Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting adipose tissue in the treatment of obesity-associated diabetes

Key Points

  • Adipose tissue regulates many physiological processes, and is essential for handling excess calories.

  • Dysfunction of adipose tissue in obese humans is associated with disrupted metabolic homeostasis and increased risk for metabolic, cardiovascular and chronic inflammatory diseases, such as type 2 diabetes, dyslipidaemia, nonalcoholic fatty liver disease (NAFLD), hypertension, coronary heart disease and stroke.

  • Hence, pharmacological interventions focused on maintaining or improving adipose tissue health form the basis for both prophylactic and therapeutic interventions in metabolic and cardiovascular disease.

  • As an active endocrine organ, some adipocyte-derived secretory proteins and their receptors represent promising pharmacological targets.

  • Although chronic inflammatory processes are key contributors to adipose tissue dysfunction, targeting inflammatory components to achieve metabolic improvements has not proven to be effective to date.

  • Some of the established antidiabetic agents, such as peroxisome proliferator-activated receptor-γ (PPARγ) agonists and glucagon-like peptide 1 receptor (GLP1R) agonists, exert their effects at least partially on adipocytes.

  • Emerging adipose tissue-centric approaches to improve metabolism include reducing fibrosis, reducing hypoxia, enhancing beiging of adipose tissue and identifying key insulin-sensitizing downstream targets of PPARγ, as well as modulating insulin-sensitizing lipids (for example, fatty acid esters of hydroxyl fatty acids (FAHFAs)) or insulin-desensitizing lipids (ceramides).

Abstract

Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crosstalk between white adipose tissue and other tissues in the body.
Figure 2: Metabolically healthy white adipose tissue expansion versus unhealthy pathological expansion during the progression of obesity.
Figure 3: Targeting white adipose tissue for the treatment of obesity-associated diabetes.

Similar content being viewed by others

References

  1. Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).

    CAS  PubMed  Google Scholar 

  2. Kusminski, C. M., Shetty, S., Orci, L., Unger, R. H. & Scherer, P. E. Diabetes and apoptosis: lipotoxicity. Apoptosis 14, 1484–1495 (2009).

    CAS  PubMed  Google Scholar 

  3. Scherer, P. E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006). This paper highlights the various functions of adipose tissue.

    CAS  PubMed  Google Scholar 

  4. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011). A review article summarizing the key steps leading to adipose tissue dysfunction.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Unger, R. H. & Scherer, P. E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 21, 345–352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. 23, 435–443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014). An excellent overview of the current knowledge of adipose tissue physiology.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rutkowski, J. M., Stern, J. H. & Scherer, P. E. The cell biology of fat expansion. J. Cell Biol. 208, 501–512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Frayn, K. N., Karpe, F., Fielding, B. A., Macdonald, I. A. & Coppack, S. W. Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 27, 875–888 (2003).

    CAS  PubMed  Google Scholar 

  11. Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med. 34, 1–11 (2013).

    CAS  PubMed  Google Scholar 

  12. Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tchkonia, T. et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab. 292, E298–E307 (2007).

    CAS  PubMed  Google Scholar 

  14. Cawthorn, W. P., Scheller, E. L. & MacDougald, O. A. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res. 53, 227–246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Staszkiewicz, J., Gimble, J. M., Manuel, J. A. & Gawronska-Kozak, B. IFATS collection: stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential. Stem Cells 26, 2666–2673 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosen, E. D. & Spiegelman, B. M. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 276, 37731–37734 (2001).

    CAS  PubMed  Google Scholar 

  17. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006). A concise summary of the key steps controlling adipogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77, 289–312 (2008).

    CAS  PubMed  Google Scholar 

  19. Altiok, S., Xu, M. & Spiegelman, B. M. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev. 11, 1987–1998 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    CAS  PubMed  Google Scholar 

  21. Wang, Q. A. et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell Biol. 17, 1099–1111 (2015). A recent mechanistic study addressing the transcriptional requirements at various stages of adipogenesis in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta, R. K. et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619–623 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2015). This paper describes adipogenic precursors and their contribution to fat expansion.

    PubMed  PubMed Central  Google Scholar 

  24. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    CAS  PubMed  Google Scholar 

  25. Fasshauer, M. & Bluher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 36, 461–470 (2015).

    CAS  PubMed  Google Scholar 

  26. Holland, W. L. & Summers, S. A. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 29, 381–402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Flier, J. S., Cook, K. S., Usher, P. & Spiegelman, B. M. Severely impaired adipsin expression in genetic and acquired obesity. Science 237, 405–408 (1987).

