Key Points
-
The definition of a drug target is crucial to the success of mechanism-based drug discovery. It is also increasingly important for efforts to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups.
-
In this article, we synthesized and built on our previous approaches and systematically recompiled and comprehensively annotated the current list of drugs approved by the US FDA. We assigned to each drug their respective efficacy target or target set from the prescribing information and/or the scientific literature.
-
We curated a total of 893 human and pathogen-derived biomolecules through which 1,578 FDA-approved drugs act. These include 667 human-genome-derived proteins targeted by drugs for human disease.
-
We emphasize that even with a well-defined concept of efficacy there are challenges in making a clean unambiguous assignment in many cases, especially regarding how to treat protein complexes or drugs that bind to a number of closely related gene products.
-
We also mapped each drug (and thereby target) to the WHO Anatomical Therapeutic Chemical Classification System code as a way of obtaining a standard therapeutic indication for them.
-
With this mapping, we explored the footprint of target classes across disease areas, investigated the success of privileged target families and compiled a list of drug target orthologues for standard model organisms to develop a foundation for the deeper understanding of species differences, cross-species drug repositioning and applicability of animal models.
Abstract
The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug targets are often poorly defined in the literature, both for launched drugs and for potential therapeutic agents in discovery and development. Here, we present an updated comprehensive map of molecular targets of approved drugs. We curate a total of 893 human and pathogen-derived biomolecules through which 1,578 US FDA-approved drugs act. These biomolecules include 667 human-genome-derived proteins targeted by drugs for human disease. Analysis of these drug targets indicates the continued dominance of privileged target families across disease areas, but also the growth of novel first-in-class mechanisms, particularly in oncology. We explore the relationships between bioactivity class and clinical success, as well as the presence of orthologues between human and animal models and between pathogen and human genomes. Through the collaboration of three independent teams, we highlight some of the ongoing challenges in accurately defining the targets of molecular therapeutics and present conventions for deconvoluting the complexities of molecular pharmacology and drug efficacy.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Raju, T. N. The Nobel chronicles. Lancet 355, 1022 (2000).
Drews, J. Genomic sciences and the medicine of tomorrow. Nat. Biotechnol. 14, 1516–1518 (1996). An early and influential review on the prospects for genomics and drug discovery. The associated target list is presented in reference 3.
Drews, J. & Ryser, S. Classic drug targets. Nat. Biotechnol. 15, 1350 (1997).
Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002). The first attempt to define the future druggable genome on the basis of successful drug development programmes.
Golden, J. B. Prioritizing the human genome: knowledge management for drug discovery. Curr. Opin. Drug Discov. Devel. 6, 310–316 (2003).
Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821–835 (2006).
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006). A 10-year old review on the then-known landscape of drug targets.
Chen, X., Ji, Z. L. & Chen, Y. Z. TTD: Therapeutic Target Database. Nucleic Acids Res. 30, 412–415 (2002).
Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).
Günther, S. et al. SuperTarget and Matador: resources for exploring drug–target relationships. Nucleic Acids Res. 36, D919–D922 (2008).
Rask-Andersen, M., Almén, M. S. & Schiöth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011). A more recent review on the landscape of drug targets.
Munos, B. A. Forensic analysis of drug targets from 2000 through 2012. Clin. Pharmacol. Ther. 94, 407–411 (2013). A recent overview of drug and target approvals for 2000–2012.
Agarwal, P., Sanseau, P. & Cardon, L. R. Novelty in the target landscape of the pharmaceutical industry. Nat. Rev. Drug Discov. 12, 575–576 (2013). This paper addresses the target diversity across large pharmaceutical companies — are all companies pursuing the same targets?
Pawson, A. J. et al. The IUPHAR/BPS Guide to pharmacology: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res. 42, D1098–D1106 (2014).
Ursu, O. et al. DrugCentral: online drug compendium. Nucleic Acids Res. 10.1093/nar/gkw993 (2016).
