Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA-encoded chemistry: enabling the deeper sampling of chemical space

This article has been updated

Key Points

  • DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods.

  • DNA-encoded chemical library technology involves the creation of large mixtures of small molecules that are encoded with sequences or single-stranded or double-stranded DNA. High-affinity hits from such mixtures are identifiable by sequencing the DNA tags associated with each compound.

  • DNA-encoded library technology began with a publication by Brenner and Lerner in 1992. The technology has subsequently evolved to be practised by several large pharmaceutical and biotechnology companies.

  • DNA-directed synthesis is a related approach. In this method, the specificity of DNA base pairing serves for both encoding and synthesis.

  • DNA-encoded library synthesis as it is currently practised is based on reactions that are tolerant to water.

  • The creation of hundreds of millions of DNA-encoded library compounds is less expensive and more feasible than assembling a library of single compounds on milligram scale.

Abstract

DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different DNA-encoded library technologies.
Figure 2: Building block availability analysis by functional group.
Figure 3: Cartoon of one round of affinity-mediated selection.
Figure 4: Various representations of selection outputs.

Similar content being viewed by others

Change history

  • 30 January 2017

    The details of reference 119 were incorrect and there were also some minor typographical errors. These errors have been corrected in the online version of the article.

References

  1. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    CAS  PubMed  Google Scholar 

  2. Shelat, A. A. & Guy, R. K. Scaffold composition and biological relevance of screening libraries. Nat. Chem. Biol. 3, 442–446 (2007).

    CAS  PubMed  Google Scholar 

  3. Reymond, J. L. The Chemical Space Project. Acc. Chem. Res. 48, 722–730 (2015).

    CAS  PubMed  Google Scholar 

  4. Furka, A., Sebestyen, F., Asgedom, M. & Dibo, G. in Trends in Medicinal Chemistry '88: Proceedings of the Xth International Symposium on Medicinal Chemistry, Budapest, 15–19 August 1988 Vol. 9 (eds van der Goot, H. et al.) 288 (Elsevier, 1989).

    Google Scholar 

  5. Czarnik, A. W. Encoding methods for combinatorial chemistry. Curr. Opin. Chem. Biol. 1, 60–66 (1997).

    CAS  PubMed  Google Scholar 

  6. Geysen, H. M. et al. Isotope or mass encoding of combinatorial libraries. Chem. Biol. 3, 679–688 (1996).

    CAS  PubMed  Google Scholar 

  7. Ohlmeyer, M. H. J. et al. Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl Acad. Sci. USA 90, 10922–10926 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nicolaou, K. C., Xiao, X. Y., Parandoosh, Z., Senyei, A. & Nova, M. P. Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Ed. 34, 2289–2291 (1995).

    CAS  Google Scholar 

  9. Geysen, H. M., Meloen, R. H. & Barteling, S. J. Use of peptide-synthesis to probe viral-antigens for epitopes to a resolution of a single amino-acid. Proc. Natl Acad. Sci. USA 81, 3998–4002 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baca, M., Presta, L. G., O'Connor, S. J. & Wells, J. A. Antibody humanization using monovalent phage display. J. Biol. Chem. 272, 10678–10684 (1997).

    CAS  PubMed  Google Scholar 

  11. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl Acad. Sci. USA 94, 4937–4942 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoogenboom, H. R. & Winter, G. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388 (1992).

    CAS  PubMed  Google Scholar 

  14. Roberts, R. W. & Szostak, J. W. RNA–peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl Acad. Sci. USA 94, 12297–12302 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    CAS  PubMed  Google Scholar 

  16. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  17. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992). Describes the concept of a DEL for the first time, including how such a library can be interrogated using affinity-mediated selection and how enriched compounds can be amplified and ultimately identified by sequencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Needels, M. C. et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl Acad. Sci. USA 90, 10700–10704 (1993). Describes the first use of a DEL to discover functional library members, in this case known antibody epitopes from an encoded peptide library.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schroeder, G. K., Lad, C., Wyman, P., Williams, N. H. & Wolfenden, R. The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc. Natl Acad. Sci. USA 103, 4052–4055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Clark, M. A. Selecting chemicals: the emerging utility of DNA-encoded libraries. Curr. Opin. Chem. Biol. 14, 396–403 (2010).

