Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The next generation of therapeutics for chronic kidney disease

Key Points

  • Approximately 20 million people in the United States are currently affected by CKD, with half a million of these presenting with the most severe form: end-stage renal disease (ESRD). The only treatments for ESRD are dialysis or transplantation. The yearly mortality of patients on dialysis can be as high as 20%, and transplantation is limited by organ shortage.

  • Current treatment strategies are almost exclusively based on blocking the renin–angiotensin–aldosterone system. Inhibitors of this system decrease systemic blood pressure and glomerular hyperfiltration leading to subsequent reduction in proteinuria and prevention of functional decline.

  • Diabetic nephropathy remains the leading cause of CKD. Early metabolic dysregulation seems to be a key disease driver. Early targeting of metabolic pathways has shown therapeutic benefit in early-stage clinical trials.

  • Glomerular epithelial cells or podocytes are a key component of the glomerular filtration barrier that prevents albumin leakage into the urine. They are terminally differentiated with limited (if any) renewal capacity. Podocyte-targeted therapeutics could protect from albuminuria and glomerulosclerosis development.

  • Several drugs in current trials target inflammatory pathways, including specific cytokines (such as CC-chemokine ligand 2 (CCL2)) or signalling molecules (such as Janus kinase (JAK)). Such drugs might provide therapeutic benefit at later disease stages in which inflammation is a prominent feature of the disease.

  • Precision medicine approaches that are based on specific genetic or protein biomarkers have the potential to help the development of novel CKD therapeutics and enrich for patients that will respond to specific drugs.

Abstract

Chronic kidney disease (CKD) represents a leading cause of death in the United States. There is no cure for this disease, with current treatment strategies relying on blood pressure control through blockade of the renin–angiotensin system. Such approaches only delay the development of end-stage kidney disease and can be associated with serious side effects. Recent identification of several novel mechanisms contributing to CKD development — including vascular changes, loss of podocytes and renal epithelial cells, matrix deposition, inflammation and metabolic dysregulation — has revealed new potential therapeutic approaches for CKD. This Review assesses emerging strategies and agents for CKD treatment, highlighting the associated challenges in their clinical development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting the renin–angiotensin–aldosterone system.
Figure 2: Targeting the glomerulus in the treatment of CKD.
Figure 3: Targeting tubulointerstitial fibrosis in the treatment of CKD.
Figure 4: Metabolic alterations in CKD.

Similar content being viewed by others

References

  1. Collins, A. J., Foley, R. N., Gilbertson, D. T. & Chen, S. C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int. Suppl. 5, 2–7 (2015).

    Google Scholar 

  2. Kovesdy, C. P. et al. Outcomes associated with microalbuminuria: effect modification by chronic kidney disease. J. Am. College Cardiol. 61, 1626–1633 (2013).

    CAS  Google Scholar 

  3. Foley, R. N. & Collins, A. J. The USRDS: what you need to know about what it can and can't tell us about ESRD. Clin. J. Am. Soc. Nephrol. 8, 845–851 (2013).

    PubMed  Google Scholar 

  4. Weiner, D. E. et al. Kidney function and risk of cardiovascular disease and mortality in kidney transplant recipients: the FAVORIT trial. Am. J. Transplant. 12, 2437–2445 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Herzog, C. A. et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 572–586 (2011).

    PubMed  Google Scholar 

  6. Foley, R. N. et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J. Am. Soc. Nephrol. 16, 489–495 (2005).

    PubMed  Google Scholar 

  7. Coresh, J. et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 311, 2518–2531 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Levey, A. S. et al. Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis. 54, 205–226 (2009).

    PubMed  Google Scholar 

  9. Inker, L. A. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 63, 713–735 (2014).

    PubMed  Google Scholar 

  10. Rahman, M. et al. Association between chronic kidney disease progression and cardiovascular disease: results from the CRIC Study. Am. J. Nephrol. 40, 399–407 (2014).

    PubMed  Google Scholar 

  11. Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 124, 2299–2306 (2014). A recent comprehensive review on fibrosis development.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014). An excellent review on the molecular pathways that contribute to diabetic kidney disease development.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, D. & Liu, Y. Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat. Rev. Neph. 12, 68–70 (2016).

    CAS  Google Scholar 

  14. Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007). An important paper describing the role of HIF in kidney fibrosis development.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Humphreys, B. D. et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Invest. 123, 4023–4035 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011). A comprehensive transcript-profiling dataset from a human control and diabetic kidney disease dataset.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, Y. H. et al. Steroids in the treatment of IgA nephropathy to the improvement of renal survival: a systematic review and meta-analysis. PLoS ONE 6, e18788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Perico, N., Benigni, A. & Remuzzi, G. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. Nat. Rev. Drug Discov. 7, 936–953 (2008).

    CAS  PubMed  Google Scholar 

  20. Denker, M. et al. Chronic Renal Insufficiency Cohort Study (CRIC): overview and summary of selected findings. Clin. J. Am. Soc. Nephrol. 10, 2073–2083 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Simons, J. L. et al. Modulation of glomerular hypertension defines susceptibility to progressive glomerular injury. Kidney Int. 46, 396–404 (1994).

    CAS  PubMed  Google Scholar 

  22. Dunn, B. R. et al. Prevention of glomerular capillary hypertension in experimental diabetes mellitus obviates functional and structural glomerular injury. J. Hypertens. 4 (Suppl.), S251–S254 (1986).

    CAS  Google Scholar 

  23. Hostetter, T. H., Olson, J. L., Rennke, H. G., Venkatachalam, M. A. & Brenner, B. M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. J. Am. Soc. Nephrol. 12, 1315–1325 (2001).

    CAS  Google Scholar 

  24. MacKinnon, M. et al. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am. J. Kidney Dis. 48, 8–20 (2006).

    CAS  PubMed  Google Scholar 

  25. Hallan, S. et al. Obesity, smoking, and physical inactivity as risk factors for CKD: are men more vulnerable? Am. J. Kidney Dis. 47, 396–405 (2006).

    PubMed  Google Scholar 

  26. Dobre, M., Rahman, M. & Hostetter, T. H. Current status of bicarbonate in CKD. J. Am. Soc. Nephrol. 26, 515–523 (2015).

    CAS  PubMed  Google Scholar 

  27. Zatz, R. et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77, 1925–1930 (1986). An important study defining the role of glomerular capillary hyperfiltration. Controlling capillary pressure can provide therapeutic benefit in controlling glomerulosclerosis development.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. New Engl. J. Med. 329, 1456–1462 (1993).