Tym, J. E. et al. canSAR: an updated cancer research and drug discovery knowledgebase. Nucleic Acids Res. 44, D938–D943 (2016).
Bento, A. P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).
Meltzer, H. Y. & Roth, B. L. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs. J. Clin. Invest. 123, 4986–4991 (2013).
Friedman, J. H. Pimavanserin for the treatment of Parkinson's disease psychosis. Expert Opin. Pharmacother. 14, 1969–1975 (2013).
Bandelow, B. & Meier, A. Aripiprazole, a 'dopamine–serotonin system stabilizer' in the treatment of psychosis. German J. Psychiatry 6, 9–16 (2003).
Mamo, D. et al. Differential effects of aripiprazole on D2, 5-HT2, and 5-HT1A receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am. J. Psychiatry 164, 1411–1417 (2007).
Tolboom, N. et al. The dopamine stabilizer (–)-OSU6162 occupies a subpopulation of striatal dopamine D2/D3 receptors: an [11C]raclopride PET study in healthy human subjects. Neuropsychopharmacology 40, 472–479 (2015).
Rang, H. P., Dale, M. M., Ritter, J. M., Flower, R. J. & Henderson, G. (eds) Rang and Dale's Pharmacology 7th edn (Elsevier Health Sciences UK, 2012). A comprehensive and classic book on pharmacology and drug mode of action.
Koarai, A. et al. Expression of muscarinic receptors by human macrophages. Eur. Respir. J. 39, 698–704 (2012).
Lammers, J. W., Minette, P., McCusker, M. & Barnes, P. J. The role of pirenzepine-sensitive (M1) muscarinic receptors in vagally mediated bronchoconstriction in humans. Am. Rev. Respir. Dis. 139, 446–449 (1989).
Krauss, J., van der Linden, M., Grebe, T. & Hakenbeck, R. Penicillin-binding proteins 2x and 2b as primary PBP targets in Streptococcus pneumoniae. Microb. Drug Resist. 2, 183–186 (1996).
Wells, S. A. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase iii trial. J. Clin. Oncol. 30, 134–141 (2012).
Santoro, M. et al. Molecular biology of the MEN2 gene. J. Intern. Med. 243, 505–508 (1998).
Thollon, C. et al. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br. J. Pharmacol. 150, 37–46 (2007).
Sobrado, L. F. et al. Dronedarone's inhibition of If current is the primary mechanism responsible for its bradycardic effect. J. Cardiovasc. Electrophysiol. 24, 914–918 (2013).
Bucchi, A. et al. Identification of the molecular site of ivabradine binding to HCN4 channels. PLoS ONE 8, e53132 (2013).
Xynogalos, P. et al. Class III antiarrhythmic drug dronedarone inhibits cardiac inwardly rectifying Kir2.1 channels through binding at residue E224. Naunyn. Schmiedebergs. Arch. Pharmacol. 387, 1153–1161 (2014).
Gómez, R. et al. Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents. Cardiovasc. Res. 104, 337–346 (2014).
Heijman, J., Heusch, G. & Dobrev, D. Pleiotropic effects of antiarrhythmic agents: dronedarone in the treatment of atrial fibrillation. Clin. Med. Insights Cardiol. 7, 127–140 (2013).
Brayfield, A. Martindale: The Complete Drug Reference 38th edn (Pharmaceutical Press, 2014).
Swiss Pharmaceutical Society. Index Nominum: International Drug Directory 18th edn (Medpharm Scientific Publishers, 2004).
Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750–763 (2002).
International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).
Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).
Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).
Workman, P. & Al-Lazikani, B. Drugging cancer genomes. Nat. Rev. Drug Discov. 12, 889–890 (2013).
Fletcher, J. I., Haber, M., Henderson, M. J. & Norris, M. D. ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer 10, 147–156 (2010).
