Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tau-based therapies in neurodegeneration: opportunities and challenges

Key Points

  • Aggregates of the microtubule-associated protein tau are a defining feature of a group of neurodegenerative disorders collectively known as tauopathies and are a hallmark lesion of Alzheimer disease.

  • Tau exists as six major isoforms in the adult human brain and is subject to massive post-translational modifications, including phosphorylation, acetylation, ubiquitylation and truncation.

  • The advent of novel biomarkers such as PET tracers and the lower regulatory hurdles for treating rare forms of tauopathy, such as progressive supranuclear palsy, have facilitated clinical trials targeting tauopathies.

  • Drug development has also been facilitated by transgenic animal models and by better insights into the physiological and pathological roles of tau and its different isoforms.

  • An interesting new thread has been added to the field with the hypothesis that tau pathology propagates extracellularly.

  • Some challenges faced in the treatment of tauopathies are specific to tau, whereas others, such as the presence of the blood–brain barrier, represent a general challenge in the treatment of diseases of the brain.

  • Clinical trials targeting tau have included more than a dozen diverse (and not yet exhausted) strategies in recent years.

Abstract

Aggregates of the microtubule-associated protein tau are a defining feature of several neurodegenerative diseases that are collectively known as tauopathies, and constitute one of the hallmark lesions of Alzheimer disease (AD). Given the lack of efficacy to date of amyloid-β-targeted therapies for AD, interest is growing in tau as a potential alternative target. Several drug candidates, which are now in clinical trials, aim to reduce tau levels or to prevent the aggregation or pathological post-translation modifications of this protein. In this Review, we discuss preclinical and clinical studies in light of an increased understanding of the physiological and pathological roles of tau, advances in animal models of tauopathy, the identification of novel targets and the availability of novel tracers to track tau.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tau biology: genomic organization and isoform expression.
Figure 2: Sites of tau post-translational modifications.
Figure 3: Types of tau post-translational modifications and therapeutic targeting.
Figure 4: Tau pathomechanisms and direct therapeutic targeting.
Figure 5: Tau pathomechanisms and indirect therapeutic targeting.

Similar content being viewed by others

References

  1. Brier, M. R. et al. Tau and Abeta imaging, CSF measures, and cognition in Alzheimer's disease. Sci. Transl Med. 8, 338ra366 (2016).

    Article  CAS  Google Scholar 

  2. Ikonomovic, M. D. et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190, 192–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, Y. et al. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biol. 13, 605–612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016). This study established a miniaturized bioreactor for human iPS cell-derived 3D forebrain organoid cultures that recapitulates key features of human cortical development, enabling both a quantitative analysis for modelling human brain development and therapeutic drug screening.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Arendt, T., Stieler, J. T. & Holzer, M. Tau and tauopathies. Brain Res. Bull. 126, 238–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Goedert, M. et al. PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. J. Cell Sci. 109, 2661–2672 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. McDermott, J. B., Aamodt, S. & Aamodt, E. Ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. Biochemistry 35, 9415–9423 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Chew, Y. L., Fan, X., Götz, J. & Nicholas, H. R. Protein with tau-like repeats regulates neuronal integrity and lifespan in C. elegans. J. Cell Sci. 126, 2079–2091 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Zempel, H., Thies, E., Mandelkow, E. & Mandelkow, E. M. Aβ oligomers cause localized Ca2+ elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J. Neurosci. 30, 11938–11950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sultan, A. et al. Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem. 286, 4566–4575 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Gunawardana, C. G. et al. The Human tau interactome: binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at position 301 (P301L) to chaperones and the proteasome. Mol. Cell Proteomics 14, 3000–3014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Multhaup, G., Huber, O., Buee, L. & Galas, M. C. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Aβ42, and tau in nuclear roles. J. Biol. Chem. 290, 23515–23522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gauthier-Kemper, A. et al. The frontotemporal dementia mutation R406W blocks tau's interaction with the membrane in an annexin A2-dependent manner. J. Cell Biol. 192, 647–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, G. et al. Phosphorylation of tau by fyn: implications for Alzheimer's disease. J. Neurosci. 24, 2304–2312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraha, A. et al. C-Terminal inhibition of tau assembly in vitro and in Alzheimer's disease. J. Cell Sci. 113, 3737–3745 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Flores-Rodriguez, P. et al. The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer's disease. Front. Neurosci. 9, 33 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Khurana, V. et al. Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. PLoS Genet. 6, e1001026 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu, C., Song, X., Nisbet, R. & Götz, J. Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions, and highlights a putative role for 2N tau in disease. J. Biol. Chem. 291, 161–174 (2016).