    CAS  PubMed  Google Scholar 

  29. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. New Engl. J. Med. 334, 939–945 (1996).

    CAS  PubMed  Google Scholar 

  30. Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. New Engl. J. Med. 354, 131–140 (2006).

    CAS  PubMed  Google Scholar 

  31. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. New Engl. J. Med. 345, 851–860 (2001).

    CAS  PubMed  Google Scholar 

  32. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. New Engl. J. Med. 345, 861–869 (2001). A crucial study demonstrating the effectiveness of ARBs in slowing kidney function decline.

    CAS  PubMed  Google Scholar 

  33. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. New Engl. J. Med. 345, 870–878 (2001). Another crucial study demonstrating the effectiveness of ARBs in slowing kidney function decline.

    CAS  PubMed  Google Scholar 

  34. Schoolwerth, A. C. et al. Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association. Circulation 104, 1985–1991 (2001).

    CAS  PubMed  Google Scholar 

  35. de Zeeuw, D. et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 65, 2309–2320 (2004).

    CAS  PubMed  Google Scholar 

  36. Heerspink, H. J. Therapeutic approaches in lowering albuminuria: travels along the renin–angiotensin–aldosterone-system pathway. Adv. Chron. Kidney Dis. 18, 290–299 (2011).

    Google Scholar 

  37. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. New Engl. J. Med. 369, 1892–1903 (2013).

    CAS  PubMed  Google Scholar 

  38. Marquez, D. F., Ruiz-Hurtado, G., Ruilope, L. M. & Segura, J. An update of the blockade of the renin angiotensin aldosterone system in clinical practice. Expert Opin. Pharmacother. 16, 2283–2292 (2015).

    PubMed  Google Scholar 

  39. Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. New Engl. J. Med. 370, 1514–1523 (2014).

    CAS  PubMed  Google Scholar 

  40. Xie, X. et al. Renin–angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a bayesian network meta-analysis of randomized clinical trials. Am. J. Kidney Dis. 67, 728–741 (2015).

    PubMed  Google Scholar 

  41. ONTARGET Investigators et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. New Engl. J. Med. 358, 1547–1559 (2008).

  42. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. New Engl. J. Med. 367, 2204–2213 (2012). A study describing the effect of renin inhibitors on renal end points.

    CAS  PubMed  Google Scholar 

  43. Pearce, D. et al. Collecting duct principal cell transport processes and their regulation. Clin. J. Am. Soc. Nephrol. 10, 135–146 (2015).

    CAS  PubMed  Google Scholar 

  44. Azibani, F., Fazal, L., Chatziantoniou, C., Samuel, J. L. & Delcayre, C. Aldosterone mediates cardiac fibrosis in the setting of hypertension. Curr. Hypertension Rep. 15, 395–400 (2013).

    CAS  Google Scholar 

  45. Azibani, F. et al. Aldosterone inhibits antifibrotic factors in mouse hypertensive heart. Hypertension 59, 1179–1187 (2012).

    CAS  PubMed  Google Scholar 

  46. Ma, J. et al. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 69, 1064–1072 (2006).

    CAS  PubMed  Google Scholar 

  47. Juurlink, D. N. et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. New Engl. J. Med. 351, 543–551 (2004).

    CAS  PubMed  Google Scholar 

  48. Saito, M., Takada, M., Hirooka, K., Isobe, F. & Yasumura, Y. Serum concentration of potassium in chronic heart failure patients administered spironolactone plus furosemide and either enalapril maleate, losartan potassium or candesartan cilexetil. J. Clin. Pharm. Ther. 30, 603–610 (2005).

    CAS  PubMed  Google Scholar 

  49. Esteghamati, A. et al. Long-term effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: a randomized clinical trial. Nephrol. Dial. Transplant. 28, 2823–2833 (2013).

    CAS  PubMed  Google Scholar 

  50. Bakris, G. L. et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314, 884–894 (2015).

    CAS  PubMed  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/show/NCT02345057 (2015).

  52. Dessapt-Baradez, C. et al. Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. J. Am. Soc. Nephrol. 25, 33–42 (2014).

    CAS  PubMed  Google Scholar 

  53. Mogensen, C. E. Progression of nephropathy in long-term diabetics with proteinuria and effect of initial anti-hypertensive treatment. Scand. J. Clin. Lab Invest. 36, 383–388 (1976).

    CAS  PubMed  Google Scholar 

  54. Mogensen, C. E. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. New Engl. J. Med. 310, 356–360 (1984).

    CAS  PubMed  Google Scholar 

  55. Osterby, R. Renal pathology in diabetes mellitus. Curr. Opin. Nephrol. Hypertens. 2, 475–483 (1993).

    CAS  PubMed  Google Scholar 

  56. Osterby, R. et al. Neovascularization at the vascular pole region in diabetic glomerulopathy. Nephrol. Dial. Transplant. 14, 348–352 (1999).

    CAS  PubMed  Google Scholar 

  57. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Scott, R. P. & Quaggin, S. E. Review series: the cell biology of renal filtration. J. Cell Biol. 209, 199–210 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dane, M. J. C. et al. A microscopic view on the renal endothelial glycocalyx. Am. J. Physiol. Renal Physiol. 308, F956–F966 (2015).

    CAS  PubMed  Google Scholar 

  60. Perrin, R. M., Harper, S. J. & Bates, D. O. A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem. Biophys. 49, 65–72 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nieuwdorp, M. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55, 1127–1132 (2006).

    CAS  PubMed  Google Scholar 

  62. Nussbaum, C. et al. Early microvascular changes with loss of the glycocalyx in children with type 1 diabetes. J. Pediatr. 164, 584–589.e1 (2014).

    PubMed  Google Scholar 

  63. Heerspink, H. L. et al. Effects of sulodexide in patients with type 2 diabetes and persistent albuminuria. Nephrol. Dial. Transplant. 23, 1946–1954 (2008).

    CAS  PubMed  Google Scholar 

  64. Kristova, V., Liskova, S., Sotnikova, R., Vojtko, R. & Kurtansky, A. Sulodexide improves endothelial dysfunction in streptozotocin-induced diabetes in rats. Physiol. Res. 57, 491–494 (2008).

