Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Convertible visceral fat as a therapeutic target to curb obesity

Key Points

  • Obesity is a pathological enlargement of the adipose organ; this process involves the whitening and functional impairment of thermogenic brown adipose tissue and the inflammation of hypertrophied adipose depots.

  • The occurrence of these two phenomena at visceral fat sites causes the most dangerous outcomes of obesity, including type 2 diabetes mellitus, dyslipidaemia, non-alcoholic fatty liver disease, cardiovascular disease and even some cancers. Visceral adipocytes are particularly vulnerable to lipid overload, possibly because of their developmental route and the reduced size at which they die, thereby promoting inflammation.

  • Human and rodent visceral adipocytes exhibit remarkable cell plasticity. Indeed, such cells are particularly prone to re-convert into metabolically healthy, energy-dissipating adipocytes.

  • Molecular targets and pathways that are involved in white-to-brown visceral adipocyte transdifferentiation are potential novel targets of anti-obesity drugs.

  • Even the early steps of white-to-brown adipocyte transdifferentiation, which include adipocyte size reduction and mitochondriogenesis, could promote a healthy adipose phenotype and achieve effective therapeutic outcomes.

Abstract

New therapeutic and preventative strategies are needed to address the growing obesity epidemic. In animal models, brown adipose tissue activation and the associated heat produced contribute to countering obesity and the accompanying metabolic abnormalities. Adult humans also have functional brown fat. Here, we present and discuss the concepts of murine and human white adipose tissue plasticity and the transdifferentiation of white adipocytes into brown adipocytes. Human visceral adipocytes — which are crucial contributors to the burden of obesity and its complications — are particularly susceptible to such transdifferentiation. Therefore, we propose that this process should be a focus of anti-obesity research. Approved drugs that have browning properties as well as future drugs that target molecular pathways involved in white-to-brown visceral adipocyte transdifferentiation may provide new avenues for obesity therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The adipose organ is highly plastic in both rodents and humans.
Figure 2: Cellular complexity of the adipose organ.
Figure 3: Potential β3-adrenoceptor-dependent molecular mechanisms driving white-to-brown adipocyte transdifferentiation.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. et al. Heart disease and stroke statistics — 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, e21–e181 (2009).

    PubMed  Google Scholar 

  2. Bornfeldt, K. E. & Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14, 575–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauner, D. & Hauner, H. Metabolic syndrome and breast cancer: is there a link? Breast Care 9, 277–281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dixon, J. B., le Roux, C. W., Rubino, F. & Zimmet, P. Bariatric surgery for type 2 diabetes. Lancet 379, 2300–2311 (2012).

    Article  PubMed  Google Scholar 

  5. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Bachman, E. S. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009). References 8–12 independently confirm the presence of metabolically active and functional BAT in adult humans.

    Article  CAS  PubMed  Google Scholar 

  13. Vijgen, G. H. et al. Brown adipose tissue in morbidly obese subjects. PLoS ONE 6, e17247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loncar, D. Convertible adipose tissue in mice. Cell Tissue Res. 266, 149–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strissel, K. J. et al. Adipocyte death, adipose tissue remodeling and obesity complications. Diabetes 56, 2910–2918 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Cinti, S. The Adipose Organ (Editrice Kurtis, 1999).

    Google Scholar 

  21. de Jong, J. M., Larsson, O., Cannon, B. & Nedergaard, J. A stringent validation of mouse adipose tissue identity markers. Am. J. Physiol. Endocrinol. Metab. 308, E1085–E1105 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barbatelli, G., Heinzelmann, M., Ferrara, P., Morroni, M. & Cinti, S. Quantitative evaluations of gap junctions in old rat brown adipose tissue after cold acclimation: a freeze-fracture and ultra-structural study. Tissue Cell 26, 667–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Murano, I., Barbatelli, G., Giordano, A. & Cinti, S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J. Anat. 214, 171–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012). This study uses two different strains of mice to demonstrate that WAT and BAT both occur in the majority of fat depots and are composed of white, brown and paucilocular adipocytes with variable UCP1 expression and intermediate morphological features, even in warm-acclimated mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244–E1253 (2010). A transmission electron microscopy study of the progressive steps through which white adipocytes transdifferentiate into brown adipocytes in mice under several experimental conditions.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013). This paper unequivocally demonstrates the conversion of adipocytes with a white-like morphological and molecular phenotype into bona fide brown fat cells.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, Y. H., Petkova, A. P., Konkar, A. A. & Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015). Using adipocytes tagged by adiponectin-CreERT2-mediated recombination, this study shows that all newly observed brown adipocytes in mouse subcutaneous WAT following cold exposure originate from unilocular adipocytes.

