Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Directing evolution: the next revolution in drug discovery?

Abstract

The strong biological rationale to pursue challenging drug targets such as protein–protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vision for harnessing evolutionary pressure in drug discovery.
Figure 2: Chemical structures of selected compounds produced by evolutionary approaches.
Figure 3: Display technologies.
Figure 4: Directed evolution using intracellular sensors.
Figure 5: Directed evolution using chemical approaches.
Figure 6: Lead discovery using a biosynthetic approach.
Figure 7: Phage-assisted continuous evolution.

Similar content being viewed by others

References

  1. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Disc. 9, 203–214 (2010).

    CAS  Google Scholar 

  2. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econom. 47, 20–33 (2016).

    Google Scholar 

  3. Gilliland, C. T. et al. Putting translational science on to a global stage. Nat. Rev. Drug Disc. 15, 217–218 (2016).

    CAS  Google Scholar 

  4. Vijayalakshmi, A. B., Sushrut, A. & O'Kennedy, R. Coming-of-age of antibodies in cancer therapeutics trends. Pharmacol. Sci. 37, 1009–1028 (2016).

    Google Scholar 

  5. Scott, D. E. Bayly, A. R., Abell, C., & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    CAS  PubMed  Google Scholar 

  6. Veomett, N., Dao, T. & Scheinberg, D. A. Therapeutic antibodies to intracellular targets in cancer therapy. Expert Opin. Biol. Ther. 13, 1485–1488 (2013).

    CAS  PubMed  Google Scholar 

  7. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen, J., Brenner, S. & Janda, K. D. Synthetic methods for the implementation of encoded combinatorial chemistry. J. Am. Chem. Soc. 115, 9812–9813 (1993).

    CAS  Google Scholar 

  9. Needels, M. C. et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl Acad. Sci. USA 90, 10700–10704 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franzini, R. M. & Randolph, C. Chemical space of DNA-encoded libraries. J. Med. Chem. 59, 6629–6644 (2016).

    CAS  PubMed  Google Scholar 

  11. Lavecchia, A. & Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 20, 2839–2860 (2013).

    CAS  PubMed  Google Scholar 

  12. Hu, Q. et al. Pfizer Global Virtual Library (PGVL): a chemistry design tool powered by experimentally validated parallel synthesis information. ACS Comb. Sci. 14, 579–589 (2012).

    CAS  PubMed  Google Scholar 

  13. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    CAS  PubMed  Google Scholar 

  14. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    CAS  PubMed  Google Scholar 

  15. Plowright, A. T. et al. Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. Drug Disc. Today 17, 56–62 (2012).

    CAS  Google Scholar 

  16. Stone, M. J. & Williams, D. H. On the evolution of functional secondary metabolites (natural products). Mol. Microbiol. 6, 29–34 (1992).

    CAS  PubMed  Google Scholar 

  17. Jensen, P. R. Natural products and the gene cluster revolution. Trends Microbiol. 24, 968–977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Messer, P. W., Ellner, S. P. & Hairston, N. G. Jr. Can population genetics adapt to rapid evolution? Trends Genet. 32, 408–418 (2016).

    CAS  PubMed  Google Scholar 

  19. Toprak, E. et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 44, 101–105 (2012).

    CAS  Google Scholar 

  20. Lamikanra, A. et al. Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use. BMC Infect. Dis. 11, 312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Enright, C. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl Acad. Sci. USA 99, 7687–7692 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seffernick, J. L. & Wackett, L. P. Rapid evolution of bacterial catabolic enzymes: a case study with atrazine chlorohydrolase. Biochemistry 40, 12747–12753 (2001).

    CAS  PubMed  Google Scholar 

  23. Gartner, Z. J. Evolutionary approaches for the discovery of functional synthetic small molecules. Pure Appl. Chem. 78, 1–14 (2006).

    CAS  Google Scholar 

  24. Bradbury, A. R. M., Sidhu, Duebel, S. S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nat. Biotechnol. 29, 245–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Galan, A. et al. Library-based display technologies: where do we stand? Mol. BioSyst. 12, 2342–2358 (2016).