    CAS  PubMed  Google Scholar 

  65. Lewis, E. J. et al. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am. J. Kidney Dis. 58, 729–736 (2011).

    CAS  PubMed  Google Scholar 

  66. Basche, M. et al. A Phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin. Cancer Res. 12, 5471–5480 (2006).

    CAS  PubMed  Google Scholar 

  67. Barton, M., Mullins, J. J., Bailey, M. A. & Kretzler, M. Role of endothelin receptors for renal protection and survival in hypertension: waiting for clinical trials. Hypertension 48, 834–837 (2006).

    CAS  PubMed  Google Scholar 

  68. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014). An important publication indicating the crucial role of endothelial cells in glomerulosclerosis development.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. de Zeeuw, D. et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1083–1093 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Saleh, M. A., Boesen, E. I., Pollock, J. S., Savin, V. J. & Pollock, D. M. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia 54, 979–988 (2011).

    CAS  PubMed  Google Scholar 

  71. Saleh, M. A., Boesen, E. I., Pollock, J. S., Savin, V. J. & Pollock, D. M. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 56, 942–949 (2010).

    CAS  PubMed  Google Scholar 

  72. Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boffa, J. J., Tharaux, P. L., Dussaule, J. C. & Chatziantoniou, C. Regression of renal vascular fibrosis by endothelin receptor antagonism. Hypertension 37, 490–496 (2001).

    CAS  PubMed  Google Scholar 

  74. Hocher, B. et al. Effects of endothelin receptor antagonists on the progression of diabetic nephropathy. Nephron 87, 161–169 (2001).

    CAS  PubMed  Google Scholar 

  75. Mann, J. F. et al. Avosentan for overt diabetic nephropathy. J. Am. Soc. Nephrol. 21, 527–535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ritz, E. & Wenzel, R. R. Endothelin antagonist as add-on treatment for proteinuria in diabetic nephropathy: is there light at the end of the tunnel? J. Am. Soc. Nephrol. 22, 593–595 (2011).

    PubMed  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/show/NCT01858532 (2015).

  78. Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013).

    CAS  PubMed  Google Scholar 

  79. Bohle, A. et al. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol. Res. Pract. 187, 251–259 (1991).

    CAS  PubMed  Google Scholar 

  80. Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vlassara, H., Brownlee, M., Manogue, K. R., Dinarello, C. A. & Pasagian, A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240, 1546–1548 (1988).

    CAS  PubMed  Google Scholar 

  82. Hasegawa, G. et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 40, 1007–1012 (1991).

    CAS  PubMed  Google Scholar 

  83. Niewczas, M. A. et al. Serum concentrations of markers of TNFα and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. 4, 62–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Niewczas, M. A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 23, 507–515 (2012). A recent publication indicating that TNFR1 and TNFR2 levels can predict nephropathy development in patients with diabetes.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hawari, F. I. et al. Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors. Proc. Natl Acad. Sci. USA 101, 1297–1302 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tartaglia, L. A., Pennica, D. & Goeddel, D. V. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J. Biol. Chem. 268, 18542–18548 (1993).

    CAS  PubMed  Google Scholar 

  87. Pober, J. S., Min, W. & Bradley, J. R. Mechanisms of endothelial dysfunction, injury, and death. Annu. Rev. Pathol. 4, 71–95 (2009).

    CAS  PubMed  Google Scholar 

  88. Al-Lamki, R. S. et al. TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J. 19, 1637–1645 (2005).

    CAS  PubMed  Google Scholar 

  89. Tartaglia, L. A., Rothe, M., Hu, Y. F. & Goeddel, D. V. Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 73, 213–216 (1993).

    CAS  PubMed  Google Scholar 

  90. Godwin, P. et al. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Frontiers Oncol. 3, 120 (2013).

    CAS  Google Scholar 

  91. Al-Lamki, R. S. & Mayadas, T. N. TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int. 87, 281–296 (2015).

    CAS  PubMed  Google Scholar 

  92. Rastogi, S., Rizwani, W., Joshi, B., Kunigal, S. & Chellappan, S. P. TNF-α response of vascular endothelial and vascular smooth muscle cells involve differential utilization of ASK1 kinase and p73. Cell Death Differ. 19, 274–283 (2012).

    CAS  PubMed  Google Scholar 

  93. Tsai, C. T. et al. TNF-α down-regulates sarcoplasmic reticulum Ca2+ ATPase expression and leads to left ventricular diastolic dysfunction through binding of NF-κB to promoter response element. Cardiovascular Res. 105, 318–329 (2015).

    CAS  Google Scholar 

  94. Moriwaki, Y. et al. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol. 44, 215–218 (2007).

    CAS  PubMed  Google Scholar 

  95. Matsushima, K., Larsen, C. G., DuBois, G. C. & Oppenheim, J. J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169, 1485–1490 (1989).

    CAS  PubMed  Google Scholar 

  96. Deshmane, S. L., Kremlev, S., Amini, S. & Sawaya, B. E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29, 313–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marisa, C. et al. MCP-1 and MIP-2 expression and production in BB diabetic rat: effect of chronic hypoxia. Mol. Cell. Biochem. 276, 105–111 (2005).

    CAS  PubMed  Google Scholar 

  98. Mine, S. et al. Increased expression levels of monocyte CCR2 and monocyte chemoattractant protein-1 in patients with diabetes mellitus. Biochem. Biophys. Res. Commun. 344, 780–785 (2006).

    CAS  PubMed  Google Scholar 

  99. Wada, T. et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 58, 1492–1499 (2000).

    CAS  PubMed  Google Scholar 

  100. Titan, S. M. et al. Urinary MCP-1 and RBP: independent predictors of renal outcome in macroalbuminuric diabetic nephropathy. J. Diabetes Complications 26, 546–553 (2012).

    CAS  PubMed  Google Scholar 

  101. Seok, S. J. et al. Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrol. Dial. Transplant. 28, 1700–1710 (2013).

    CAS  PubMed  Google Scholar 

  102. Awad, A. S. et al. Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am. J. Physiol. Renal Physiol. 301, F1358–F1366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov [online], https://www.clinicaltrials.gov/ct2/show/NCT01712061 (2014).

  104. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/show/NCT01447147 (2014).

  105. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    CAS  PubMed  Google Scholar 

  106. Berger, S. & Daha, M. Complement in glomerular injury. Seminars Immunopathol. 29, 375–384 (2007).

    CAS  Google Scholar 

  107. Stark, G. R. & Darnell, J. E. Jr The JAK–STAT pathway at twenty. Immunity 36, 503–514, (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Thacker, S. G. et al. The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J. Immunol. 185, 4457–4469 (2010).