    Article  CAS  PubMed  Google Scholar 

  30. Sbarbati, A., Morroni, M., Zancanaro, C. & Cinti, S. Rat interscapular brown adipose tissue at different ages: a morphometric study. Int. J. Obes. 15, 581–587 (1991).

    CAS  PubMed  Google Scholar 

  31. Cinti, S. et al. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology 138, 797–804 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Himms-Hagen, J. Defective brown adipose tissue thermogenesis in obese mice. Int. J. Obes. 9 (Suppl. 2), 17–24 (1985).

    PubMed  Google Scholar 

  33. Young, P., Arch, J. R. & Ashwell, M. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 167, 10–14 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  35. Cao, L. et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic–adipocyte axis. Cell Metab. 14, 324–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bostrom, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Matteis, R. et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr. Metab. Cardiovasc. Dis. 23, 582–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    Article  PubMed  Google Scholar 

  41. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008). Using a fate-mapping approach, the authors identify the transcriptional regulator PRDM16 as a switch that specifies the classic brown phenotype fate of developing adipocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Long, J. Z. et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 19, 810–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012). This study investigates the phenotype of isolated white, brown and beige/brite adipocytes in mice and uses gene expression analyses to compare adipocytes in the mouse with human supraclavicular BAT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian, S. W. et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc. Natl Acad. Sci. USA 110, E798–E807 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sharp, L. Z. et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7, e49452 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sacks, H. S. et al. Adult epicardial fat exhibits beige features. J. Clin. Endocrinol. Metab. 98, E1448–E1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanchez-Gurmaches, J. et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348–362 (2012). This paper identifies subsets of white adipocytes originating from both MYF5-positive and MYF5-negative precursors in response to β 3 -adrenoceptor stimulation, thus suggesting that beige/brite adipocytes may have multiple origins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosenwald, M. & Wolfrum, C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3, 4–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Murano, I. et al. Morphology of ferret subcutaneous adipose tissue after 6-month daily supplementation with oral β-carotene. Biochim. Biophys. Acta 1740, 305–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Granneman, J. G., Li, P., Zhu, Z. & Lu, Y. Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 289, E608–E616 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Walden, T. B., Hansen, I. R., Timmons, J. A., Cannon, B. & Nedergaard, J. Recruited versus nonrecruited molecular signatures of brown, “brite”, and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, Y. H., Mottillo, E. P. & Granneman, J. G. Adipose tissue plasticity from WAT to BAT and in between. Biochim. Biophys. Acta 1842, 358–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Tateishi, K., Okada, Y., Kallin, E. M. & Zhang, Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iyama, K., Ohzono, K. & Usuku, G. Electron microscopical studies on the genesis of white adipocytes: differentiation of immature pericytes into adipocytes in transplanted preadipose tissue. Virchows Archiv. B Cell Pathol. Incl. Mol. Pathol. 31, 143–155 (1979).

    Article  CAS  Google Scholar 

  65. Cinti, S., Cigolini, M., Bosello, O. & Bjorntorp, P. A morphological study of the adipocyte precursor. J. Submicroscop. Cytol. 16, 243–251 (1984).

    CAS  Google Scholar 

  66. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gupta, R. K. et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15, 230–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tran, K. V. et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 15, 222–229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McDonald, M. E. et al. Myocardin-related transcription factor a regulates conversion of progenitors to beige adipocytes. Cell 160, 105–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chau, Y. Y. et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 16, 367–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Billon, N. et al. The generation of adipocytes by the neural crest. Development 134, 2283–2292 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Crossno, J. T. et al. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J. Clin. Invest. 116, 3220–3228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomiyama, K. et al. Characterization of transplanted green fluorescent protein+ bone marrow cells into adipose tissue. Stem Cells 26, 330–338 (2008).

    Article  PubMed  Google Scholar 

  74. Ryden, M. et al. Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab. 22, 408–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Berry, R. & Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Bio. 15, 302–308 (2013).

    Article  CAS  Google Scholar 

  76. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Blanpain, C. & Simons, B. D. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14, 489–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Vague, J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 4, 20–34 (1956).