    CAS  PubMed  Google Scholar 

  28. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  PubMed  Google Scholar 

  29. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  30. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995). The first report describing adiponectin.

    CAS  PubMed  Google Scholar 

  31. Friedman, J. 20 years of leptin: leptin at 20: an overview. J. Endocrinol. 223, T1–T8 (2014).

    CAS  PubMed  Google Scholar 

  32. Farooqi, I. S. & O'Rahilly, S. Leptin: a pivotal regulator of human energy homeostasis. Am. J. Clin. Nutr. 89, 980S–984S (2009).

    CAS  PubMed  Google Scholar 

  33. Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kusminski, C. M. & Scherer, P. E. Leptin beyond the lipostat: key component of blood pressure regulation. Circ. Res. 116, 1293–1295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, R. & Scherer, P. E. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol. Metab. 2, 133–141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shetty, S., Kusminski, C. M. & Scherer, P. E. Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol. Sci. 30, 234–239 (2009).

    CAS  PubMed  Google Scholar 

  37. Pajvani, U. B. et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152–12162 (2004).

    CAS  PubMed  Google Scholar 

  38. Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 2319–2326 (2012).

    CAS  PubMed  Google Scholar 

  39. Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003). An important paper describing the cloning of adiponectin receptors.

    CAS  PubMed  Google Scholar 

  40. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011). A report highlighting the connection between adiponectin and sphingolipid metabolism.

    CAS  PubMed  Google Scholar 

  41. Hug, C. et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA 101, 10308–10313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Denzel, M. S. et al. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest. 120, 4342–4352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsuda, K. et al. Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology 156, 934–946 (2015).

    CAS  PubMed  Google Scholar 

  44. Hui, X. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279–290 (2015).

    CAS  PubMed  Google Scholar 

  45. Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).

    CAS  PubMed  Google Scholar 

  46. Turer, A. T. et al. Adipose tissue mass and location affect circulating adiponectin levels. Diabetologia 54, 2515–2524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Combs, T. P. et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145, 367–383 (2004).

    CAS  PubMed  Google Scholar 

  48. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  49. Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001). References 48 and 49 provide the initial description of the effects of recombinant adiponectin.

    CAS  PubMed  Google Scholar 

  50. Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).

    CAS  PubMed  Google Scholar 

  51. Okamoto, M. et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 51, 827–835 (2008).

    CAS  PubMed  Google Scholar 

  52. Kim, C. H. et al. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am. J. Physiol. Endocrinol. Metab. 291, E298–E305 (2006).

    CAS  PubMed  Google Scholar 

  53. Li, R., Lau, W. B. & Ma, X. L. Adiponectin resistance and vascular dysfunction in the hyperlipidemic state. Acta Pharmacol. Sin. 31, 1258–1266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Prins, J. B. & O'Rahilly, S. Regulation of adipose cell number in man. Clin. Sci. (Lond.) 92, 3–11 (1997).

    CAS  Google Scholar 

  56. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013). A methodological paper describing the tracing of new mature adipocytes.

    PubMed  PubMed Central  Google Scholar 

  57. Tchoukalova, Y. D. et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl Acad. Sci. USA 107, 18226–18231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ryden, M. et al. Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab. 22, 408–417 (2015).

    CAS  PubMed  Google Scholar 

  59. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    CAS  PubMed  Google Scholar 

  60. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    CAS  PubMed  Google Scholar 

  65. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014). This paper establishes the metabolically beneficial effects of inflammation in adipose tissue.

    CAS  PubMed  Google Scholar 

  66. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  69. Trayhurn, P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 34, 207–236 (2014).

    CAS  PubMed  Google Scholar 

  70. Krishnan, J. et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2–NAD+ system. Genes Dev. 26, 259–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009). This paper describes the phenomenon of hypoxic conditions in adipose tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol. 33, 904–917 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Colberg, S. R. et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 33, e147–e167 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  75. Linden, M. A., Pincu, Y., Martin, S. A., Woods, J. A. & Baynard, T. Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding. Physiol. Rep. 2, e12071 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Reinehr, T. Lifestyle intervention in childhood obesity: changes and challenges. Nat. Rev. Endocrinol. 9, 607–614 (2013).

    PubMed  Google Scholar 

  77. Stanford, K. I. et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 64, 2002–2014 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Guh, D. P. et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Publ. Health 9, 88 (2009).