    CAS  PubMed  Google Scholar 

  109. Alexander, J. J. et al. Mouse podocyte complement factor H: the functional analog to human complement receptor 1. J. Am. Soc. Nephrol. 18, 1157–1166 (2007).

    CAS  PubMed  Google Scholar 

  110. O'Shea, John, J. & Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sandborn, W. J. et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. New Engl. J. Med. 367, 616–624 (2012).

    CAS  PubMed  Google Scholar 

  113. Vyas, D., O'Dell, K. M., Bandy, J. L. & Boyce, E. G. Tofacitinib: the first Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis. Ann. Pharmacother. 47, 1524–1531 (2013).

    CAS  PubMed  Google Scholar 

  114. Neusser, M. A. et al. Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am. J. Pathol. 176, 594–607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Banes, A. K. et al. Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am. J. Physiol. Renal Physiol. 286, F653–F659 (2004).

    CAS  PubMed  Google Scholar 

  116. Marrero, M. B., Banes-Berceli, A. K., Stern, D. M. & Eaton, D. C. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 290, F762–F768 (2006).

    CAS  PubMed  Google Scholar 

  117. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. New Engl. J. Med. 367, 495–507 (2012).

    CAS  PubMed  Google Scholar 

  118. Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785–791 (2001).

    CAS  PubMed  Google Scholar 

  119. Santulli, G. Angiopoietin-like proteins: a comprehensive look. Frontiers Endocrinol. 5, 4 (2014).

    Google Scholar 

  120. Tuttle, K. R. et al. Baricitinib in diabetic kidney disease: results from a Phase 2, multicenter, randomized, double-blind, placebo-controlled study. 75th Annual Meeting of the American Diabetes Association [online], http://app.core-apps.com/tristar_ada15/abstract/1678f29f2a56ce35baedcc25f3994ccb (2015).

    Google Scholar 

  121. Mathern, D. R. & Heeger, P. S. Molecules great and small: the complement system. Clin. J. Am. Soc. Nephrol. 10, 1636–1650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 25, 1256–1264 (2007).

    CAS  PubMed  Google Scholar 

  123. Licht, C. et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int. 87, 1061–1073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Flyvbjerg, A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat. Rev. Endocrinol. 6, 94–101 (2010).

    CAS  PubMed  Google Scholar 

  125. Shao, Z. & Schwarz, H. CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J. Leukocyte Biol. 89, 21–29 (2011).

    CAS  PubMed  Google Scholar 

  126. Hansen, H. G. et al. Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis. Proteom. Clin. Appl. 4, 697–705 (2010).

    CAS  Google Scholar 

  127. Li, L. et al. C3a receptor antagonist ameliorates inflammatory and fibrotic signals in type 2 diabetic nephropathy by suppressing the activation of TGF-β/smad3 and IKBα pathway. PLoS ONE 9, e113639 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Zhao, Y., Conze, D. B., Hanover, J. A. & Ashwell, J. D. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J. Biol. Chem. 282, 7777–7782 (2007).

    CAS  PubMed  Google Scholar 

  129. Zhang, C. et al. TNF-α suppresses prolyl-4-hydroxylase α1 expression via the ASK1–JNK–NonO pathway. Arterioscler. Thromb. Vascular Biol. 27, 1760–1767 (2007).

    CAS  Google Scholar 

  130. Yang, M. et al. ASK1–JNK signaling cascade mediates Ad-ST13-induced apoptosis in colorectal HCT116 cells. J. Cell. Biochem. 110, 581–588 (2010).

    CAS  PubMed  Google Scholar 

  131. Nishitoh, H. et al. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell 2, 389–395 (1998).

    CAS  PubMed  Google Scholar 

  132. Tesch, G. H. et al. ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice. Diabetes 64, 3903–3913 (2015).

    CAS  PubMed  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02177786?term=GS-4997&rank=3 (2015).

  134. Lin, J. H., Zhang, J. J., Lin, S. L. & Chertow, G. M. Design of a Phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease. Nephron. Exp. Nephrol. 129, 29–33 (2015).

    CAS  Google Scholar 

  135. Ledo, N. et al. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J. Am. Soc. Nephrol. 26, 692–714 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Salmi, M., Kalimo, K. & Jalkanen, S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J. Exp. Med. 178, 2255–2260 (1993).

    CAS  PubMed  Google Scholar 

  137. Smith, D. J. et al. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J. Exp. Med. 188, 17–27 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Koskinen, K. et al. Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood 103, 3388–3395 (2004).

    CAS  PubMed  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02358096?term=NCT02358096&rank=1 (2015).

  140. Friedman, S. L., Sheppard, D., Duffield, J. S. & Violette, S. Therapy for fibrotic diseases: nearing the starting line. Sci. Transl. Med. 5, 167sr161 (2013).

    Google Scholar 

  141. Huang, S. & Susztak, K. Epithelial plasticity versus EMT in kidney fibrosis. Trends Mol. Med. 22, 4–6 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Kopp, J. B. et al. Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab. Invest. 74, 991–1003 (1996).

    CAS  PubMed  Google Scholar 

  143. Voelker, J. R. et al. Renal efficacy and safety of anti-TGF-β1 therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 25 (Abstract edition), 1151 (2014).

    Google Scholar 

  144. Varga, J. & Pasche, B. Antitransforming growth factor-β therapy in fibrosis: recent progress and implications for systemic sclerosis. Curr. Opin. Rheumatol. 20, 720–728 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Porte, J. & Jenkins, G. Assessment of the effect of potential antifibrotic compounds on total and αVβ6 integrin-mediated TGF-β activation. Pharmacol. Res. Perspect. 2, e00030 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Eberlein, C. et al. A human monoclonal antibody 264RAD targeting αVβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene 32, 4406–4416 (2013).

    CAS  PubMed  Google Scholar 

  147. Karimi-Shah, B. A. & Chowdhury, B. A. Forced vital capacity in idiopathic pulmonary fibrosis — FDA review of pirfenidone and nintedanib. New Engl. J. Med. 372, 1189–1191 (2015).

    PubMed  Google Scholar 

  148. Xiang, X. H. et al. Pirfenidone inhibits proliferation, arrests the cell cycle, and downregulates heat shock protein47 and collagen type I in rat hepatic stellate cells in vitro. Mol. Med. Rep. 12, 309–314 (2015).