    Google Scholar 

  21. Regan, P. et al. Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J. Neurosci. 35, 4804–4812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frandemiche, M. L. et al. Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-β oligomers. J. Neurosci. 34, 6084–6097 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mandell, J. W. & Banker, G. A. A spatial gradient of tau protein phosphorylation in nascent axons. J. Neurosci. 16, 5727–5740 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris, M. et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci. 18, 1183–1189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kopke, E. et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem. 268, 24374–24384 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, F., David, D., Ferrari, A. & Götz, J. Posttranslational modifications of tau — role in human tauopathies and modeling in transgenic animals. Curr. Drug Targets 5, 503–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Elbaum-Garfinkle, S. & Rhoades, E. Identification of an aggregation-prone structure of tau. J. Am. Chem. Soc. 134, 16607–16613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. et al. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J. 30, 4825–4837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braak, E., Braak, H. & Mandelkow, E. M. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. 87, 554–567 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C. X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22, 1942–1950 (2005).

    Article  PubMed  Google Scholar 

  33. Steinhilb, M. L., Dias-Santagata, D., Fulga, T. A., Felch, D. L. & Feany, M. B. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol. Biol. Cell 18, 5060–5068 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Irwin, D. J. et al. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies. Brain 135, 807–818 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011).

    Article  PubMed  Google Scholar 

  36. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015). This paper demonstrates that tau acetylation at a single site identified in the AD brain induces tauopathy and cognitive deficits in vivo , highlighting a role for acetylation in tauopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomas, S. N. et al. Dual modification of Alzheimer's disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol. 123, 105–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Wei, Y. et al. Ribosylation triggering Alzheimer's disease-like tau hyperphosphorylation via activation of CaMKII. Aging Cell 14, 754–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reyes, J. F., Fu, Y., Vana, L., Kanaan, N. M. & Binder, L. I. Tyrosine nitration within the proline-rich region of tau in Alzheimer's disease. Am. J. Pathol. 178, 2275–2285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nat. Med. 20, 1254–1262 (2014). This study identified asparagine endopeptidase-mediated tau truncation as a crucial event in tau-mediated neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chare, L. et al. New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J. Neurol. Neurosurg. Psychiatry 85, 865–870 (2014).

    Article  PubMed  Google Scholar 

  43. Taniguchi-Watanabe, S. et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 131, 267–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Ittner, L. M. et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc. Natl Acad. Sci. USA 105, 15997–16002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ittner, L. M., Ke, Y. D. & Götz, J. Phosphorylated tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J. Biol. Chem. 284, 20909–20916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerson, J. E., Castillo-Carranza, D. L. & Kayed, R. Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. ACS Chem. Neurosci. 5, 752–769 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Soeda, Y. et al. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat. Commun. 6, 10216 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Song, L. et al. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology. Mol. Neurodegener. 10, 14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rocher, A. B. et al. Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp. Neurol. 223, 385–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Santacruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005). An inducible mouse model of tauopathy demonstrating that NFTs are not sufficient to cause cognitive decline or neuronal death in tauopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuchibhotla, K. V. et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo . Proc. Natl Acad. Sci. USA 111, 510–514 (2014).

    Article  CAS  Google Scholar 

  52. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mairet-Coello, G. et al. The CAMKK2–AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through tau phosphorylation. Neuron 78, 94–108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007). This paper established in vivo that tau reduction protects against amyloid toxicity and excitotoxicity.