    Google Scholar 

  79. American Diabetes Association. 6. Obesity management for the treatment of type 2 diabetes. Diabetes Care 39 (Suppl. 1), S47–S51 (2016).

  80. Astrup, A. et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int. J. Obes (Lond.) 36, 843–854 (2012).

    CAS  Google Scholar 

  81. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    PubMed  Google Scholar 

  82. Sumithran, P. & Proietto, J. Benefit–risk assessment of orlistat in the treatment of obesity. Drug Saf. 37, 597–608 (2014).

    CAS  PubMed  Google Scholar 

  83. Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    CAS  PubMed  Google Scholar 

  84. Verrotti, A. et al. Topiramate-induced weight loss: a review. Epilepsy Res. 95, 189–199 (2011).

    CAS  PubMed  Google Scholar 

  85. Greenway, F. L. et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 376, 595–605 (2010).

    CAS  PubMed  Google Scholar 

  86. Ornellas, T. & Chavez, B. Naltrexone SR/bupropion SR (contrave): a new approach to weight loss in obese adults. P T 36, 255–262 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Ismail-Beigi, F. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376, 419–430 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. [No authors listed.] Introduction. Diabetes Care 39 (Suppl. 1), S1–S2 (2016).

  89. Pryor, R. & Cabreiro, F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem. J. 471, 307–322 (2015).

    CAS  PubMed  Google Scholar 

  90. Turner, R. C., Cull, C. A., Frighi, V. & Holman, R. R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281, 2005–2012 (1999).

    CAS  PubMed  Google Scholar 

  91. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    CAS  PubMed  Google Scholar 

  92. Amori, R. E., Lau, J. & Pittas, A. G. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 298, 194–206 (2007).

    CAS  PubMed  Google Scholar 

  93. Yki-Jarvinen, H. Thiazolidinediones. N. Engl. J. Med. 351, 1106–1118 (2004).

    PubMed  Google Scholar 

  94. Nawrocki, A. R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem. 281, 2654–2660 (2006).

    CAS  PubMed  Google Scholar 

  95. Zhang, Q., Dou, J. & Lu, J. Combinational therapy with metformin and sodium-glucose cotransporter inhibitors in management of type 2 diabetes: systematic review and meta-analyses. Diabetes Res. Clin. Pract. 105, 313–321 (2014).

    CAS  PubMed  Google Scholar 

  96. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015). A recent landmark study highlighting the cardioprotective effects of an SGLT2 inhibitor.

    CAS  PubMed  Google Scholar 

  97. Phillippe, H. M. & Wargo, K. A. Mitiglinide: a novel agent for the treatment of type 2 diabetes mellitus. Ann. Pharmacother. 44, 1615–1623 (2010).

    PubMed  Google Scholar 

  98. Mulvihill, E. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 35, 992–1019 (2014).

    CAS  PubMed  Google Scholar 

  99. DiNicolantonio, J. J., Bhutani, J. & O'Keefe, J. H. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2, e000327 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. DeFronzo, R. A., Davidson, J. A. & Del Prato, S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab. 14, 5–14 (2012).

    CAS  PubMed  Google Scholar 

  101. Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5, 209ra151 (2013).

    PubMed  Google Scholar 

  102. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    CAS  PubMed  Google Scholar 

  103. Challa, T. D. et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem. 287, 6421–6430 (2012).

    CAS  PubMed  Google Scholar 

  104. Shao, Y., Yuan, G., Zhang, J. & Guo, X. Liraglutide reduces lipogenetic signals in visceral adipose of db/db mice with AMPK activation and Akt suppression. Drug Des. Devel. Ther. 9, 1177–1184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Topol, E. J. et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet 376, 517–523 (2010).

    CAS  PubMed  Google Scholar 

  106. Lehr, S., Hartwig, S. & Sell, H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 6, 91–101 (2012).

    CAS  Google Scholar 

  107. Dahlman, I. et al. Functional annotation of the human fat cell secretome. Arch. Physiol. Biochem. 118, 84–91 (2012).

    CAS  PubMed  Google Scholar 

  108. Ahima, R. S., Saper, C. B., Flier, J. S. & Elmquist, J. K. Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol. 21, 263–307 (2000).