    Article  CAS  PubMed  Google Scholar 

  80. Kissebah, A. H. et al. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 54, 254–260 (1982).

    Article  CAS  PubMed  Google Scholar 

  81. Krotkiewski, M., Bjorntorp, P., Sjostrom, L. & Smith, U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Invest. 72, 1150–1162 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lapidus, L. et al. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. BMJ 289, 1257–1261 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ohlson, L. O. et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 34, 1055–1058 (1985).

    Article  CAS  PubMed  Google Scholar 

  84. Peiris, A. N. et al. Relationship of anthropometric measurements of body fat distribution to metabolic profile in premenopausal women. Acta Med. Scand. Suppl. 723, 179–188 (1988).

    CAS  PubMed  Google Scholar 

  85. Fujioka, S. et al. Treatment of visceral fat obesity. Int. J. Obes. 15 (Suppl. 2), 59–65 (1991).

    PubMed  Google Scholar 

  86. Despres, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Mittelman, S. D., Van Citters, G. W., Kirkman, E. L. & Bergman, R. N. Extreme insulin resistance of the central adipose depot in vivo. Diabetes 51, 755–761 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Mauriege, P. et al. Regional variation in adipose tissue metabolism of severely obese premenopausal women. J. Lipid Res. 36, 672–684 (1995).

    CAS  PubMed  Google Scholar 

  89. White, U. A. & Tchoukalova, Y. D. Sex dimorphism and depot differences in adipose tissue function. Biochim. Biophys. Acta 1842, 377–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Smith, U. Abdominal obesity: a marker of ectopic fat accumulation. J. Clin. Invest. 125, 1790–1792 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cote, M. et al. Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein and lipid levels in men. J. Clin. Endocrinol. Metab. 90, 1434–1439 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Giordano, A. et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J. Lipid Res. 54, 2423–2436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cotillard, A. et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J. Clin. Endocrinol. Metab. 99, E1466–E1470 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Trayhurn, P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 93, 1–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Murano, I. et al. Time course of histomorphological changes in adipose tissue upon acute lipoatrophy. Nutr. Metab. Cardiovasc. Dis. 23, 723–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Harman-Boehm, I. et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 92, 2240–2247 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Bjorntorp, P. Metabolic abnormalities in visceral obesity. Ann. Med. 24, 3–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Fernandez-Alfonso, M. S. et al. Mechanisms of perivascular adipose tissue dysfunction in obesity. Int. J. Endocrinol. 2013, 402053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lastra, G. & Manrique, C. Perivascular adipose tissue, inflammation and insulin resistance: link to vascular dysfunction and cardiovascular disease. Horm. Mol. Biol. Clin. Investig. 22, 19–26 (2015).

    CAS  PubMed  Google Scholar 

  102. Villacorta, L. & Chang, L. The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm. Horm. Mol. Biol. Clin. Investig. 21, 137–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Miao, C. Y. & Li, Z. Y. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br. J. Pharmacol. 165, 643–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Iantorno, M. et al. Obesity, inflammation and endothelial dysfunction. J. Biol. Regul. Homeost. Agents 28, 169–176 (2014).

    CAS  PubMed  Google Scholar 

  105. Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015). This clinical study shows that mirabegron activates BAT and increases energy expenditure in healthy young volunteers; the level of BAT activation was similar to that found in the same subjects exposed to cold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Giordano, A., Frontini, A., Castellucci, M. & Cinti, S. Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J. Histochem. Cytochem. 52, 923–930 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Wei, H. et al. A clinical approach to brown adipose tissue in the para-aortic area of the human thorax. PLoS ONE 10, e0122594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Smith, R. E. & Roberts, J. C. Thermogenesis of brown adipose tissue in cold-acclimated rats. Am. J. Physiol. 206, 143–148 (1964).

    Article  CAS  PubMed  Google Scholar 

  109. Kuji, I., Imabayashi, E., Minagawa, A., Matsuda, H. & Miyauchi, T. Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma. Ann. Nucl. Med. 22, 231–235 (2008).

    Article  PubMed  Google Scholar 

  110. Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Smith, J. D. et al. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. J. Clin. Endocrinol. Metab. 97, 1517–1525 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Frontini, A. et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim. Biophys. Acta 1831, 950–959 (2013). This paper shows white-to-brown adipocyte transdifferentiation in human omental fat from patients with adrenergic hyperstimulation due to pheochromocytoma.