Patel, M. N., Halling-Brown, M. D., Tym, J. E., Workman, P. & Al-Lazikani, B. Objective assessment of cancer genes for drug discovery. Nat. Rev. Drug Discov. 12, 35–50 (2013). A review of cancer drug targets and approaches to prioritize target selection.
Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).
Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080 (2008).
Matteo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer N. Engl. J. Med. 373, 1697–1708 (2015).
Shukla, N. Proteasome addiction defined in Ewing sarcoma is effectively targeted by a novel class of 19S proteasome inhibitors Cancer Res. 76, 4525–4534 (2016).
Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).
Al-Lazikani, B. & Workman, P. Unpicking the combination lock for mutant BRAF and RAS melanomas. Cancer Discov. 3, 14–19 (2013).
Workman, P., Clarke, P. A. & Al-Lazikani, B. Blocking the survival of the nastiest by HSP90 inhibition. Oncotarget 7, 3658–3661 (2016).
Paolini, G. V., Shapland, R. H. B., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).
Huttunen, K. M., Raunio, H. & Rautio, J. Prodrugs — from serendipity to rational design. Pharmacol. Rev. 63, 750–771 (2011).
Huang, R. et al. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl Med. 3, 80ps16 (2011).
Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, bar030 (2011).
Flicek, P. et al. Ensembl 2012. Nucleic Acids Res. 40, D84–D90 (2012).
Sonnhammer, E. L. L. & Östlund, G. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234–D239 (2015).
United States Pharmacopeial Convention. USP Dictionary of USAN and International Drug Names 2010 (United States Pharmacopeia, 2010).
Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 10, 197–208 (2011).
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
Acknowledgements
The work of the authors is supported by the following institutes, organizations and grants: (1) Wellcome Trust Strategic Awards WT086151/Z/08/Z, WT104104/Z/14/Z to J.P.O., A.G., A.H. and A.P.B.; (2) the member states of EMBL to R.S., R.S.D, A.G., A.H., A.P.B.); (3) US National Institutes of Health (NIH) grants 1U54CA189205-01 to O.U., A.G., A.H., A.K., C.G.B., T.I.O. and J.P.O., and NIH grants P30CA118100 and UL1TR001449 to T.I.O.; and (4) B.A.-L. is funded by the Institute of Cancer Research. canSAR is funded by The Cancer Research UK grant to the Cancer Research UK Cancer Therapeutics Unit (grant C309/A11566). The authors thank many of their collaborators for discussions and valuable input in the preparation of this manuscript, in particular the members of the Illuminating the Druggable Genome consortium.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
FURTHER INFORMATION
Supplementary information
Supplementary information S1 (box)
Receptors mediating the effects of antipsychotics (PDF 249 kb)
Supplementary information
Supplementary information S2 (table) (XLSX 229 kb)
Supplementary information S3 (figure)
Deconvoluting the average number of drugs per target, and targets per drug. (PDF 169 kb)
Supplementary information S4 (figure)
Rate of target innovation. (PDF 160 kb)
Supplementary information
Supplementary information S5 (figure) (PDF 2027 kb)
Supplementary information
Supplementary information S6 (table) (XLSX 90 kb)
Rights and permissions
About this article
Cite this article
Santos, R., Ursu, O., Gaulton, A. et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16, 19–34 (2017). https://doi.org/10.1038/nrd.2016.230
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrd.2016.230
This article is cited by
-
Clinically relevant plasma proteome for adiposity depots: evidence from systematic mendelian randomization and colocalization analyses
Cardiovascular Diabetology (2024)
-
Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics
Journal of Translational Medicine (2024)
-
DPI_CDF: druggable protein identifier using cascade deep forest
BMC Bioinformatics (2024)
-
Comprehensive mendelian randomization analysis of plasma proteomics to identify new therapeutic targets for the treatment of coronary heart disease and myocardial infarction
Journal of Translational Medicine (2024)
-
Natural product-inspired strategies towards the discovery of novel bioactive molecules
Future Journal of Pharmaceutical Sciences (2024)