    CAS  PubMed  Google Scholar 

  149. RamachandraRao, S. P. et al. Pirfenidone is renoprotective in diabetic kidney disease. J. Am. Soc. Nephrol. 20, 1765–1775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sharma, K. et al. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol. 22, 1144–1151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Pugliese, G., Iacobini, C., Blasetti Fantauzzi, C. & Menini, S. The dark and bright side of atherosclerotic calcification. Atherosclerosis 238, 220–230 (2015).

    CAS  PubMed  Google Scholar 

  152. Drechsler, C. et al. Galectin-3, renal function, and clinical outcomes: results from the LURIC and 4D studies. J. Am. Soc. Nephrol. 26, 2213–2221 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Matsumoto, N. et al. A possible role of galectin-9 in the pulmonary fibrosis of patients with interstitial pneumonia. Lung 191, 191–198 (2013).

    CAS  PubMed  Google Scholar 

  154. Tager, A. M. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 14, 45–54 (2008).

    CAS  PubMed  Google Scholar 

  155. Aikawa, S., Hashimoto, T., Kano, K. & Aoki, J. Lysophosphatidic acid as a lipid mediator with multiple biological actions. J. Biochem. 157, 81–89 (2015).

    CAS  PubMed  Google Scholar 

  156. Castelino, F. V. et al. Amelioration of dermal fibrosis by genetic deletion or pharmacologic antagonism of lysophosphatidic acid receptor 1 in a mouse model of scleroderma. Arthritis Rheumatism 63, 1405–1415 (2011).

    CAS  PubMed  Google Scholar 

  157. Llona-Minguez, S., Ghassemian, A. & Helleday, T. Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox. Progress Lipid Res. 58, 51–75 (2015).

    CAS  Google Scholar 

  158. Shigeki, S., Murakami, T., Yata, N. & Ikuta, Y. Treatment of keloid and hypertrophic scars by iontophoretic transdermal delivery of tranilast. Scand. J. Plast. Reconstr. Surg. Hand Surg. 31, 151–158 (1997).

    CAS  PubMed  Google Scholar 

  159. Yamada, H., Tajima, S. & Nishikawa, T. Tranilast inhibits collagen synthesis in normal, scleroderma and keloid fibroblasts at a late passage culture but not at an early passage culture. J. Dermatol. Sci. 9, 45–47 (1995).

    CAS  PubMed  Google Scholar 

  160. Lau, X., Zhang, Y., Kelly, D. J. & Stapleton, D. I. Attenuation of Armanni–Ebstein lesions in a rat model of diabetes by a new anti-fibrotic, anti-inflammatory agent, FT011. Diabetologia 56, 675–679 (2013).

    CAS  PubMed  Google Scholar 

  161. Gilbert, R. E. et al. A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS ONE 7, e47160 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Decitre, M. et al. Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab. Invest. 78, 143–151 (1998).

    CAS  PubMed  Google Scholar 

  163. Kim, Y., Peyrol, S., So, C. K., Boyd, C. D. & Csiszar, K. Coexpression of the lysyl oxidase-like gene (LOXL) and the gene encoding type III procollagen in induced liver fibrosis. J. Cell. Biochem. 72, 181–188 (1999).

    PubMed  Google Scholar 

  164. Van Bergen, T. et al. The role of LOX and LOXL2 in scar formation after glaucoma surgery. Invest. Ophthalmol. Vis. Sci. 54, 5788–5796 (2013).

    CAS  PubMed  Google Scholar 

  165. Yang, T. et al. miR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of PI3K–AKT pathway in human lung fibroblasts. J. Cell. Biochem. 114, 1336–1342 (2013).

    CAS  PubMed  Google Scholar 

  166. Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22, 1462–1474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Gomez, I. G. et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 125, 141–156 (2015). An important paper demonstrating that miR-21 interferes with metabolic changes in the kidney and could represent a new therapeutic target for CKD.

    PubMed  Google Scholar 

  168. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008). The first demonstration that developmental morphogens such as Notch have key roles in kidney disease development.

    CAS  PubMed  Google Scholar 

  169. Kramann, R. et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Invest., http://dx.doi.org/10.1172/JCI74929 (2015). This study defines the crucial role of Hedgehog and GLI2 in interstitial fibroblasts. This could be a novel therapeutic target for CKD.

  170. Sirin, Y. & Susztak, K. Notch in the kidney: development and disease. J. Pathol. 226, 394–403 (2012).

    CAS  PubMed  Google Scholar 

  171. Kawakami, T., Ren, S. & Duffield, J. S. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J. Pathol. 229, 221–231 (2013).

    CAS  PubMed  Google Scholar 

  172. Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New Engl. J. Med. 353, 2643–2653 (2005).

    PubMed  Google Scholar 

  173. Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).

    PubMed  Google Scholar 

  174. Susztak, K., Raff, A. C., Schiffer, M. & Bottinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55, 225–233 (2006). One of the first papers indicating the crucial role of podocytes and podocyte ROS in diabetic kidney disease development.

    CAS  PubMed  Google Scholar 

  175. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    CAS  PubMed  Google Scholar 

  176. Shurraw, S. et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch. Internal Med. 171, 1920–1927 (2011).

    Google Scholar 

  177. [No authors listed.] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. New Engl. J. Med. 329, 977–986 (1993). This paper demonstrates that patients with early strict glycaemic control continue to have fewer complications even after 25 years and establishes the concept of 'metabolic memory'.

  178. Miao, F. et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63, 1748–1762 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Susztak, K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J. Am. Soc. Nephrol. 25, 10–17 (2014).

    CAS  PubMed  Google Scholar 

  180. El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008). One of the first demonstrations that high glucose levels lead to persistent epigenetic changes, potentially providing the mechanistic basis for long term 'memory' effect of metabolic alterations.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ko, Y. A. et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14, R108 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015). A combined systems biology and mechanistic study showing the dysregulation of metabolic pathways in patients with CKD. These pathways could provide a new therapeutic target for CKD.

    CAS  PubMed  Google Scholar 

  183. Ly, J. P. et al. The Sweet Pee model for Sglt2 mutation. J. Am. Soc. Nephrol. 22, 113–123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Yale, J. F. et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes. Metab. 16, 1016–1027 (2014).

    CAS  PubMed  Google Scholar 

  185. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New Engl. J. Med. 373, 2117–2128 (2015). A study demonstrating reduction of cardiovascular disease in patients treated with SGLT2 inhibitors.