    Article  CAS  PubMed  Google Scholar 

  114. Cheng, W. et al. Intense FDG activity in the brown adipose tissue in omental and mesenteric regions in a patient with malignant pheochromocytoma. Clin. Nucl. Med. 37, 514–515 (2012).

    Article  PubMed  Google Scholar 

  115. Dong, A., Wang, Y., Lu, J. & Zuo, C. Hypermetabolic mesenteric brown adipose tissue on dual-time point FDG PET/CT in a patient with benign retroperitoneal pheochromocytoma. Clin. Nucl. Med. 39, e229–e232 (2014). References 114–115 report that metabolically active BAT is detected by PET in the omental and mesenteric fat of patients with pheochromocytoma.

    Article  PubMed  Google Scholar 

  116. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. James, W. P. et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N. Engl. J. Med. 363, 905–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Despres, J. P., Golay, A. & Sjostrom, L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Van Gaal, L. F. et al. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Pi-Sunyer, F. X. et al. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295, 761–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Scheen, A. J. et al. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368, 1660–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Ezcurra, M., Reimann, F., Gribble, F. M. & Emery, E. Molecular mechanisms of incretin hormone secretion. Curr. Opin. Pharmacol. 13, 922–927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Rupnick, M. A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl Acad. Sci. USA 99, 10730–10735 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, Y. M. et al. Assessment of the anti-obesity effects of the TNP-470 analog, CKD-732. J. Mol. Endocrinol. 38, 455–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Brakenhielm, E. et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circul. Res. 94, 1579–1588 (2004).

    Article  CAS  Google Scholar 

  129. Joharapurkar, A. A., Dhanesha, N. A. & Jain, M. R. Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity. Diabetes Metab. Syndr. Obes. 7, 73–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim, D. D. et al. Efficacy and safety of beloranib for weight loss in obese adults: a randomized controlled trial. Diabetes Obes. Metab. 17, 566–572 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Ruderman, N. B. et al. AMPK and SIRT1: a long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298, E751–E760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Qiang, L. et al. Brown remodeling of white adipose tissue by SIRT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. de Ligt, M., Timmers, S. & Schrauwen, P. Resveratrol and obesity: can resveratrol relieve metabolic disturbances? Biochim. Biophys. Acta 1852, 1137–1144 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Collins, S., Daniel, K. W., Petro, A. E. & Surwit, R. S. Strain-specific response to β3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Ghorbani, M., Claus, T. H. & Himms-Hagen, J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a β3-adrenoceptor agonist. Biochem. Pharmacol. 54, 121–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Ghorbani, M. & Himms-Hagen, J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int. J. Obes. Relat. Metab. Disord. 21, 465–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Berkowitz, D. E. et al. Distribution of β 3-adrenoceptor mRNA in human tissues. Eur. J. Pharmacol. 289, 223–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. van Baak, M. A. et al. Acute effect of L-796568, a novel β 3-adrenergic receptor agonist, on energy expenditure in obese men. Clin. Pharmacol. Ther. 71, 272–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Larsen, T. M. et al. Effect of a 28-d treatment with L-796568, a novel β(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am. J. Clin. Nutr. 76, 780–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Takasu, T. et al. Effect of (R)-2-(2-aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective β3-adrenoceptor agonist, on bladder function. J. Pharmacol. Exp. Ther. 321, 642–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Arch, J. R. Challenges in β(3)-adrenoceptor agonist drug development. Ther. Adv. Endocrinol. Metab. 2, 59–64 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Karter, Y. Nebivolol: more than a highly selective Beta blocker. Recent Pat. Cardiovasc. Drug Discov. 2, 152–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Bordicchia, M. et al. Nebivolol induces, via β3 adrenergic receptor, lipolysis, uncoupling protein 1, and reduction of lipid droplet size in human adipocytes. J. Hypertension 32, 389–396 (2014).

    Article  CAS  Google Scholar 

  145. Elbers, J. M., Asscheman, H., Seidell, J. C., Megens, J. A. & Gooren, L. J. Long-term testosterone administration increases visceral fat in female to male transsexuals. J. Clin. Endocrinol. Metab. 82, 2044–2047 (1997).