    Article  CAS  PubMed  Google Scholar 

  55. Ittner, L. M. & Götz, J. Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease. Nat. Rev. Neurosci. 12, 65–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Warmus, B. A. et al. Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia. J. Neurosci. 34, 16482–16495 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Guo, J. L. et al. The dynamics and turnover of tau aggregates in cultured cells: insights into therapies for tauopathies. J. Biol. Chem. 291, 13175–13193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pavlova, A. et al. Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau. Proc. Natl Acad. Sci. USA 113, E127–E136 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Usenovic, M. et al. Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J. Neurosci. 35, 14234–14250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jo, C. et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496 (2014). This study discloses a role for autophagy-mediated tau degradation in AD.

    Article  PubMed  CAS  Google Scholar 

  61. Stack, C. et al. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum. Mol. Genet. 23, 3716–3732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hochgrafe, K. et al. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human tau. Acta Neuropathol. Commun. 3, 25 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rhein, V. et al. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc. Natl Acad. Sci. USA 106, 20057–20062 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duboff, B., Götz, J. & Feany, M. B. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75, 618–632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Manczak, M. & Reddy, P. H. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. Hum. Mol. Genet. 21, 5131–5146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Corsetti, V. et al. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum. Mol. Genet. 24, 3058–3081 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Hu, Y. et al. Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. Oncotarget 7, 17356–17368 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014). This study in D. melanogaster establishes that epigenetic changes in AD are linked to tau-induced heterochromatin loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andorfer, C. et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci. 25, 5446–5454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoozemans, J. J. et al. The unfolded protein response affects neuronal cell cycle protein expression: implications for Alzheimer's disease pathogenesis. Exp. Gerontol. 41, 380–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Yamashima, T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis' — a perspective review. Prog. Neurobiol. 105, 1–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Maphis, N. et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138, 1738–1755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wes, P. D., Sayed, F. A., Bard, F. & Gan, L. Targeting microglia for the treatment of Alzheimer's disease. Glia 64, 1710–1732 (2016).

    Article  PubMed  Google Scholar 

  74. Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Clavaguera, F., Hench, J., Goedert, M. & Tolnay, M. Invited review: prion-like transmission and spreading of tau pathology. Neuropathol. Appl. Neurobiol. 41, 47–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Medina, M. & Avila, J. The role of extracellular tau in the spreading of neurofibrillary pathology. Front. Cell Neurosci. 8, 113 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73, 685–697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013). This paper suggests the spreading of tauopathy in a prion-like manner. It further models strain-specific effects of the respective hallmark lesions of different tauopathies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahmed, Z. et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Polanco, J. C., Scicluna, B. J., Hill, A. F. & Götz, J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J. Biol. Chem. 291, 12445–12466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wegmann, S. et al. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J. 34, 3028–3041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schirmer, R. H., Adler, H., Pickhardt, M. & Mandelkow, E. “Lest we forget you — methylene blue...”. Neurobiol. Aging 32, 2325.e7–2325.e16 (2011).

    Article  CAS  Google Scholar 

  85. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M. & Harrington, C. R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA 93, 11213–11218 (1996). An early in vitro study highlighting the potential of tau aggregation inhibitors in preventing the progression of tauopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Bebber, F., Paquet, D., Hruscha, A., Schmid, B. & Haass, C. Methylene blue fails to inhibit tau and polyglutamine protein-dependent toxicity in zebrafish. Neurobiol. Dis. 39, 265–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Congdon, E. E. et al. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8, 609–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fatouros, C. et al. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 21, 3587–3603 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Baddeley, T. C. et al. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer's disease. J. Pharmacol. Exp. Ther. 352, 110–118 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Clifton 2nd, J. & Leikin, J. B. Methylene blue. Am. J. Ther. 10, 289–291 (2003).

    Article  PubMed  Google Scholar 

  91. Mohideen, S. S., Yamasaki, Y., Omata, Y., Tsuda, L. & Yoshiike, Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Sci. Rep. 5, 10821 (2015).