    CAS  PubMed  Google Scholar 

  186. Vallon, V. et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 306, F194–F204 (2014).

    CAS  PubMed  Google Scholar 

  187. Gembardt, F. et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal Physiol. 307, F317–F325 (2014). References 187 and 188 demonstrate that SGLT2 inhibitors reduce albuminuria and other features of diabetic kidney disease.

    CAS  PubMed  Google Scholar 

  188. Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    CAS  PubMed  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02065791 (2015).

  190. Hallman, T. M. et al. The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions. J. Autoimmun. 26, 1–6 (2006).

    CAS  PubMed  Google Scholar 

  191. Malaga-Dieguez, L. & Susztak, K. ADCK4 “reenergizes” nephrotic syndrome. J. Clin. Invest. 123, 4996–4999 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54, 2328–2335 (2005).

    CAS  PubMed  Google Scholar 

  193. Li, S. et al. Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 305, F618–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Davis, T. M. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54, 280–290 (2011).

    CAS  PubMed  Google Scholar 

  195. Ting, R. D. et al. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study. Diabetes Care 35, 218–225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Cefalu, W. T. & Watson, K. Intensive glycemic control and cardiovascular disease observations from the ACCORD study: now what can a clinician possibly think? Diabetes 57, 1163–1165 (2008).

    CAS  PubMed  Google Scholar 

  197. Noto, D., Cefalu, A. B. & Averna, M. R. Beyond statins: new lipid lowering strategies to reduce cardiovascular risk. Curr. Atherosclerosis Rep. 16, 414 (2014).

    Google Scholar 

  198. Han, S. H. et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014121181 (2015).

  199. Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  201. Xu, H. F. et al. MicroRNA21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol. Med. Rep. 10, 161–168 (2014).

    CAS  PubMed  Google Scholar 

  202. Thum, T. & Lorenzen, J. M. Cardiac fibrosis revisited by microRNA therapeutics. Circulation 126, 800–802 (2012).

    PubMed  Google Scholar 

  203. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4, 121ra118 (2012).

    Google Scholar 

  204. Lai, J. Y. et al. MicroRNA-21 in glomerular injury. J. Am. Soc. Nephrol. 26, 805–816 (2015).

    CAS  PubMed  Google Scholar 

  205. Nishikawa, T., Edelstein, D. & Brownlee, M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int. Suppl. 77, S26–S30 (2000).

    CAS  PubMed  Google Scholar 

  206. Gorin, Y. et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am. J. Physiol. Renal Physiol. 308, F1276–F1287 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Maalouf, R. M. et al. Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am. J. Physiol. Cell Physiol. 302, C597–C604 (2012).

    CAS  PubMed  Google Scholar 

  208. Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    CAS  PubMed  Google Scholar 

  209. Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting Nox4–Nrf2 redox imbalance. Sci. Transl. Med. 6, 231ra247 (2014).

    Google Scholar 

  210. Lewis, E. J. et al. Pyridorin in type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 23, 131–136 (2012).

    CAS  PubMed  Google Scholar 

  211. Dwyer, J. P. et al. Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron 129, 22–28 (2015).

    CAS  PubMed  Google Scholar 

  212. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010). The first paper demonstrating that epigenetic changes mediate fibrosis development.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Gilbert, R. E. et al. Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int. 79, 1312–1321 (2011).

    CAS  PubMed  Google Scholar 

  214. Van Beneden, K. et al. Valproic acid attenuates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 1863–1875 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kos, C. H. et al. Mice deficient in α-actinin-4 have severe glomerular disease. J. Clin. Invest. 111, 1683–1690 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pavenstädt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    PubMed  Google Scholar 

  217. Ly, J., Alexander, M. & Quaggin, S. E. A podocentric view of nephrology. Curr. Opin. Nephrol. Hypertens. 13, 299–305 (2004).

    PubMed  Google Scholar 

  218. George, B. et al. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J. Clin. Invest. 122, 674–692 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Tian, X. et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J. Clin. Invest. 124, 1098–1113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J. Clin. Invest. 122, 4401–4411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    CAS  PubMed  Google Scholar 

  223. Greaves, P. & Gribben, J. G. The role of B7 family molecules in hematologic malignancy. Blood 121, 734–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. New Engl. J. Med. 369, 2416–2423 (2013). The first paper demonstrating the therapeutic efficacy of abatacept in patients with focal glomerulosclerosis.

    CAS  PubMed  Google Scholar 

  225. Korhonen, R. & Moilanen, E. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Bas. Clin. Pharmacol. Toxicol. 104, 276–284 (2009).

    CAS  Google Scholar 

  226. Benigni, A., Gagliardini, E. & Remuzzi, G. Abatacept in B7-1-positive proteinuric kidney disease. New Engl. J. Med. 370, 1261–1263 (2014).

    CAS  PubMed  Google Scholar 

  227. Fiorina, P. et al. Role of podocyte B7-1 in diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1415–1429 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Schiffer, M. et al. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat. Med. 21, 601–608 (2015). This paper demonstrates that targeting the actin-dependent dynamin oligomerization in podocytes provided a new potential avenue to treat proteinuria and glomerulosclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Maile, L. A. et al. Insulin-like growth factor-i signaling in smooth muscle cells is regulated by ligand binding to the 177CYDMKTTC184 sequence of the β3-subunit of αVβ3. Mol. Endocrinol. 20, 405–413 (2006).

    CAS  PubMed  Google Scholar 

  230. Maile, L. A. et al. A monoclonal antibody against αVβ3 integrin inhibits development of atherosclerotic lesions in diabetic pigs. Sci. Transl Med. 2, 18ra11 (2010).

    PubMed  PubMed Central  Google Scholar 

  231. Maile, L. A. et al. Blocking αVβ3 integrin ligand occupancy inhibits the progression of albuminuria in diabetic rats. J. Diabetes Res. 2014, 10 (2014).

    Google Scholar 

  232. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02251067?term=NCT02251067&rank=1 (2015).

  233. Afsar, B. et al. Phosphodiesterase type 5 inhibitors and kidney disease. Int. Urol. Nephrol. 47, 1521–1528 (2015).

    CAS  PubMed  Google Scholar 

  234. Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Takata, Y. et al. PPARδ-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proc. Natl Acad. Sci. USA 105, 4277–4282 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Ito, H. et al. Hyperuricemia is independently associated with coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. PLoS ONE 6, e27817 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Goicoechea, M. et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am. J. Kidney Dis. 65, 543–549 (2015).

