix.

Bleomycin-induced lung injury

Bleomycin is an anti-cancer therapy, the main complication of which is pulmonary fibrosis, and so bleomycin is widely used in experimental animal models of lung fibrosis as an intratracheal instillation or systemic injection. In mice, severe inflammation in days 0–7 is followed by a progressive accumulation of collagen between days 14 and 21 after treatment.

Dyskeratosis congenita

(DKC). A disorder caused by mutations in the TERT, TERC, DKC1 or TINF2 genes, which are crucial for maintaining the structure and function of telomerase. The main clinical features vary widely, but include nail dystrophy, skin hyperpigmentation and oral leukoplakia. Patients with DKC have an increased risk of developing aplastic anaemia, cancer such as leukaemia and pulmonary fibrosis.

Ink-Attac mouse

Transgenic mouse model that removes p16Ink4a-positive senescent cells upon the administration of the synthetic drug AP20187. Mice express a FK506–caspase 8 membrane-bound fusion protein, which is dimerized and activated by AP20187 binding, and is expressed under the control of the p16INK4a promoter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, A., Rojas, M., Pardo, A. et al. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 16, 755–772 (2017). https://doi.org/10.1038/nrd.2017.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.170

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research