    CAS  PubMed  Google Scholar 

  109. Myers, M. G. Jr et al. Challenges and opportunities of defining clinical leptin resistance. Cell Metab. 15, 150–156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    CAS  PubMed  Google Scholar 

  111. Mittendorfer, B. et al. Recombinant human leptin treatment does not improve insulin action in obese subjects with type 2 diabetes. Diabetes 60, 1474–1477 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hukshorn, C. J. et al. Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J. Clin. Endocrinol. Metab. 85, 4003–4009 (2000).

    CAS  PubMed  Google Scholar 

  113. Hoffmann, A. et al. Leptin dose-dependently decreases atherosclerosis by attenuation of hypercholesterolemia and induction of adiponectin. Biochim. Biophys. Acta 1862, 113–120 (2015).

    PubMed  Google Scholar 

  114. Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999). This study established the effects of recombinant leptin in human leptin deficiency.

    CAS  PubMed  Google Scholar 

  116. Akinci, G. & Akinci, B. Metreleptin treatment in patients with non-HIV associated lipodystrophy. Recent Pat. Endocr. Metab. Immune Drug Discov. 9, 74–78 (2015).

    CAS  PubMed  Google Scholar 

  117. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00673387 (2008).

  118. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT01235741 (2010).

  119. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00265980 (2005).

  120. Kissileff, H. R. et al. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr. 95, 309–317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rosenbaum, M. & Leibel, R. L. 20 years of leptin: role of leptin in energy homeostasis in humans. J. Endocrinol. 223, T83–T96 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00085982 (2004).

  123. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    CAS  PubMed  Google Scholar 

  124. Ogawa, A., Harris, V., McCorkle, S. K., Unger, R. H. & Luskey, K. L. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J. Clin. Invest. 85, 973–976 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, M. Y. et al. Leptin therapy in insulin-deficient type I diabetes. Proc. Natl Acad. Sci. USA 107, 4813–4819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Unger, R. H. & Roth, M. G. A new biology of diabetes revealed by leptin. Cell Metab. 21, 15–20 (2015).

    CAS  PubMed  Google Scholar 

  128. Shimabukuro, M., Zhou, Y. T., Levi, M. & Unger, R. H. Fatty acid-induced β cell apoptosis: a link between obesity and diabetes. Proc. Natl Acad. Sci. USA 95, 2498–2502 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shpilman, M. et al. Development and characterization of high affinity leptins and leptin antagonists. J. Biol. Chem. 286, 4429–4442 (2011).

    CAS  PubMed  Google Scholar 

  130. Elinav, E. et al. Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology 150, 3083–3091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kadowaki, T., Yamauchi, T. & Kubota, N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett. 582, 74–80 (2008).

    CAS  PubMed  Google Scholar 

  132. Holland, W. L. et al. An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790–797 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266–278 (2015). This study describes the first inducible mouse model for testing the acute effects of ceramide depletion on insulin sensitivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Asterholm, I. W. & Scherer, P. E. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am. J. Pathol. 176, 1364–1376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Halberg, N. et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes 58, 1961–1970 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013).

    CAS  PubMed  Google Scholar 

  137. Tanabe, H. et al. Crystal structures of the human adiponectin receptors. Nature 520, 312–316 (2015). A major breakthrough reporting the high resolution structure of adiponectin receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ealey, K. N., Kaludjerovic, J., Archer, M. C. & Ward, W. E. Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Exp. Biol. Med. (Maywood) 233, 1546–1553 (2008).

    CAS  Google Scholar 

  139. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63, 4057–4063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Owen, B. M., Mangelsdorf, D. J. & Kliewer, S. A. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab. 26, 22–29 (2015). An excellent summary of the actions of FGF19 and FGF21.

    CAS  PubMed  Google Scholar 

  142. Kliewer, S. A. & Mangelsdorf, D. J. Fibroblast growth factor 21: from pharmacology to physiology. Am. J. Clin. Nutr. 91, 254S–257S (2010).

    CAS  PubMed  Google Scholar 

  143. Ding, X. et al. βklotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 16, 387–393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 10, 223–241 (2015).

    Google Scholar 

  145. Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models — association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297, E1105–E1114 (2009).

    CAS  PubMed  Google Scholar 

  146. Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008).

    CAS  PubMed  Google Scholar 

  147. Kharitonenkov, A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007).

    CAS  PubMed  Google Scholar 

  148. Fisher, F. M. et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 147, 1073–1083.e6 (2014).

    CAS  PubMed  Google Scholar 

  149. Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Adams, A. C. et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2, 31–37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lin, Z. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789 (2013).