    Article  CAS  Google Scholar 

  92. Wagner, J. et al. Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathol. 130, 619–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wischik, C. M. et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer's disease. J. Alzheimers Dis. 44, 705–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Gauthier, S. et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388, 2873–2884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, Q. L. et al. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J. Neurosci. 34, 7124–7136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van Hummel, A. et al. No overt deficits in aged tau-deficient C57Bl/6. Mapttm1(EGFP)Kit GFP knockin mice. PLoS ONE 11, e0163236 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gheyara, A. L. et al. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann. Neurol. 76, 443–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu, H. et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr. Gene Ther. 14, 343–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. DeVos, S. L. et al. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33, 12887–12897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Smith, P. Y. et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum. Mol. Genet. 24, 6721–6735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lasagna-Reeves, C. A. et al. Reduction of Nuak1 decreases tau and reverses phenotypes in a tauopathy mouse model. Neuron 92, 407–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Pedersen, J. T. & Sigurdsson, E. M. Tau immunotherapy for Alzheimer's disease. Trends Mol. Med. 21, 394–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Rosenmann, H. et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol. 63, 1459–1467 (2006).

    Article  PubMed  Google Scholar 

  106. Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007). A study establishing an immunization that targets a pathological tau epitope to ameliorate tauopathy and cognitive decline in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boimel, M. et al. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp. Neurol. 224, 472–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30, 16559–16566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bi, M., Ittner, A., Ke, Y. D., Götz, J. & Ittner, L. M. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE 6, e26860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Troquier, L. et al. Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr. Alzheimer Res. 9, 397–405 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rozenstein-Tsalkovich, L. et al. Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp. Neurol. 248, 451–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Novak, P. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 16, 123–134 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem. 118, 658–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chai, X. et al. Passive immunization with anti-tau antibodies in two transgenic models: Reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gu, J., Congdon, E. E. & Sigurdsson, E. M. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J. Biol. Chem. 288, 33081–33095 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Collin, L. et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer's disease. Brain 137, 2834–2846 (2014).

    Article  PubMed  Google Scholar 

  117. Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015). A proof-of-principle study targeting cis phospho-tau and identifying an antibody for therapeutic intervention.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Congdon, E. E., Gu, J., Sait, H. B. & Sigurdsson, E. M. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J. Biol. Chem. 288, 35452–35465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yanamandra, K. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80, 402–414 (2013). Immunotherapy strategy specifically targeting the seeding activity of tau aggregates shows efficacy in blocking the progression of tauopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Funk, K. E., Mirbaha, H., Jiang, H., Holtzman, D. M. & Diamond, M. I. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J. Biol. Chem. 290, 21652–21662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Congdon, E. E. et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol. Neurodegener. 11, 62 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhang, B. et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl Acad. Sci. USA 102, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Ising, C. et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J. Exp. Med. 214, 1227–1238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nisbet, R. M. et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140, 1220–1230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hromadkova, L. et al. Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product. J. Neuroimmunol. 289, 121–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Counts, S. E., Perez, S. E., He, B. & Mufson, E. J. Intravenous immunoglobulin reduces tau pathology and preserves neuroplastic gene expression in the 3xTg mouse model of Alzheimer's disease. Curr. Alzheimer Res. 11, 655–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Esteves-Villanueva, J. O., Trzeciakiewicz, H., Loeffler, D. A. & Martic, S. Effects of tau domain-specific antibodies and intravenous immunoglobulin on tau aggregation and aggregate degradation. Biochemistry 54, 293–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Le Corre, S. et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc. Natl Acad. Sci. USA 103, 9673–9678 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tran, H. T., Sanchez, L. & Brody, D. L. Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J. Neuropathol. Exp. Neurol. 71, 116–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Ittner, A. et al. Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice. Science 354, 904–908 (2016). This study challenges the oversimplification of a generally disease-promoting effect of tau phosphorylation.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, X. et al. Diaminothiazoles modify tau phosphorylation and improve the tauopathy in mouse models. J. Biol. Chem. 288, 22042–22056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, L. et al. Ginsenoside Rd attenuates β-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3β and protein phosphatase 2A. Neurobiol. Dis. 54, 320–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Cisse, M. et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52 (2011). This paper identified a loss of function of EphB2 in mediating AD-related neuronal dysfunction.

    Article  CAS  PubMed  Google Scholar 

  134. Jiang, J. et al. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β. Sci. Rep. 5, 11765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Myeku, N. et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP–PKA signaling. Nat. Med. 22, 46–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Martinez, A., Gil, C. & Perez, D. I. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer's disease treatment. Int. J. Alzheimers Dis. 2011, 280502 (2011).