    CAS  PubMed  Google Scholar 

  238. Goicoechea, M. et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin. J. Am. Soc. Nephrol. 5, 1388–1393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Siu, Y. P., Leung, K. T., Tong, M. K. & Kwan, T. H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am. J. Kidney Dis. 47, 51–59 (2006).

    CAS  PubMed  Google Scholar 

  240. Maahs, D. M. et al. Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr. Diabetes Rep. 13, 550–559 (2013).

    CAS  Google Scholar 

  241. Nath, K. A., Hostetter, M. K. & Hostetter, T. H. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J. Clin. Invest. 76, 667–675 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Dobre, M. et al. Persistent high serum bicarbonate and the risk of heart failure in patients with chronic kidney disease (CKD): a report from the Chronic Renal Insufficiency Cohort (CRIC) study. J. Am. Heart Associ. 4, e001599 (2015).

    Google Scholar 

  243. Strippoli, G. F., Craig, J. C. & Schena, F. P. The number, quality, and coverage of randomized controlled trials in nephrology. J. Am. Soc. Nephrol. 15, 411–419 (2004).

    PubMed  Google Scholar 

  244. Szczech, L. A. et al. Primary care detection of chronic kidney disease in adults with type-2 diabetes: the ADD-CKD Study (awareness, detection and drug therapy in type 2 diabetes and chronic kidney disease). PLoS ONE 9, e110535 (2014).

    PubMed  PubMed Central  Google Scholar 

  245. Tuot, D. S. et al. The Kidney Awareness Registry and Education (KARE) study: protocol of a randomized controlled trial to enhance provider and patient engagement with chronic kidney disease. BMC Nephrol. 16, 166 (2015).

    PubMed  PubMed Central  Google Scholar 

  246. Nitta, K., Okada, K., Yanai, M. & Takahashi, S. The Kidney Early Evaluation Program (KEEP) of Japan. Clin. Nephrol. 83, 52–55 (2015).

    PubMed  Google Scholar 

  247. Narva, A. S., Norton, J. M. & Boulware, L. E. Educating patients about CKD: the path to self-management and patient-centered care. Clin. J. Am. Soc. Nephrol. http://dx.doi.org/10.2215/CJN.07680715 (2015).

  248. Sutton, A. J. et al. Methods used in economic evaluations of chronic kidney disease testing — a systematic review. PLoS ONE 10, e0140063 (2015).

    PubMed  PubMed Central  Google Scholar 

  249. Fox, C. H. et al. Improving evidence-based primary care for chronic kidney disease: study protocol for a cluster randomized control trial for translating evidence into practice (TRANSLATE CKD). Implement. Sci. 8, 88 (2013).

    PubMed  PubMed Central  Google Scholar 

  250. Levin, A., Stevens, P. E., Coresh, J. & Levey, A. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease. Ann. Internal Med. 161, 81–82 (2014).

    Google Scholar 

  251. Hemmelgarn, B. R. et al. Nephrology visits and health care resource use before and after reporting estimated glomerular filtration rate. JAMA 303, 1151–1158 (2010).

    CAS  PubMed  Google Scholar 

  252. Hemmelgarn, B. R. et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303, 423–429 (2010).

    CAS  PubMed  Google Scholar 

  253. Zhang, Z. et al. Importance of baseline distribution of proteinuria in renal outcomes trials: lessons from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) study. J. Am. Soc. Nephrol. 16, 1775–1780 (2005).

    CAS  PubMed  Google Scholar 

  254. Eijkelkamp, W. B. et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J. Am. Soc. Nephrol. 18, 1540–1546 (2007).

    CAS  PubMed  Google Scholar 

  255. Holtkamp, F. A. et al. Albuminuria and blood pressure, independent targets for cardioprotective therapy in patients with diabetes and nephropathy: a post hoc analysis of the combined RENAAL and IDNT trials. Eur. Heart J. 32, 1493–1499 (2011).

    CAS  PubMed  Google Scholar 

  256. Chou, Y. H. et al. Clinical outcomes and predictors for ESRD and mortality in primary GN. Clin. J. Am. Soc. Nephrol. 7, 1401–1408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Perkins, B. A. et al. Regression of microalbuminuria in type 1 diabetes. New Engl. J. Med. 348, 2285–2293 (2003).

    CAS  PubMed  Google Scholar 

  258. Levey, A. S. et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis. 64, 821–835 (2014). A statistical comparison of 57% eGFR reduction in kidney function versus smaller changes in kidney function (for example, 40% eGFR reduction) in predicting outcomes.

    PubMed  Google Scholar 

  259. Inker, L. A. et al. GFR decline as an alternative end point to kidney failure in clinical trials: a meta-analysis of treatment effects from 37 randomized trials. Am. J. Kidney Dis. 64, 848–859 (2014).

    PubMed  Google Scholar 

  260. Lambers Heerspink, H. J. et al. GFR decline and subsequent risk of established kidney outcomes: a meta-analysis of 37 randomized controlled trials. Am. J. Kidney Dis. 64, 860–866 (2014).

    PubMed  Google Scholar 

  261. Lambers Heerspink, H. J. et al. Estimated GFR decline as a surrogate end point for kidney failure: a post hoc analysis from the Reduction of End Points in Non-Insulin-Dependent Diabetes With the Angiotensin II Antagonist Losartan (RENAAL) study and Irbesartan Diabetic Nephropathy Trial (IDNT). Am. J. Kidney Dis. 63, 244–250 (2014).

    CAS  PubMed  Google Scholar 

  262. Greene, T. et al. Utility and validity of estimated GFR-based surrogate time-to-event end points in CKD: a simulation study. Am. J. Kidney Dis. 64, 867–879 (2014).

    PubMed  Google Scholar 

  263. Schievink, B. et al. Prediction of the effect of atrasentan on renal and heart failure outcomes based on short-term changes in multiple risk markers. Eur. J. Prev. Cardiol. http://dx.doi.org/10.1177/2047487315598709 (2015).

  264. Figarola, J. L., Shanmugam, N., Natarajan, R. & Rahbar, S. Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes 56, 647–655 (2007).

    CAS  PubMed  Google Scholar 

  265. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. New Engl. J. Med. 369, 2183–2196 (2013). An important paper showing that patients with G1 and G2 APOL1 variants have faster functional decline.

    CAS  PubMed  Google Scholar 

  266. [No authors listed.] Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 3, 19–62 (2013).