    CAS  PubMed  Google Scholar 

  153. Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gimeno, R. E. & Moller, D. E. FGF21-based pharmacotherapy — potential utility for metabolic disorders. Trends Endocrinol. Metab. 25, 303–311 (2014).

    CAS  PubMed  Google Scholar 

  155. Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    CAS  PubMed  Google Scholar 

  156. Dong, J. Q. et al. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br. J. Clin. Pharmacol. 80, 1051–1063 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kharitonenkov, A. et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS ONE 8, e58575 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Adams, A. C. et al. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS ONE 8, e65763 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, J. H. et al. Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabetes Obes. Metab. 17, 161–169 (2015).

    CAS  PubMed  Google Scholar 

  160. Talukdar, S. et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 23, 427–440 (2016).

    CAS  PubMed  Google Scholar 

  161. Weng, Y. et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS ONE 10, e0119104 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Wu, S., Levenson, A., Kharitonenkov, A. & De Luca, F. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J. Biol. Chem. 287, 26060–26067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Owen, B. M. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med. 19, 1153–1156 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee, P. et al. Fibroblast growth factor 21 (FGF21) and bone: is there a relationship in humans? Osteoporos. Int. 24, 3053–3057 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Townsend, K. L. et al. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J. 26, 2187–2196 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zeng, J., Jiang, Y., Xiang, S. & Chen, B. Serum bone morphogenetic protein 7, insulin resistance, and insulin secretion in non-diabetic individuals. Diabetes Res. Clin. Pract. 93, e21–e24 (2011).

    CAS  PubMed  Google Scholar 

  170. Vaccaro, A. R. et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J. 8, 457–465 (2008).

    PubMed  Google Scholar 

  171. Bing, C. Is interleukin-1β a culprit in macrophage-adipocyte crosstalk in obesity? Adipocyte 4, 149–152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Gao, D. et al. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am. J. Physiol. Endocrinol. Metab. 307, E289–E304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Handa, M. et al. XOMA 052, an anti-IL-1β monoclonal antibody, prevents IL-1β-mediated insulin resistance in 3T3-L1 adipocytes. Obesity (Silver Spring) 21, 306–309 (2013).

    CAS  Google Scholar 

  174. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    CAS  PubMed  Google Scholar 

  175. van Asseldonk, E. J. et al. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus. Clin. Immunol. 160, 155–162 (2015).

    CAS  PubMed  Google Scholar 

  176. Rissanen, A., Howard, C. P., Botha, J., Thuren, T. & Global, I. Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes. Metab. 14, 1088–1096 (2012).

    CAS  PubMed  Google Scholar 

  177. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  178. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Heaton, J. M. The distribution of brown adipose tissue in the human. J. Anat. 112, 35–39 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009). References 180 and 181 establish the presence of brown adipose tissue in adult humans.

    CAS  PubMed  Google Scholar 

  182. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  183. Flynn, A. et al. Contrast-enhanced ultrasound: a novel noninvasive, nonionizing method for the detection of brown adipose tissue in humans. J. Am. Soc. Echocardiogr. 28, 1247–1254 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Peirce, V., Carobbio, S. & Vidal-Puig, A. The different shades of fat. Nature 510, 76–83 (2014).

    CAS  PubMed  Google Scholar 

  185. Stock, M. J. & Rothwell, N. J. Role of brown adipose tissue thermogenesis in overfeeding: a review. J. R. Soc. Med. 76, 71–73 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Nedergaard, J., Bengtsson, T. & Cannon, B. Three years with adult human brown adipose tissue. Ann. NY Acad. Sci. 1212, E20–E36 (2010).

    PubMed  Google Scholar 

  187. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    CAS  PubMed  Google Scholar 

  188. Peirce, V. & Vidal-Puig, A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 1, 353–360 (2013).

    CAS  PubMed  Google Scholar 

  189. Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63, 880–891 (2014).

    CAS  PubMed  Google Scholar 

  190. Baxter, J. D. & Webb, P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat. Rev. Drug Discov. 8, 308–320 (2009).

    CAS  PubMed  Google Scholar 

  191. Blondin, D. P. et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99, E438–E446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen, K. Y. et al. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. J. Clin. Endocrinol. Metab. 98, E1218–E1223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Matsushita, M. et al. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int. J. Obes. (Lond.) 38, 812–817 (2014).

    CAS  Google Scholar 

  195. Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring) 21, 2279–2287 (2013).