    PubMed  PubMed Central  Google Scholar 

  137. Dominguez, J. M. et al. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 287, 893–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Lovestone, S. et al. A phase II trial of tideglusib in Alzheimer's disease. J. Alzheimers Dis. 45, 75–88 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 29, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Mullard, A. Pharma pumps up anti-tau Alzheimer pipeline despite first phase III failure. Nat. Rev. Drug Discov. 15, 591–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Lahmy, V. et al. Blockade of tau hyperphosphorylation and Aβ1–42 generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ1 receptor agonist, in a nontransgenic mouse model of Alzheimer's disease. Neuropsychopharmacology 38, 1706–1723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kaufman, A. C. et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann. Neurol. 77, 953–971 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gentry, E. G. et al. Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration. J. Neurosci. 36, 1316–1323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Katz, J. D. et al. Structure guided design of a series of selective pyrrolopyrimidinone MARK inhibitors. Bioorg. Med. Chem. Lett. 27, 114–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Vogelsberg-Ragaglia, V., Schuck, T., Trojanowski, J. Q. & Lee, V. M. PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp. Neurol. 168, 402–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, S. J. et al. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 139, 1919–1938 (2016).

    Article  PubMed  Google Scholar 

  148. Shultz, S. R. et al. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138, 1297–1313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Min, S. W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tracy, T. E. et al. Acetylated Tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron 90, 245–260 (2016). A study describing the disruption of synaptic transmission by acetylated tau.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xiong, Y. et al. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc. Natl Acad. Sci. USA 110, 4604–4609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cole, G. M. et al. Prevention of Alzheimer's disease: omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging 26 (Suppl. 1), 133–136 (2005).

    Article  PubMed  CAS  Google Scholar 

  154. Miyasaka, T. et al. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol. Aging 39, 69–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Giannopoulos, P. F. et al. Pharmacologic inhibition of 5-lipoxygenase improves memory, rescues synaptic dysfunction, and ameliorates tau pathology in a transgenic model of tauopathy. Biol. Psychiatry 78, 693–701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chu, J. et al. Pharmacologic blockade of 12/15-lipoxygenase ameliorates memory deficits, Aβ and tau neuropathology in the triple-transgenic mice. Mol. Psychiatry 20, 1329–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Ringman, J. M. et al. Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther. 4, 43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Galasko, D. R. et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 69, 836–841 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schaeffer, V. et al. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135, 2169–2177 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ozcelik, S. et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS ONE 8, e62459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Frederick, C. et al. Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice. J. Alzheimers Dis. 44, 1145–1156 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Noack, M. & Richter-Landsberg, C. Activation of autophagy by rapamycin does not protect oligodendrocytes against protein aggregate formation and cell death induced by proteasomal inhibition. J. Mol. Neurosci. 55, 99–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Kim, S. et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci. Rep. 6, 24933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lei, Z., Brizzee, C. & Johnson, G. V. BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiol. Aging 36, 241–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Drubin, D. G. & Kirschner, M. W. Tau protein function in living cells. J. Cell Biol. 103, 2739–2746 (1986).

    Article  CAS  PubMed  Google Scholar 

  166. Lovestone, S., Hartley, C. L., Pearce, J. & Anderton, B. H. Phosphorylation of tau by glycogen synthase kinase-3β in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73, 1145–1157 (1996).