  267. Tangri, N. et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305, 1553–1559 (2011). Crucial paper showing that only 4–6 variables can predict future kidney function decline with high precision.

    CAS  PubMed  Google Scholar 

  268. Landray, M. J. et al. Prediction of ESRD and death among people with CKD: the Chronic Renal Impairment in Birmingham (CRIB) prospective cohort study. Am. J. Kidney Dis. 56, 1082–1094 (2010).

    PubMed  PubMed Central  Google Scholar 

  269. Gohda, T. et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 23, 516–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Sonoda, Y. et al. Circulating TNF receptors 1 and 2 are associated with the severity of renal interstitial fibrosis in IgA nephropathy. PLoS ONE 10, e0122212 (2015).

    PubMed  PubMed Central  Google Scholar 

  271. Lee, S. M. et al. Circulating TNF receptors are significant prognostic biomarkers for idiopathic membranous nephropathy. PLoS ONE 9, e104354 (2014).

    PubMed  PubMed Central  Google Scholar 

  272. Sabbisetti, V. S. et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 25, 2177–2186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Fufaa, G. D. et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia 58, 188–198 (2015).

    CAS  PubMed  Google Scholar 

  274. Kwon, S. H. et al. KIM-1 expression predicts renal outcomes in IgA nephropathy. Clin. Exp. Nephrol. 17, 359–364 (2013).

    CAS  PubMed  Google Scholar 

  275. Hosohata, K. et al. Urinary Kim-1 is a sensitive biomarker for the early stage of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty rats. Diab. Vasc. Dis. Res. 11, 243–250 (2014).

    CAS  PubMed  Google Scholar 

  276. Nielsen, S. E. et al. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy: u-NGAL, u-KIM1 and u-LFABP. Scand. J. Clin. Lab. Invest. 72, 137–142 (2012).

    CAS  PubMed  Google Scholar 

  277. Budoff, M. J. et al. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 58, 519–526 (2011).

    PubMed  PubMed Central  Google Scholar 

  278. Hsu, C. Y. & Bansal, N. Measured GFR as “gold standard” — all that glitters is not gold? Clin. J. Am. Soc. Nephrol. 6, 1813–1814 (2011).

    PubMed  Google Scholar 

  279. Foster, M. C. et al. Filtration markers as predictors of ESRD and mortality in Southwestern American Indians With type 2 diabetes. Am. J. Kidney Dis. 66, 75–83 (2015).

    PubMed  PubMed Central  Google Scholar 

  280. Lafayette, R. A. & Lai, G. Examining chronic kidney disease management in a single center. Clin. Nephrol. 62, 260–266 (2004).

    CAS  PubMed  Google Scholar 

  281. Hsu, C. Y. et al. Measured GFR does not outperform estimated GFR in predicting CKD-related complications. J. Am. Soc. Nephrol. 22, 1931–1937 (2011). An important paper showing that mGFR does not outperform eGFR in large cohorts.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Ku, E. et al. Change in measured GFR versus eGFR and CKD outcomes. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015040341 (2015).

  283. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Antignac, C. et al. The future of polycystic kidney disease research-as seen by the 12 Kaplan Awardees. J. Am. Soc. Nephrol. 26, 2081–2095 (2015).

    PubMed  PubMed Central  Google Scholar 

  285. Hopp, K. et al. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J. Am. Soc. Nephrol. 26, 39–47 (2015).

    CAS  PubMed  Google Scholar 

  286. Patel, V., Chowdhury, R. & Igarashi, P. Advances in the pathogenesis and treatment of polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 18, 99–106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010). This paper shows that coding variants (G1 and G2) in APOL1 are associated with kidney disease development. Owing to a positive selection pressure these variants are present with high allele frequency amongst people of West African descent.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Johnstone, D. B. et al. APOL1 null alleles from a rural village in India do not correlate with glomerulosclerosis. PLoS ONE 7, e51546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Nichols, B. et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 87, 332–342 (2015).

    CAS  PubMed  Google Scholar 

  290. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02156843?term=NCT02156843&rank=1 (2015).

  291. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/show/NCT01683409 (2015).

  292. de Zeeuw, D. et al. CCR2 inhibitor CCX140 effective in phase 2 clinical trial in diabetic nephropathy. Nephrol. Dial. Transplant. 30 (Suppl. 3), iii531 (2015).

    Google Scholar 

  293. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01487109?term=NCT01487109&rank=1 (2015).

  294. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/show/NCT01874431 (2014).

  295. Ruilope, L. M. et al. Rationale, design, and baseline characteristics of ARTS-DN: a randomized study to assess the safety and efficacy of finerenone in patients with type 2 diabetes mellitus and a clinical diagnosis of diabetic nephropathy. Am. J. Nephrol. 40, 572–581 (2014).

    CAS  PubMed  Google Scholar 

  296. US National Library of Medicine. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02010242?term=NCT02010242&rank=1 (2015).

Download references

Acknowledgements

The work was supported by grants from the US National Institutes of Health (NIH) R01 DK076077, DK087635 DK105821 and DP3 108220 to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Competing interests

M.D.B. is a full-time paid employee of Eli Lilly and Company. The laboratory of K.S. receives research support from Biogen, Boehringer Ingelheim and ONO Pharma.

PowerPoint slides

Glossary

Chronic kidney disease

A disease in which a gradually progressive decrease of greater than 40% decline in the kidney's filtering function or abnormal leakiness to plasma proteins (mostly albumin) is seen.

Polycystic kidney disease

A disease caused by mutations in PKD1 or PKD2 that result in excessive cyst accumulation and renal failure.

Fibrosis

The histological manifestation of chronic kidney disease: loss of epithelial cells and vascular supply as well as accumulation of inflammatory cells, matrix and myofibroblasts.

Podocytes

Terminally differentiated glomerular epithelial cells. Podocytes have a key role in maintaining the filtration barrier.

Diabetic kidney disease

A clinical diagnosis established based on the presence of proteinuria and decreased filtration in patients with diabetes. The most common cause of chronic kidney disease in the western world.

APOL1-associated kidney disease

Kidney disease caused by genetic variants (G1 and G2) in the apolipoprotein L1 gene that are present in close to one-third of African Americans. These mutations are associated with a several-fold increase in chronic kidney disease and end-stage renal disease but protect from African sleeping sickness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breyer, M., Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov 15, 568–588 (2016). https://doi.org/10.1038/nrd.2016.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.67

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research