    CAS  PubMed  Google Scholar 

  26. Tee, K. L. & Wong, T. S. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 1707–1721 (2013).

    CAS  PubMed  Google Scholar 

  27. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    CAS  PubMed  Google Scholar 

  28. Li, L., Jiang, W. & Lu, Y. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol. Adv. http://dx.doi.org/10.1016/j.biotechadv.2017.03.007 (2017).

  29. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruffner, D. E., Schmidt, E. W. & Heemstra, J. R. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth. Biol. 4, 482–492 (2015).

    CAS  PubMed  Google Scholar 

  31. Yim, G., Wang, W., Thaker, M. N., Tan, S. & Wright, G. D. How to make a glycopeptide: a synthetic biology approach to expand antibiotic chemical diversity. ACS Infect. Dis. 2, 642–650 (2016).

    CAS  PubMed  Google Scholar 

  32. Smanski, M. J. et al. Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol. 14, 135–149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. King, J. R., Edgar, S., Qiao, K. & Stephanopoulos G. Accessing Nature's diversity through metabolic engineering and synthetic biology. F1000Res. 5, 397 (2016).

    Google Scholar 

  34. Medema, M. H., Cimermancic P., Fischbach, M. A., Sali A. & Takano E. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput. Biol. 10, e1004016 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Quick, L. Y. et al. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 31, 13–21 (2015).

    Google Scholar 

  36. Cress, B. F. et al. CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. ACS Synth. Biol. 4, 987–1000 (2015).

    CAS  PubMed  Google Scholar 

  37. Weber, T. et al. antiSMASH 3.0 — a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cobb, R. E., Ning, J. C. & Zhao, H. DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J. Ind. Microbiol. Biotechnol. 41, 469–477 (2014).

    CAS  PubMed  Google Scholar 

  39. Vila-Farres, X. et al. Antimicrobials inspired by nonribosomal peptide synthetase gene clusters. J. Am. Chem. Soc. 139, 1404–1407 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gordon, L. J. et al. Direct measurement of intracellular compound concentration by RapidFire mass spectrometry offers insight into cell permeability. Biomol. Screen. 21, 156–164 (2016).

    CAS  Google Scholar 

  41. Murai, R., Nogi, T., Tateoka K. & Sato A. Affinity selection of peptide binders with magnetic beads via organic phase separation (MOPS). Biol. Pharm. Bull. 38, 1822–1826 (2015).

    CAS  PubMed  Google Scholar 

  42. Weiss, M. S., Pavlidis, I. V., Vickers, C., Hoehne, M. & Bornscheuer, U. T. Glycine oxidase based high-throughput solid-phase assay for substrate profiling and directed evolution of (R)- and (S)-selective amine transaminases. Anal. Chem. 86, 11847–11853 (2014).

    CAS  PubMed  Google Scholar 

  43. Howell, S. M. et al. Serum stable natural peptides designed by mRNA display. Sci. Rep. 4, 6008 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fiacco, S. V. et al. Directed evolution of scanning unnatural-protease-resistant (SUPR) peptides for in vivo applications. ChemBioChem 17, 1643–1651 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371–381 (2016).

    CAS  PubMed  Google Scholar 

  46. Wermuth, C. G., Ganellin, C. R., Lindberg, P. & Mitscher, L. A. Glossary of terms used in medicinal chemistry (IUPAC recommendations 1998). Pure Appl. Chem. 70, 1129–1143 (1998).

    CAS  Google Scholar 

  47. Morimoto, J., Hayashi, Y. & Suga, H. Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2. Angew. Chem. Int. Ed. 51, 3423–3427 (2012).

    CAS  Google Scholar 

  48. Urech-Varenne, C., Radtke, F. & Heinis, C. Phage selection of bicyclic peptide ligands of the Notch1 receptor. ChemMedChem 10, 1754–1761 (2015).

    CAS  PubMed  Google Scholar 

  49. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

    CAS  PubMed  Google Scholar 

  50. Song, X., Lu, L., Passioura, T. & Suga, H. Macrocyclic peptides inhibitors for the protein–protein interaction of Zaire Ebola virus protein 24 and Karyopherin alpha 5. Org. Biomol. Chem. 15, 5155–5160 (2017).

    CAS  PubMed  Google Scholar 

  51. Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

    CAS  PubMed  Google Scholar 

  52. Li, S., Millward, S. & Roberts, R. In vitro selection of mRNA display libraries containing an unnatural amino acid. J. Am. Chem. Soc. 124, 9972–9973 (2002).