    CAS  Google Scholar 

  197. Whittle, A., Relat-Pardo, J. & Vidal-Puig, A. Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol. Sci. 34, 347–355 (2013).

    CAS  PubMed  Google Scholar 

  198. Ghorbani, M. & Himms-Hagen, J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int. J. Obes Relat. Metab. Disord. 21, 465–475 (1997).

    CAS  PubMed  Google Scholar 

  199. Cypess, A. M. et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc. Natl Acad. Sci. USA 109, 10001–10005 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Vosselman, M. J. et al. Systemic β-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes 61, 3106–3113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Carey, A. L. et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 56, 147–155 (2013).

    CAS  PubMed  Google Scholar 

  202. Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015). An elegant study reporting the ability to stimulate the activity of human BAT.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Colman, E. Dinitrophenol and obesity: an early twentieth-century regulatory dilemma. Regul. Toxicol. Pharmacol. 48, 115–117 (2007).

    CAS  PubMed  Google Scholar 

  204. Perry, R. J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18, 740–748 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253–1256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bostrom, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    PubMed  PubMed Central  Google Scholar 

  207. Albrecht, E. et al. Irisin — a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Raschke, S. et al. Evidence against a beneficial effect of irisin in humans. PLoS ONE 8, e73680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159–165 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Sun, K. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl Acad. Sci. USA 109, 5874–5879 (2012). This study established the metabolically beneficial effects of expansion of the vasculature in adipose tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kusminski, C. M., Park, J. & Scherer, P. E. MitoNEET-mediated effects on browning of white adipose tissue. Nat. Commun. 5, 3962 (2014).

    CAS  PubMed  Google Scholar 

  219. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Kolumam, G. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βklotho complex. eBioMedicine 2, 730–743 (2015).

    PubMed  PubMed Central  Google Scholar 

  222. Douris, N. et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156, 2470–2481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Veniant, M. M. et al. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab. 21, 731–738 (2015).

    CAS  PubMed  Google Scholar 

  224. Samms, R. J. et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 11, 991–999 (2015).

    CAS  PubMed  Google Scholar 

  225. McDonald, M. E. et al. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 160, 105–118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Evans, R. M., Barish, G. D. & Wang, Y. X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).

    CAS  PubMed  Google Scholar 

  227. Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466, 451–456 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Dhavan, R. & Tsai, L. H. A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2, 749–759 (2001).

    CAS  PubMed  Google Scholar 

  229. Banks, A. S. et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 517, 391–395 (2015).

    CAS  PubMed  Google Scholar 

  230. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).

    CAS  PubMed  Google Scholar 

  232. Wilson, B. J., Tremblay, A. M., Deblois, G., Sylvain-Drolet, G. & Giguere, V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor α. Mol. Endocrinol. 24, 1349–1358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Mayoral, R. et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol. Metab. 4, 378–391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00920556 (2009).

  237. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT02247596 (2014).

  238. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT01714102 (2012).

  239. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT01038089 (2009).

  240. Dash, S., Xiao, C., Morgantini, C., Szeto, L. & Lewis, G. F. High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler. Thromb. Vasc. Biol. 33, 2895–2901 (2013).

    CAS  PubMed  Google Scholar 

  241. Knop, F. K. et al. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabet. Med. 30, 1214–1218 (2013).

    CAS  PubMed  Google Scholar 

  242. Chen, S. et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liver Dis. 47, 226–232 (2015).

    CAS  PubMed  Google Scholar 

  243. Brasnyo, P. et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 106, 383–389 (2011).

    CAS  PubMed  Google Scholar 

  244. Muise, E. S. et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states. Mol. Pharmacol. 74, 403–412 (2008).

    CAS  PubMed  Google Scholar 

  245. Wang, H., Qiang, L. & Farmer, S. R. Identification of a domain within peroxisome proliferator-activated receptor γ regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol. 28, 188–200 (2008).

    PubMed  Google Scholar 

  246. Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148, 556–567 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Wahli, W. & Michalik, L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 23, 351–363 (2012).

    CAS  PubMed  Google Scholar 

  248. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Chiang, S. H. et al. The protein kinase IKKε regulates energy balance in obese mice. Cell 138, 961–975 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Ussher, J. R. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453–2464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Pedersen, D. J. et al. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol. Metab. 4, 507–518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Reilly, S. M. et al. An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat. Med. 19, 313–321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Makino, H., Saijo, T., Ashida, Y., Kuriki, H. & Maki, Y. Mechanism of action of an antiallergic agent, amlexanox (AA-673), in inhibiting histamine release from mast cells. Acceleration of cAMP generation and inhibition of phosphodiesterase. Int. Arch. Allergy Appl. Immunol. 82, 66–71 (1987).