    CAS  PubMed  Google Scholar 

  146. Masuzaki, H. et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Viengchareun, S., Penfornis, P., Zennaro, M. C. & Lombes, M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am. J. Physiol. Endocrinol. Metab. 280, E640–E649 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Zennaro, M. C. et al. Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. J. Clin. Invest. 101, 1254–1260 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Caprio, M. et al. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J. 21, 2185–2194 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Ehrhart-Bornstein, M. et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc. Natl Acad. Sci. USA 100, 14211–14216 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fallo, F. et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J. Clin. Endocrinol. Metab. 91, 454–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Esteves, C. L. et al. Proinflammatory cytokine induction of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in human adipocytes is mediated by MEK, C/EBPβ, and NF-κB/RelA. J. Clin. Endocrinol. Metab. 99, E160–E168 (2014).

    Article  PubMed  Google Scholar 

  153. Armani, A. et al. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB J. 28, 3745–3757 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Parviz, Y. et al. Emerging cardiovascular indications of mineralocorticoid receptor antagonists. Trends Endocrinol. Metab. 26, 201–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Fukui, Y., Masui, S., Osada, S., Umesono, K. & Motojima, K. A new thiazolidinedione, NC-2100, which is a weak PPAR-γ activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes 49, 759–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Loft, A. et al. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes Dev. 29, 7–22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wunderlich, F. T. et al. Hepatic NF-κB essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc. Natl Acad. Sci. USA 105, 1297–1302 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chiang, S. H. et al. The protein kinase IKKε regulates energy balance in obese mice. Cell 138, 961–975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Reilly, S. M. et al. A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis. Nat. Commun. 6, 6047 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Reilly, S. M. et al. An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat. Med. 19, 313–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. De Matteis, R. et al. Immunohistochemical identification of the β(3)-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int. J. Obes. Relat. Metab. Disord. 26, 1442–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Seale, P., Kajimura, S. & Spiegelman, B. M. Transcriptional control of brown adipocyte development and physiological function — of mice and men. Genes Dev. 23, 788–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mori, M., Nakagami, H., Rodriguez-Araujo, G., Nimura, K. & Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Smink, J. J. & Leutz, A. Instruction of mesenchymal cell fate by the transcription factor C/EBPβ. Gene 497, 10–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009). This study identifies the PRDM16–C/EBPβ complex as a potent initiator of brown fat formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Harms, M. J. et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab. 19, 593–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Trajkovski, M., Ahmed, K., Esau, C. C. & Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14, 1330–1335 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Ohno, H., Shinoda, K., Spiegelman, B. M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Christian, M. et al. RIP140-targeted repression of gene expression in adipocytes. Mol. Cell Biol. 25, 9383–9391 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tsukiyama-Kohara, K. et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7, 1128–1132 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Shinoda, K. et al. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. Cell Metab. 22, 997–1008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cantile, M., Procino, A., D'Armiento, M., Cindolo, L. & Cillo, C. HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. J. Cell Physiol. 194, 225–236 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Trajkovski, M. & Lodish, H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol. Metab. 24, 442–450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Moellering, R. E. & Cravatt, B. F. How chemoproteomics can enable drug discovery and development. Chem. Biol. 19, 11–22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Moisan, A. et al. White-to-brown metabolic conversion of human adipocytes by JAK inhibition. Nat. Cell Biol. 17, 57–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Derecka, M. et al. Tyk2 and Stat3 regulate brown adipose tissue differentiation and obesity. Cell Metab. 16, 814–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dempersmier, J. et al. Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol. Cell. 57, 235–246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011). Clinical trials performed in this study highlighted the key role of amino acid metabolism in the pathogenesis of diabetes. These results led the authors to suggest that amino acid profiles could aid in early diabetes risk assessment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Roberts, L. D. et al. β-aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Morroni, M. et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc. Natl Acad. Sci. USA 101, 16801–16806 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Prokesch, A. et al. Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland. Stem Cells 32, 2756–2766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. De Matteis, R. et al. In vivo physiological transdifferentiation of adult adipose cells. Stem Cells 27, 2761–2768 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Giordano, A., Smorlesi, A., Frontini, A., Barbatelli, G. & Cinti, S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur. J. Endocrinol. 170, R159–R171 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Orr, J. S. et al. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes 63, 421–432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Apovian, C. M. et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 342–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Bray, G. A. Medical treatment of obesity: the past, the present and the future. Best Pract. Res. Clin. Gastroenterol. 28, 665–684 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Kim, G. W., Lin, J. E., Blomain, E. S. & Waldman, S. A. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin. Pharmacol. Ther. 95, 53–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Gautron, L., Elmquist, J. K. & Williams, K. W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Muller, T. D. et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF2. J. Pept. Sci. 18, 383–393 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Chen, K.Y . et al. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J. Clin. Endocrinol. Metab. 100, 1639–1645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Krishna, R. et al. Potent and selective agonism of the melanocortin receptor 4 with MK-0493 does not induce weight loss in obese human subjects: energy intake predicts lack of weight loss efficacy. Clin. Pharmacol. Ther. 86, 659–666 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Opko Health. OPKO announces presentation of data on long-acting oxyntomodulin at diabetes conference. Opko[online], (2014).