    CAS  PubMed  Google Scholar 

  21. Buller, F. et al. Design and synthesis of a novel DNA-encoded chemical library using Diels-Alder cycloadditions. Bioorg. Med. Chem. Lett. 18, 5926–5931 (2008). The first report of using a DNA-recorded split-and-pool library for ligand discovery.

    CAS  PubMed  Google Scholar 

  22. Dumelin, C. E. et al. A portable albumin binder from a DNA-encoded chemical library. Angew. Chem. Int. Ed. 47, 3196–3201 (2008).

    CAS  Google Scholar 

  23. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciobanu, M. et al. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem. Commun. 47, 9321–9323 (2011).

    CAS  Google Scholar 

  26. Debaene, F., Da Silva, J. A., Pianowski, Z., Duran, F. J. & Winssinger, N. Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metalloproteases as well as tyrosine phosphatases. Tetrahedron 63, 6577–6586 (2007).

    CAS  Google Scholar 

  27. Svensen, N., Diaz-Mochon, J. J. & Bradley, M. Decoding a PNA encoded peptide library by PCR: the discovery of new cell surface receptor ligands. Chem. Biol. 18, 1284–1289 (2011).

    CAS  PubMed  Google Scholar 

  28. Svensen, N., Diaz-Mochon, J. J. & Bradley, M. Encoded peptide libraries and the discovery of new cell binding ligands. Chem. Commun. 47, 7638–7640 (2011).

    CAS  Google Scholar 

  29. Annis, D. A. et al. An affinity selection–mass spectrometry method for the identification of small molecule ligands from self-encoded combinatorial libraries — discovery of a novel antagonist of E-coli dihydrofolate reductase. Int. J. Mass Spectrom. 238, 77–83 (2004).

    CAS  Google Scholar 

  30. Annis, D. A. et al. Method for quantitative protein–ligand affinity measurements in compound mixtures. Anal. Chem. 79, 4538–4542 (2007).

    CAS  PubMed  Google Scholar 

  31. Brudno, Y. & Liu, D. R. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chem. Biol. 16, 265–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinoshita, Y. & Nishigaki, K. Enzymatic synthesis of code regions for encoded combinatorial chemistry (ECC). Nucleic Acids Symp. Ser. 34, 201–202 (1995). Describes the concept of the enzymatic ligation of oligonucleotide tags as a methodology for the generation of encoded chemical libraries for the first time.

    CAS  Google Scholar 

  33. Litovchick, A. et al. Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci. Rep. 5, 10916 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009). One of the earliest and most complete descriptions of the synthesis and use of a DNA-recorded chemical library to find inhibitors of multiple therapeutic targets.

    CAS  PubMed  Google Scholar 

  35. Deng, H. et al. Discovery, SAR, and X-ray binding mode study of BCATm inhibitors from a novel DNA-encoded library. ACS Med. Chem. Lett. 6, 919–924 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mannocci, L. et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc. Natl Acad. Sci. USA 105, 17670–17675 (2008). The earliest description of deep sequencing of DNA-encoded chemical libraries.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng, H. et al. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT). J. Med. Chem. 55, 7061–7079 (2012).

    CAS  PubMed  Google Scholar 

  38. Arico-Muendel, C. et al. Encoded library technology screening of hepatitis c virus NS4B yields a small-molecule compound series with in vitro replicon activity. Antimicrob. Agents Chemother. 59, 3450–3459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Samain, F. et al. Tankyrase 1 inhibitors with drug-like properties identified by screening a DNA-encoded chemical library. J. Med. Chem. 58, 5143–5149 (2015).

    CAS  PubMed  Google Scholar 

  40. Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004). Earliest description of the use of a DNA-directed chemical library of any kind to find known inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen, M. H. et al. A yoctoliter-scale DNA reactor for small-molecule evolution. J. Am. Chem. Soc. 131, 1322–1327 (2009).