    CAS  PubMed  Google Scholar 

  256. Reilly, S. M. et al. A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nat. Commun. 6, 6047 (2015).

    CAS  PubMed  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT01842282 (2013).

  258. Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).

    CAS  PubMed  Google Scholar 

  259. Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).

    CAS  PubMed  Google Scholar 

  260. Solomon, D. H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 305, 2525–2531 (2011).

    CAS  PubMed  Google Scholar 

  261. Paquot, N., Castillo, M. J., Lefebvre, P. J. & Scheen, A. J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. Metab. 85, 1316–1319 (2000).

    CAS  PubMed  Google Scholar 

  262. Anderson, K., Wherle, L., Park, M., Nelson, K. & Nguyen, L. Salsalate, an old, inexpensive drug with potential new indications: a review of the evidence from 3 recent studies. Am. Health Drug Benefits 7, 231–235 (2014).

    PubMed  PubMed Central  Google Scholar 

  263. Goldfine, A. B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013).

    PubMed  PubMed Central  Google Scholar 

  264. Koska, J. et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 52, 385–393 (2009).

    CAS  PubMed  Google Scholar 

  265. Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Barzilay, J. I. et al. The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care 37, 1083–1091 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Penesova, A. et al. Salsalate has no effect on insulin secretion but decreases insulin clearance: a randomized, placebo-controlled trial in subjects without diabetes. Diabetes Obes. Metab. 17, 608–612 (2015).

    CAS  PubMed  Google Scholar 

  268. Raghavan, R. P., Laight, D. W. & Cummings, M. H. Aspirin in type 2 diabetes, a randomised controlled study: effect of different doses on inflammation, oxidative stress, insulin resistance and endothelial function. Int. J. Clin. Pract. 68, 271–277 (2014).

    CAS  PubMed  Google Scholar 

  269. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Oh da, Y. et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20, 942–947 (2014).

    PubMed  Google Scholar 

  271. Sullivan, T. J. et al. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism 62, 1623–1632 (2013).

    CAS  PubMed  Google Scholar 

  272. Di Prospero, N. A. et al. CCR2 antagonism in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Diabetes Obes. Metab. 16, 1055–1064 (2014).

    CAS  PubMed  Google Scholar 

  273. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    CAS  PubMed  Google Scholar 

  274. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00699790 (2008).

  275. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT01712061 (2012).

  276. Xue, C. B. et al. Discovery of INCB8761/PF-4136309, a potent, selective, and orally bioavailable CCR2 antagonist. ACS Med. Chem. Lett. 2, 913–918 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Filgueiras, L. R., Serezani, C. H. & Jancar, S. Leukotriene B4 as a potential therapeutic target for the treatment of metabolic disorders. Front. Immunol. 6, 515 (2015).

    PubMed  PubMed Central  Google Scholar 

  278. Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21, 239–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Liston, T. E. et al. Pharmacokinetics and pharmacodynamics of the leukotriene B4 receptor antagonist CP-105,696 in man following single oral administration. Br. J. Clin. Pharmacol. 45, 115–121 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Favalli, E. G. et al. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun Rev. 8, 266–273 (2009).

    CAS  PubMed  Google Scholar 

  281. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).

    PubMed  Google Scholar 

  283. Iwayama, T. et al. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev. 29, 1106–1119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Haak, A. J. et al. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury. J. Pharmacol. Exp. Ther. 349, 480–486 (2014).

    PubMed  PubMed Central  Google Scholar 

  285. Sisson, T. H. et al. Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am. J. Pathol. 185, 969–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Lee, S. H. et al. ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance. Am. J. Physiol. Endocrinol. Metab. 306, E332–E343 (2014).

    CAS  PubMed  Google Scholar 

  287. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00120718 (2005).

  288. US National Library of Medicine. ClinicalTrials.gov [online], http://www.clinicaltrials.gov/ct2/show/NCT00498615 (2007).

  289. Vila, I. K. et al. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep. 7, 1116–1129 (2014).

    CAS  PubMed  Google Scholar 

  290. Jia, L. et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 3878 (2014).

    CAS  PubMed  Google Scholar 

  291. Falchook, G. S. et al. Targeting hypoxia-inducible factor-1α (HIF-1α) in combination with antiangiogenic therapy: a phase I trial of bortezomib plus bevacizumab. Oncotarget 5, 10280–10292 (2014).