  204. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Rajeev, S. P., Cuthbertson, D. J. & Wilding, J. P. Energy balance and metabolic changes with SGLT2 inhibition. Diabetes Obes. Metab. 18, 125–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Zafgen. Zafgen announces beloranib program update. Zafgen[online], (2015).

  207. US National Library of Medicine. Resveratrol and the metabolic syndrome. ClinicalTrials.gov[online], (2016).

  208. Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Emorine, L. J. et al. Molecular characterization of the human β3-adrenergic receptor. Science 245, 1118–1121 (1989).

    Article  CAS  PubMed  Google Scholar 

  210. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hondares, E. et al. Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lopez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lehr, L. et al. Control of 4E-BP1 expression in mouse brown adipose tissue by the β3-adrenoceptor. FEBS Lett. 576, 179–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Patwari, P. et al. The arrestin domain-containing 3 protein regulates body mass and energy expenditure. Cell Metab. 14, 671–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Moreno-Aliaga, M. J. et al. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab. 14, 242–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  218. Vegiopoulos, A. et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328, 1158–1161 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Madsen, L. et al. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS ONE 5, e11391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ohno, H., Shinoda, K., Ohyama, K., Sharp, L. Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563–573 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Kalaany, N. Y. et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab. 1, 231–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune–adipose interactions to increase beige fat thermogenesis. Cell. 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chen, Y. et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 4, 1769 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Sun, L. et al. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol. 13, 958–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nisoli, E. et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299, 896–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  227. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  228. Hondares, E. et al. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286, 43112–43122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Scime, A. et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell Metab. 2, 283–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ortega-Molina, A. et al. PTEN positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 15, 382–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  232. Leonardsson, G. et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA 101, 8437–8442 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wang, L. et al. The orphan nuclear receptor SHP regulates PGC-1α expression and energy production in brown adipocytes. Cell Metab. 2, 227–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Villanueva, C. J. et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs. Cell Metab. 17, 423–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Bartolomucci, A. et al. TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc. Natl Acad. Sci. USA 103, 14584–14589 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pisani, D. F. et al. The K+ channel TASK1 modulates β-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB J. http://dx.doi.org/10.1096/fj.15-277475 (2015).

  238. Ma, S. et al. Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J. Mol. Cell Biol. 4, 88–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  239. Ye, L. et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151, 96–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Pan, D., Fujimoto, M., Lopes, A. & Wang, Y. X. Twist-1 is a PPARδ-inducible, negative-feedback regulator of PGC-1α in brown fat metabolism. Cell 137, 73–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kiefer, F. W. et al. Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat. Med. 18, 918–925 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.C. is supported by grants from the Italian Ministry of Education, University and Research (PRIN 2010–11) and the European Community (EU FP7 project DIABAT, HEALTH- F2-2011-278373). The authors thank M. Boscaro (University of Padua, Italy) for critically reading the manuscript and E. Nisoli (University of Milan, Italy) for the expert review of tables 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Cinti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Brown adipose tissue

(BAT). The mammalian tissue composed of either brown or beige/brite adipocytes. BAT is involved in non-shivering thermogenesis to maintain body temperature homeostasis.

White-to-brown transdifferentiation

The direct and progressive conversion of fully differentiated white adipocytes into heat-producing brown adipocytes without passing through an undifferentiated, stem-like state.

Endothelial–mesenchymal transition

The process by which endothelial cells lose their cell–cell adhesion and gain migratory properties to differentiate into a mesenchymal cell type

Visceral fat

The fat found in the trunk in close contact with the viscera.

Pyroptosis

A highly inflammatory type of cell death involving caspase 1 activation, DNA fragmentation, cell membrane pore formation and cellular lysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, A., Frontini, A. & Cinti, S. Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15, 405–424 (2016). https://doi.org/10.1038/nrd.2016.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.31

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research