    Article  CAS  PubMed  Google Scholar 

  167. Brunden, K. R. et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J. Neurosci. 30, 13861–13866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gozes, I. Microtubules (tau) as an emerging therapeutic target: NAP (davunetide). Curr. Pharm. Des. 17, 3413–3417 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Quraishe, S., Cowan, C. M. & Mudher, A. NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Mol. Psychiatry 18, 834–842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Morimoto, B. H. et al. A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr. Cogn. Disord. 35, 325–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rao, M. V. et al. Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J. Neurosci. 34, 9222–9234 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Medeiros, R. et al. Calpain inhibitor A-705253 mitigates Alzheimer's disease-like pathology and cognitive decline in aged 3xTgAD mice. Am. J. Pathol. 181, 616–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Rockenstein, E. et al. Neuroprotective effects of cerebrolysin in triple repeat Tau transgenic model of Pick's disease and fronto-temporal tauopathies. BMC Neurosci. 16, 85 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Wu, Y. et al. Intraperitoneal administration of a novel TAT-BDNF peptide ameliorates cognitive impairments via modulating multiple pathways in two Alzheimer's rodent models. Sci. Rep. 5, 15032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Banzhaf-Strathmann, J. et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. EMBO J. 33, 1667–1680 (2014). This study demonstrated that an AD-associated miRNA contributes to tauopathy and memory impairment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Santa-Maria, I. et al. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J. Clin. Invest. 125, 681–686 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zumkehr, J. et al. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol. Aging 36, 2260–2271 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Barini, E. et al. Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy. Mol. Neurodegener. 11, 16 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Ke, Y. D., Delerue, F., Gladbach, A., Götz, J. & Ittner, L. M. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS ONE 4, e7917 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Leinenga, G., Langton, C., Nisbet, R. & Götz, J. Ultrasound treatment of neurological diseases - current and emerging applications. Nat. Rev. Neurol. 12, 161–174 (2016).

    Article  PubMed  Google Scholar 

  182. Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood–brain barrier in nonhuman primates. Sci. Transl Med. 6, 261ra154 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Leinenga, G. & Götz, J. Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model. Sci. Transl Med. 7, 278ra233 (2015).

    Article  CAS  Google Scholar 

  184. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Halliday, M. R. et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J. Cereb. Blood Flow Metab. 36, 216–227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bien-Ly, N. et al. Lack of widespread BBB disruption in Alzheimer's disease models: focus on therapeutic antibodies. Neuron 88, 289–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Yamin, G. & Teplow, D. B. Pittsburgh Compound-B (PiB) binds amyloid β-protein protofibrils. J. Neurochem. 140, 210–215 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Mattsson, N. et al. Revolutionizing Alzheimer's disease and clinical trials through biomarkers. Alzheimers Dement. 1, 412–419 (2015).

    Google Scholar 

  189. Harada, R. et al. Characteristics of tau and its ligands in PET imaging. Biomolecules 6, 7 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Scholl, M. et al. PET imaging of tau deposition in the aging human brain. Neuron 89, 971–982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schwarz, A. J. et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139, 1539–1550 (2016).

    Article  PubMed  Google Scholar 

  192. Xia, C. et al. Association of in vivo18FAV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol. 74, 427–436 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain 139, 1551–1567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lleo, A. et al. Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases. Nat. Rev. Neurol. 11, 41–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Vos, S. J. et al. Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology 80, 1124–1132 (2013).

    Article  PubMed  Google Scholar 

  196. Kuiperij, H. B. et al. Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes: a pilot study. J. Alzheimers Dis. 55, 585–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Pandey, S. et al. A prospective pilot study on serum cleaved tau protein as a neurological marker in severe traumatic brain injury. Br. J. Neurosurg. 1, 1–8 (2017).

    Google Scholar 

  198. Wang, S. X. et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens. Bioelectron. 92, 482–488 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Yanamandra, K. et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci. Transl Med. 9, eaal2029 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hampel, H. et al. Precision medicine — the golden gate for detection, treatment and prevention of Alzheimer's disease. J. Prev. Alzheimers Dis. 3, 243–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Lawler, M. & Sullivan, R. Personalised and precision medicine in cancer clinical trials: panacea for progress or Pandora's Box? Public Health Genomics 18, 329–337 (2015).

    Article  PubMed  Google Scholar 

  202. Bateman, R. J. et al. The DIAN-TU Next Generation Alzheimer's prevention trial: adaptive design and disease progression model. Alzheimers Dement. 13, 8–19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Hendrix, J. A. et al. Challenges, solutions, and recommendations for Alzheimer's disease combination therapy. Alzheimers Dement. 12, 623–630 (2016).

    Article  PubMed  Google Scholar 

  204. Götz, J. & Ittner, L. M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Jadhav, S. et al. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front. Cell Neurosci. 9, 24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. van Groen, T. et al. Age-related brain pathology in Octodon degu: blood vessel, white matter and Alzheimer-like pathology. Neurobiol. Aging 32, 1651–1661 (2011).