    PubMed  PubMed Central  Google Scholar 

  292. Welsh, S., Williams, R., Kirkpatrick, L., Paine-Murrieta, G. & Powis, G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Mol. Cancer Ther. 3, 233–244 (2004).

    CAS  PubMed  Google Scholar 

  293. Baker, L. C. et al. The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br. J. Cancer 106, 1638–1647 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Xia, Y., Choi, H. K. & Lee, K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem. 49, 24–40 (2012).

    CAS  PubMed  Google Scholar 

  295. Montgomery, M. K. & Turner, N. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect. 4, R1–R15 (2015).

    PubMed  Google Scholar 

  296. Choo, H. J. et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49, 784–791 (2006).

    CAS  PubMed  Google Scholar 

  297. Heinonen, S. et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes 64, 3135–3145 (2015).

    CAS  PubMed  Google Scholar 

  298. Chattopadhyay, M. et al. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol. Cell. Biochem. 399, 95–103 (2015).

    CAS  PubMed  Google Scholar 

  299. Wilson-Fritch, L. et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest. 114, 1281–1289 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Liu, J. et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv. Drug Deliv. Rev. 61, 1343–1352 (2009).

    CAS  PubMed  Google Scholar 

  301. Armstrong, J. S. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br. J. Pharmacol. 151, 1154–1165 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Shen, W. et al. R-α-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 51, 165–174 (2008).

    CAS  PubMed  Google Scholar 

  303. Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012). This study reports the 'heaviest mouse ever'. Despite weighing 129.5 g, these transgenic mice retain full metabolic function.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Vernochet, C. et al. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab. 16, 765–776 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. McLaughlin, T., Lamendola, C., Liu, A. & Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96, E1756–E1760 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Snijder, M. B. et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am. J. Clin. Nutr. 77, 1192–1197 (2003).

    CAS  PubMed  Google Scholar 

  307. Denis, G. V. & Obin, M. S. 'Metabolically healthy obesity': origins and implications. Mol. Aspects Med. 34, 59–70 (2013).

    CAS  PubMed  Google Scholar 

  308. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    CAS  PubMed  Google Scholar 

  309. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    CAS  PubMed  Google Scholar 

  310. Cao, M. et al. Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice. Stem Cell Res. Ther. 6, 208 (2015).

    PubMed  PubMed Central  Google Scholar 

  311. Shang, Q. et al. Delivery of adipose-derived stem cells attenuates adipose tissue inflammation and insulin resistance in obese mice through remodeling macrophage phenotypes. Stem Cells Dev. 24, 2052–2064 (2015).

    CAS  PubMed  Google Scholar 

  312. Zhang, Q., Liu, L. N., Yong, Q., Deng, J. C. & Cao, W. G. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res. Ther. 6, 145 (2015).

    PubMed  PubMed Central  Google Scholar 

  313. Badimon, L., Onate, B. & Vilahur, G. Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Rev. Esp. Cardiol. (Engl. Ed) 68, 599–611 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the rest of the Scherer laboratory for their helpful discussions. The authors were supported by US National Institutes of Health grants R01-DK55758, R01-DK099110 and P01-DK088761 and Cancer Prevention Research Institute of Texas grant RP140412 (to P.E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp E. Scherer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Lipotoxicity

Impaired cellular functionality (insulin resistance) that is due to exposure to elevated levels of endogenous or exogenous lipids.

Adipokine

An adipocyte-derived secretory product that is either exclusively produced in adipocytes or highly enriched in adipocytes.

Adipogenesis

The process of adipocyte differentiation.

Ceramides and sphingosines

Subclasses of lipids consisting of a serine and a fatty acid. They are implicated in cell death, inflammation and insulin resistance (ceramides) or proliferation and survival (sphingosines).

Extracellular matrix

A fibrotic milieu on the outside of cells that makes up an extracellular scaffold. It can be upregulated in pathological states.

Hypertrophy

Tissue growth through an increase in cell size.

Hyperplasia

Tissue growth through an increase in cell number.

Lipostat

A mechanism by which food intake and energy expenditure are regulated, such that an organism's existing fat mass is maintained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusminski, C., Bickel, P. & Scherer, P. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov 15, 639–660 (2016). https://doi.org/10.1038/nrd.2016.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.75

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research