    CAS  PubMed  Google Scholar 

  53. Goto, Y. & Suga, H. in Ribozymes (ed. Hartig, J.), 465–478 (Springer, 2012).

    Google Scholar 

  54. Baeriswyl, V. et al. Bicyclic peptides with optimised ring size inhibit human plasma kallikrein and its orthologues while sparing paralogous proteases. ChemMedChem 7, 1173–1176 (2012).

    CAS  PubMed  Google Scholar 

  55. Chen, S., Morales-Sanfrutos, J., Angelini, A., Cutting, B. & Heinis, C. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides. ChemBioChem 13, 1032–1038 (2012).

    CAS  PubMed  Google Scholar 

  56. Angelini, A. et al. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem. Biol. 7, 817–821 (2012).

    CAS  PubMed  Google Scholar 

  57. Baeriswyl, V. et al. Development of a selective peptide macrocycle inhibitor of coagulation factor XII toward the generation of a safe antithrombotic therapy. J. Med. Chem. 56, 3742–3746 (2013).

    CAS  PubMed  Google Scholar 

  58. Diderich, P. & Heinis, C. Phage selection of bicyclic peptides binding Her2. Tetrahedron 70, 7733–7739 (2014).

    CAS  Google Scholar 

  59. Middendorp, S. J. et al. Peptide macrocycle inhibitor of coagulation factor XII with subnanomolar affinity and high target selectivity. J. Med. Chem. 60, 1151–1158 (2017).

    CAS  PubMed  Google Scholar 

  60. Wilbs, J., Middendorp, S. J. & Heinis, C. Improving the binding affinity of in-vitro-evolved cyclic peptides by inserting atoms into the macrocycle backbone. ChemBioChem 17, 2299–2303 (2016).

    CAS  PubMed  Google Scholar 

  61. Baeriswyl, V. & Heinis, C. Phage selection of cyclic peptide antagonists with increased stability toward intestinal proteases. Protein Eng. Des. Sel. 26, 81–89 (2013).

    CAS  PubMed  Google Scholar 

  62. Colas, P. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548–550 (1996).

    CAS  PubMed  Google Scholar 

  63. Hyland, S., Beerli, R. R., Barbas, C. F., Hynes, N. E. & Wels, W. Generation and functional characterization of intracellular antibodies interacting with the kinase domain of human EGF receptor. Oncogene 22, 1557–1567 (2003).

    CAS  PubMed  Google Scholar 

  64. Lofdahl, P.-A., Nord, O., Janzon, L. & Nygren, P. Selection of TNF-α binding affibody molecules using a β-lactamase protein fragment complementation assay. New Biotechnol. 26, 251–259 (2009).

    Google Scholar 

  65. Tavassoli, A. & Benkovic, S. J. Genetically selected cyclic-peptide inhibitors of AICAR transformylase homodimerization. Angew. Chem. Int. Ed. 44, 2760–2763 (2005).

    CAS  Google Scholar 

  66. Lennard, K. R. & Tavassoli, A. Peptides come round: using SICLOPPS libraries for early stage drug discovery. Chemistry 20, 10608–10614 (2014).

    CAS  PubMed  Google Scholar 

  67. Horswill, A. R., Savinov, S. N. & Benkovic, S. J. A systematic method for identifying small-molecule modulators of protein–protein interactions. Proc. Natl Acad. Sci. USA 101, 15591–15596 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Birts, C. N. et al. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem. Sci. 4, 3046–3057 (2013).

    CAS  PubMed  Google Scholar 

  69. Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135, 10418–10425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Escuin, D., Simons, J. W. & Giannakakou, P. Exploitation of the HIF axis for cancer therapy. Cancer Biol. Ther. 3, 608–611 (2004).

    CAS  PubMed  Google Scholar 

  71. Young, T. S. et al. Evolution of cyclic peptide protease inhibitors. Proc. Natl Acad. Sci. USA 108, 11052–11056 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, R. & Leung, I. K. H. Protein-directed dynamic combinatorial chemistry: a guide to protein ligand and inhibitor discovery. Molecules 21, E910 (2016).

    PubMed  Google Scholar 

  74. Rosen, C. B., Tørring, T. & Gothelf, K. V. in Nucleic Acid Nanotechnology (eds Kjems, J. et al.), 173–197 (Springer, 2014).

    Google Scholar 

  75. Mondal, M. & Hirsch, A. K. H. Dynamic combinatorial chemistry: a tool to facilitate the identification of inhibitors for protein targets. Chem. Soc. Rev. 44, 2455–2488 (2015).

    CAS  PubMed  Google Scholar 

  76. Masek, B. B. et al. Multistep reaction based de novo drug design: generating synthetically feasible design ideas. J. Chem. Inf. Model. 56, 605–620 (2016).

    CAS  PubMed  Google Scholar 

  77. Chen, C., Ahlberg Randall, L. A., Miller, R. B., Jones, A. D. & Kurth, M. J. “Analogous” organic synthesis of small-compound libraries: validation of combinatorial chemistry in small-molecule synthesis. J. Am. Chem. Soc. 116, 2661–2662 (1994).

    CAS  Google Scholar 

  78. Krusemark, C. J., Tilmans, N. P., Brown P. O. & Harbury P. B. Directed chemical evolution with an outsized genetic code. PloS ONE 11, e0154765 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Karageorgis, G., Warriner, S. & Nelson, A. Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nat. Chem. 6, 872–876 (2014).

    CAS  PubMed  Google Scholar 

  80. Karageorgis, G., Dow, M., Aimon, A., Warriner, S. & Nelson, A. Activity-directed synthesis with intermolecular reactions: development of a fragment into a range of androgen receptor agonists. Angew. Chem. Int. Ed. 54, 13538–13544 (2015).

    CAS  Google Scholar 

  81. Davis, A. M. & Edge, C. M. in Comprehensive Medicinal Chemistry III (eds Chackalamannil, S. et al.), 15–22 (Elsevier, 2017).

    Google Scholar 

  82. Schneider, P. & Schneider, G. De novo design at the edge of chaos. J. Med. Chem. 59, 4077–4086 (2016).

    CAS  PubMed  Google Scholar 

  83. Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).

    CAS  PubMed  Google Scholar 

  84. Le, T. C. & Winkler, D. A. A bright future for evolutionary methods in drug design. ChemMedChem 10, 1296–1300 (2015).

    CAS  PubMed  Google Scholar 

  85. Reker, D. & Schneider, G. Active-learning strategies in computer-assisted drug discovery. Drug Discov. Today 20, 458–465 (2015).

    PubMed  Google Scholar 

  86. Gawehn, E., Hiss, J. A. & Schneider, G. Deep learning in drug discovery. Mol. Informat. 35, 3–14 (2016).

    CAS  Google Scholar 

  87. Weissman, K. J. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat. Prod. Rep. 33, 203–230 (2016).

    CAS  PubMed  Google Scholar 

  88. Kim, E., Moore, B. S. & Yoon, Y. J. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat. Chem. Biol. 11, 649–659 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fischbach, M. A., Lai, J. R., Roche, E. D., Walsh, C. T. & Liu, D. R. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc. Natl Acad. Sci. USA 104, 11951–11956 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Evans, B. S., Chen, Y., Metcalf, W. W., Zhao, H. & Kelleher, N. L. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem. Biol. 18, 601–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Schallmey, M., Frunzke, J., Eggeling, L. & Marienhagen, J. Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr. Opin. Biotechnol. 26, 148–154 (2014).

    CAS  PubMed  Google Scholar 

  92. Raman, S., Rogers, J. K., Taylor, N. D. & Church, G. M. Evolution-guided optimization of biosynthetic pathways. Proc. Natl Acad. Sci. USA 111, 17803–17808 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Seth-Smith, H. M. et al. Cloning sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 68, 4764–4771 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54, 3351–3367 (2015).

    CAS  Google Scholar 

  95. Coelho, P. S., Brustad, E. M., Kannan A. & Arnold F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    CAS  PubMed  Google Scholar 

  96. McIntosh, J. A. et al. Amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013).

    CAS  Google Scholar 

  97. Lauchli, R. et al. High-throughput screening for terpene-synthase-cyclization activity and directed evolution of a terpene synthase. Angew. Chem. Int. Ed. 52, 5571–5574 (2013).

    CAS  Google Scholar 

  98. Maier, T. H. P. Semisynthetic production of unnatural l-α-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat. Biotechnol. 21, 422–427 (2003).

    CAS  PubMed  Google Scholar 

  99. Naesby, M. et al. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae. Microb. Cell Fact. 8, 45 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Klein, J. et al. Yeast synthetic biology platform generates novel chemical structures as scaffolds for drug discovery. ACS Synt. Biol. 3, 314–323 (2014).

    CAS  Google Scholar 

  101. Mills, D. R., Peterson, R. L. & Spiegelman, S. Extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl Acad. Sci. USA 58, 217–224 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Badran, A. H. & Liu, D. R. In vivo continuous directed evolution. Curr. Opin. Chem. Biol. 24, 1–10 (2015).

    CAS  PubMed  Google Scholar 

  103. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Leconte, A. M. et al. A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry 52, 1490–1499 (2013).

    CAS  PubMed  Google Scholar 

  105. Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13, 432–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dickinson, B. C., Packer, M. S., Badran, A. H. & Liu, D. R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    CAS  PubMed  Google Scholar 

  107. Hubbard, B. P. et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Methods 12, 939–942 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ousterout, D. G. & Gersbach, C. A. The development of TALE nucleases for biotechnology. Methods Mol. Biol. 1338, 27–42 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun. 7, 13051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kurosawa, K., Wewetzer, S. J. & Sinskey, A. J. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol. Biofuels 6, 134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chan, C. E. Z., Lim, A. P. C., MacAry, P. A. & Hanson, B. J. The role of phage display in therapeutic antibody discovery. Int. Immunol. 26, 649–657 (2014).

    CAS  PubMed  Google Scholar 

  113. Hoogenboom, H. R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116 (2005).

    CAS  PubMed  Google Scholar 

  114. Walsh, C. T. & Fischbach M. A. Natural products version 2.0: connecting genes to molecules. J. Am. Chem. Soc. 132, 2469–2493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Carbonell, P. et al. Bioinformatics for the synthetic biology of natural products: integrating across the design–build–test cycle. Nat. Prod. Rep. 33, 925–932 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Linshiz, G. et al. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. J. Biol. Eng. 10, 3 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    CAS  PubMed  Google Scholar 

  118. Colin, P.-Y., Zinchenko, A. & Hollfelder, F. Enzyme engineering in biomimetic compartments. Curr. Opin. Struct. Biol. 33, 42–51 (2015).

    CAS  PubMed  Google Scholar 

  119. Williams, D. H., Wain, J. R. & Woods, S. R. UK WO2016092304 (2015).

  120. Rees, S., Gribbon, P., Birmingham, K., Janzen, W. P. & Pairaudeau, G. Towards a hit for every target. Nat. Rev. Drug Discov. 15, 1–2 (2016).

    CAS  PubMed  Google Scholar 

  121. Jarasch, A. et al. Developability assessment during the selection of novel therapeutic antibodies. J. Pharm. Sci. 104, 1885–1898 (2015).

    CAS  PubMed  Google Scholar 

  122. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 56, 10294–10323 (2017).

    CAS  Google Scholar 

  123. Lynch, S. A. & Gallivan, J. P. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res. 37, 184–192 (2009).

    CAS  PubMed  Google Scholar 

  124. Yang, J. et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat. Commun. 4, 1413 (2013).

    PubMed  Google Scholar 

  125. Weigand, J. E. & Suess, B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res. 35, 4179–4185 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Farjami, E. et al. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. Anal. Chem. 85, 121–128 (2013).

    CAS  PubMed  Google Scholar 

  127. Majerfeld, I. & Yarus, M. A diminutive and specific RNA binding site for l-tryptophan. Nucleic Acids Res. 33, 5482–5493 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Binder, S. et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13, R40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Taylor, N. D. et al. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13, 177–183 (2016).

    CAS  PubMed  Google Scholar 

  130. DeLoache, W. C. et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11, 465–471 (2015).

    CAS  PubMed  Google Scholar 

  131. Webb, A. J. et al. A protease-based biosensor for the detection of schistosome cercaria. Sci. Rep. 6, 24725 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dautin, N. Karimova, G., Ullmann, A. & Ladant, D. Sensitive genetic screen for protease activity based on a cyclic AMP signaling cascade in Escherichia coli. J. Bacteriol. 182, 7060–7066 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Block, T. M. & Grafstrom, R. H. Novel bacteriological assay for detection of potential antiviral agents. Antimicrob. Agents Chemother. 34, 2337–2341 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Balint, R. F. & Plooy, I. Protease-dependent streptomycin sensitivity in E. coli—a system for protease inhibitor selection. Nat. Biotechnol. 507–510 (1995).

  135. Fields, S. & Song, O. K. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    CAS  PubMed  Google Scholar 

  136. Gunde, T., Tanner, S., Auf der Maur, A., Petrascheck, M. & Barberis, A. Quenching accumulation of toxic galactose-1-phosphate as a system to select disruption of protein–protein interactions in vivo. BioTechniques 37, 844–852 (2004).

    CAS  PubMed  Google Scholar 

  137. Takahashi, T. T., Austin, R. J. & Roberts, R. W. mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem. Sci. 28, 159–165 (2003).

    CAS  PubMed  Google Scholar 

  138. Fiacco, S. V., Hardy, A. N. & Takahashi, T. T. WO 2015175747 A1 (2015).

  139. Murakami, H., Kawakami, T., Reid, P. & Sasaki T. WO 2015019999 A1 (2014).

  140. Winter, G. & Heinis, C. US 8680022 B2 (2009).

  141. Tite, J. Walker, E., Stace, C. & Heinis C. US 20140249292 A1 (2012).

  142. Winter, G. P. et al. US 20120172235 A1 (2010).

  143. Harbury, P., Paidhungat, M., Patten, P. & Watts, R. E. US 20150344872 A1 (2015).

  144. Wang, Z. et al. WO 2013172954 A1 (2013).

  145. Hickey, J. L. et al. WO 2016079682 A1 (2015).

  146. Kakhlon, O. & Michaeli, A. WO 2017013660 A1 (2016).

  147. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  148. Heifets, A. S., Wallach, I. & Dzamba, M. US 9373059 B1 20160621 (2016).

Download references

Acknowledgements

The authors are grateful to M. Wigglesworth and R. Maciewicz for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Davis.

Ethics declarations

Competing interests

The authors are, or were, employees of AstraZeneca, a global, research-based biopharmaceutical company.

Related links

PowerPoint slides

Glossary

Chemical space

A multi-dimensional conceptual region defined by a set of descriptors. For example, 'drug-like' chemical space (defined by limiting the space to molecules with a molecular mass <500 Da, fewer than 30 C, H, N, O or S atoms and fewer than 4 rings) has been estimated to be as large as 1063 molecules.

Continuous directed evolution

A directed-evolution method that resembles natural evolution, in which the hereditability of fitness is passed onto subsequent generations without manual intervention. As success in directed evolution depends on the number of rounds completed, removing manual steps can dramatically increase the speed of each round, the number of rounds that can be completed and hence the complexity of evolutionary changes that could be driven.

De novo computational design

The design of compounds based purely on the protein structure, through the computational docking of fragments into an active site and their computational growth using feasible in silico chemical steps to increase calculated binding affinity.

Design–make–test–analyse cycles

(DMTA cycles). The repetitive central process in lead optimization, involving a cycle of four steps: design (a hypothesis is constructed to improve the profile of the lead molecule); make (compounds exemplifying the design are synthesized); test (synthesized compounds of confirmed structure and purity are tested in one or more carefully constructed and controlled assays); and analyse (the experimental data are analysed and the results are used to amend a design hypothesis for the next cycle).

Directed evolution processes

Methods that mimic the processes of evolution but are directed towards a user-defined goal.

DNA-encoded libraries

Very large mixtures of molecules generated using a split-and-pool approach and used for ultra-high-throughput screening. Each synthesized molecule is covalently bound to a DNA fragment, which records the synthetic steps that have been taken to create the small molecule. An immobilized protein target is used to select binders from a pool of DNA-tagged molecules. The structure of the binders is deduced by sequencing the appended DNA tag.

DNA shuffling and recombination

A way to propagate beneficial mutations by recombining DNA segments from several gene sequences or gene pools from a directed evolution experiment.

DNA-templated synthesis

A process in which the DNA heteroduplex is used to bring two complementary DNA fragments bearing different reacting molecules into close proximity, increasing the reaction rate by several orders of magnitude. The synthesis of a chemical library is not just encoded in a sequence-dependent manner, but can be used to direct the order of chemical reactions.

Dynamic combinatorial libraries

Collections of molecules formed from reversible reactions of reagents under thermodynamic control. All species are interconverting at equilibrium. In the presence of a binding protein that binds one or more molecules, the equilibrium is shifted, and the system becomes enriched with the binding moieties.

Evolutionary algorithms

A subset of machine-learning algorithms inspired by biological evolution. Candidate solutions are individuals in a population, and a fitness function defines their quality and acts as a selection. Successful features from individuals are mutated and/or recombined to form the next generation of individuals, for further selection based on the fitness function.

Fragment-based drug design

An approach by which small, weakly binding chemical fragments (typically with a molecular mass of 100–200 Da) that bind to a protein target are identified and optimized to higher-affinity leads, usually guided by structural information on the fragment–target interaction from techniques such as X-ray crystallography.

mRNA display

An in vitro ribosome translation system for peptides and proteins. mRNA display uses the antibiotic puromycin, which causes premature chain termination on the ribosome. The cDNA is transcribed into mRNA libraries, and the 3′-end of each mRNA is coupled via a spacer oligonucleotide to puromycin. The oligonucleotide spacers allow effective translation and termination. The attached puromycin can react with the growing peptide chain, forming a covalent link between the peptide and its encoding mRNA, making the genotype–phenotype link. Selection is made based on the affinity of the peptide or protein with its attached coding mRNA for an immobilized target.

Non-ribosomal biosynthetic pathways

Pathways that biosynthesize the cores of many natural products based on peptides and polyketides. These involve large modular enzyme complexes known as non-ribosomal peptide synthetases and polyketide synthases.

Phage display

An in vivo translation system that uses bacteriophage to maintain the link between translated peptides or proteins and the DNA that encodes them. cDNA for the protein or peptide of interest is inserted into the phage coat protein gene, and phage progeny in Escherichia coli 'display' the target protein on its surface, attached to the coat protein. Selection is achieved by affinity for an immobilized target. After elution of binders, affinity maturation is achieved by further rounds of amplification, which introduces further variability in the selected DNA sequences. The amino acid sequence of the optimized binder can be deduced by sequencing the coding DNA of the selected phage.

Pharmacophores

The steric and electronic features in a ligand that result in the optimal molecular interactions of the ligand with a specific biological target, typically modulating a biological response.

Retrotransposon

A genetic element that can amplify itself in a genome via a 'copy–paste' mechanism involving reverse transcription into RNA and translation back into DNA, which can then be inserted at various positions in the genome. Retrotransposons are common components of eukaryotic cells.

Ribosome display

An in vitro translation system for peptides and proteins. The initial cDNA library is fused to a spacer sequence lacking a stop codon. The cDNA is transcribed to mRNA.The mRNA is translated to protein on the ribosome, but the lack of stop codon prevents release factors binding and disassembling the translational complex. Therefore, the spacer sequence remains attached to the tRNA and bound to the ribosome, with the peptide chain protruding, allowing folding. The resulting complex of RNA, ribosome and protein can be selected by the affinity of the protruding protein for its ligand, and sequencing of the mRNA enables the identification of the protein sequence of the bound proteins.

Site saturation mutagenesis

A method by which one or more codons can be randomized to produce all possible amino acids at chosen positions within the DNA.

Split-and-mix solid phase synthesis

A method for the synthesis of large combinatorial compound libraries. A solid-phase-supported reagent is split equally, and each portion is reacted with a different reagent. After washing, the individual portions are recombined and mixed. Subsequent rounds of splitting, reaction and recombination generate a final library of xn compounds, where x is the number of starting portions and n is the number of rounds.

Structure–activity relationships

The links between structural changes and changes in the biological activity of a series of tested molecules. The deduction of these links is a fundamental concept in medicinal chemistry, and the derived structureactivity relationships are used to guide design–make–test–analyse cycles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, A., Plowright, A. & Valeur, E. Directing evolution: the next revolution in drug discovery?. Nat Rev Drug Discov 16, 681–698 (2017). https://doi.org/10.1038/nrd.2017.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.146

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research