    Article  PubMed  Google Scholar 

  207. Orr, M. E., Garbarino, V. R., Salinas, A. & Buffenstein, R. Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent. Neurobiol. Aging 36, 1496–1504 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Jackson, S. J. et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 51, 160–169 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Xia, D., Gutmann, J. M. & Götz, J. Mobility and subcellular localization of endogenous, gene-edited tau differs from that of over-expressed human wild-type and P301L mutant tau. Sci. Rep. 6, 29074 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Saito, T., Matsuba, Y., Yamazaki, N., Hashimoto, S. & Saido, T. C. Calpain activation in Alzheimer's model mice is an artifact of APP and presenilin overexpression. J. Neurosci. 36, 9933–9936 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Scudellari, M. How iPS cells changed the world. Nature 534, 310–312 (2016).

    Article  PubMed  Google Scholar 

  212. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016). The gene-editing tool CRISPR–Cas9 was applied to human iPS cells by introducing AD-causing mutations with high efficiency to recapitulate diseased-associated phenotypes.

    Article  CAS  PubMed  Google Scholar 

  213. Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Furman, J. L. et al. Widespread tau seeding activity at early Braak stages. Acta Neuropathol. 133, 91–100 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Holmes, B. B. et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl Acad. Sci. USA 111, E4376–E4385 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ahn, M. et al. Brain aggregates: an effective in vitro cell culture system modeling neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 75, 256–262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Solomon, B., Koppel, R., Frankel, D. & Hanan-Aharon, E. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl Acad. Sci. USA 94, 4109–4112 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Pan, W., Solomon, B., Maness, L. M. & Kastin, A. J. Antibodies to β-amyloid decrease the blood-to-brain transfer of β-amyloid peptide. Exp. Biol. Med. 227, 609–615 (2002).

    Article  CAS  Google Scholar 

  221. Golde, T. E. Open questions for Alzheimer's disease immunotherapy. Alzheimers Res. Ther. 6, 3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  223. Hock, C. et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron 38, 547–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  224. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Hanenberg, M. et al. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J. Biol. Chem. 289, 27080–27089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  227. Mullard, A. Stem-cell discovery platforms yield first clinical candidates. Nat. Rev. Drug Discov. 14, 589–591 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Estate of Dr Clem Jones AO, the Government of Queensland (DSITI), the Australian Research Council (DP160103812) and the National Health and Medical Research Council of Australia (GNT1037746, GNT1127999). The authors thank R. Tweedale for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Götz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Anavex 2-73

PowerPoint slides

Glossary

Alternative splicing

A mechanism by which exons or portions of exons or non-coding regions within a pre-mRNA that is transcribed from a single gene are differentially joined or skipped, resulting in transcripts from which multiple protein isoforms are generated.

Haplotypes

Groups of alleles of different genes on a single chromosome that are linked closely enough to be inherited together; for example, the linked genes of the major histocompatibility complex.

Interactome

All the interactions between biological entities in cells and organisms considered as a whole.

Overexpression artefact

A phenotype seen in transgenic animal models that potentially results from the expression of the transgene at higher levels than the endogenous protein, owing to the choice of promoter for transgene expression, the chromosomal integration site of the transgene and the copy number.

Long-term depression

A cellular mechanism underlying learning and memory that involves an activity-dependent reduction in synaptic efficacy that lasts hours or longer following a long patterned stimulus.

Long-term potentiation

A cellular mechanism underlying learning and memory that involves a persistent increase in synaptic strength following high-frequency stimulation.

Braak staging

A system formulated by Braak and Braak for staging Alzheimer disease severity using a tau-specific antibody on brain sections, based on the premise that tau pathology spreads sequentially from the mesial temporal lobe (stages I and II), extending to the limbic regions (stages III and IV, when dementia manifests) and then the neocortex (stages V and VI).

Cis/trans-isomerase

A type of enzyme that catalyses the isomerization of geometric isomers, thereby affecting the activity of conformation-specific enzymes such as protein phosphatase 2A (PP2A).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Götz, J. Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 16, 863–883 (2017). https://doi.org/10.1038/nrd.2017.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing