IN BRIEF

CARDIOVASCULAR DISEASE

CRHR2 blockade prevents heart failure

Despite improvements in the treatment of cardiovascular diseases, the prognosis of heart failure remains poor. To identify potential novel therapeutic targets, Tsuda *et al.* analyzed G-protein-coupled receptor (GPCR) expression in mouse cardiomyocytes 2 weeks following transverse aortic constriction (TAC) and identified markedly increased expression of corticotropin-releasing hormone receptor 2 (CRHR2). Mice with cardiomyocyte-specific deletion of *Crhr2* were protected from TAC-induced cardiac dysfunction, whereas mice treated with the CRHR2 antagonist antisauvagine-30, one week after TAC surgery, did not develop heart failure.

ORIGINAL ARTICLE Tsuda, T. et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J. Exp. Med. 214, 1877–1888 (2017)

TYPE 2 DIABETES

Broccoli extract lowers glucose levels

Targeting elevated hepatic glucose production in type 2 diabetes (T2D) represents an attractive therapeutic approach. To investigate this, Axelsson *et al.* first analyzed liver gene expression in a diabetic mouse model, in combination with other genetic data, to identify a 50-gene liver disease signature. Interrogation of a library of 3800 drug signatures indicated that sulforaphane (SFN) — an isothiocyanate found in broccoli — may reverse this disease signature. In rats fed a high-fat or high-fructose diet, SFN prevented or reversed glucose intolerance. In obese patients with dysregulated T2D, concentrated broccoli extract improved fasting glucose and glycated haemoglobin without adverse effects.

 $\label{eq:original_article} \textbf{ORIGINAL ARTICLE} \ Axelsson, A.\ et\ al.\ Sulforaphane\ reduces\ hepatic\ glucos\ production\ and\ improves\ glucos\ control\ in\ patients\ with\ type\ 2\ diabetes.\ S.c.\ Transl\ Med.\ \textbf{9},\ eaah4477\ (2017)$

NEURODEGENERATIVE DISORDERS

SRC-ABL inhibitors protect motor neurons

Currently approved therapies for amyotrophic lateral sclerosis (ALS) — a progressive neurodegenerative disease characterized by loss of motor neurons — exhibit limited effectiveness. By screening a panel of existing drugs in induced pluripotent stem cell (iPSC)-derived motor neurons from patients with familial ALS, Imamura et al. discovered that SRC-ABL inhibitors may protect against motor neuron degeneration. In ALS motor neurons, the SRC-ABL inhibitor bosutinib promoted autophagy, reduced the amount of misfolded superoxide dismutase 1 (SOD1) protein and restored energy homeostasis. In a mouse model of familial ALS, bosutinib delayed disease onset and extended survival.

ORIGINAL ARTICLE Imamura, K. *et al.* The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci. *Transl Med.* **9**, eaaf3962 (2017)

CANCER

mRNA-encoded bispecific antibodies eliminate tumours

The development of therapeutic bispecific T cell-engaging antibodies, which recruit cytotoxic T cells to tumour cells, has been hampered by manufacturing challenges as well as their short serum half-life. To circumvent these issues, Stadler et al. generated 1-methylpseudouridine-containing mRNAs encoding bispecific antibodies directed against the T cell receptor-associated molecule CD3 and a tumour-associated antigen. In mice, injected antibody-encoding mRNAs achieved sustained therapeutic antibody levels and safely eliminated tumours in human ovarian carcinoma xenograft models.

ORIGINAL ARTICLE Stadler, C. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017)