    CAS  PubMed  Google Scholar 

  42. Tse, B. N., Snyder, T. M., Shen, Y. H. & Liu, D. R. Translation of DNA into a library of 13 000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Catalano, M. J., Price, N. E. & Gates, K. S. Effective molarity in a nucleic acid-controlled reaction. Bioorg. Med. Chem. Lett. 26, 2627–2630 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Seigal, B. A. et al. The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity. J. Med. Chem. 58, 2855–2861 (2015).

    CAS  PubMed  Google Scholar 

  46. Kleiner, R. E., Dumelin, C. E., Tiu, G. C., Sakurai, K. & Liu, D. R. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J. Am. Chem. Soc. 132, 11779–11791 (2010). The first description of using a DTS library to find novel inhibitors of therapeutic targets.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maianti, J. P. et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 511, 94–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao, C. et al. A DNA-templated synthesis of encoded small molecules by DNA self-assembly. xChem. Commun. 50, 10997–10999 (2014).

    CAS  Google Scholar 

  49. Petersen, L. K. et al. Novel p38α MAP kinase inhibitors identified from yoctoReactor DNA-encoded small molecule library. MedChemComm 7, 1332–1339 (2016). The first description of using both the yoctoReactor and the binder trap enrichment technology to find novel inhibitors of a therapeutic target.

    CAS  Google Scholar 

  50. Halpin, D. R. & Harbury, P. B. DNA display I. Sequence-encoded routing of DNA populations. PLoS Biol. 2, E173 (2004).

    PubMed  PubMed Central  Google Scholar 

  51. Halpin, D. R. & Harbury, P. B. DNA display II. Genetic manipulation of combinatorial chemistry libraries for small-molecule evolution. PLoS Biol. 2, E174 (2004).

    PubMed  PubMed Central  Google Scholar 

  52. Halpin, D. R., Lee, J. A., Wrenn, S. J. & Harbury, P. B. DNA display III. Solid-phase organic synthesis on unprotected DNA. PLoS Biol. 2, E175 (2004). The first description of using DNA routing to rediscover a known ligand.

    PubMed  PubMed Central  Google Scholar 

  53. Wrenn, S. J., Weisinger, R. M., Halpin, D. R. & Harbury, P. B. Synthetic ligands discovered by in vitro selection. J. Am. Chem. Soc. 129, 13137–13143 (2007). The first description of using a DNA-directed chemical library synthesized using hybridization-mediated routing to find binders to a protein target.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Weisinger, R. M., Wrenn, S. J. & Harbury, P. B. Highly parallel translation of DNA sequences into small molecules. PLoS ONE 7, e28056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Melkko, S., Scheuermann, J., Dumelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004). The first description of encoded self-assembling chemical libraries for ligand discovery.

    CAS  PubMed  Google Scholar 

  56. Melkko, S., Zhang, Y., Dumelin, C. E., Scheuermann, J. & Neri, D. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angew. Chem. Int. Ed. 46, 4671–4674 (2007).

    CAS  Google Scholar 

  57. Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    CAS  PubMed  Google Scholar 

  58. Li, G. et al. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem. Sci. 6, 7097–7104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reddavide, F. V., Lin, W. L., Lehnert, S. & Zhang, Y. X. DNA-encoded dynamic combinatorial chemical libraries. Angew. Chem. Int. Ed. 54, 7924–7928 (2015).

    CAS  Google Scholar 

  60. Daguer, J. P. et al. DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem. Sci. 6, 739–744 (2015).

    CAS  PubMed  Google Scholar 

  61. Barluenga, S. et al. Novel PTP1B inhibitors identified by DNA display of fragment pairs. Bioorg. Med. Chem. Lett. 26, 1080–1085 (2016).

    CAS  PubMed  Google Scholar 

  62. Scheuermann, J. et al. DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors. Bioconjug. Chem. 19, 778–785 (2008).

    CAS  PubMed  Google Scholar 

  63. Premstaller, A., Oberacher, H. & Huber, C. G. High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns. Anal. Chem. 72, 4386–4393 (2000).

    CAS  PubMed  Google Scholar 

  64. Satz, A. L. et al. DNA compatible multistep synthesis and applications to DNA encoded libraries. Bioconjug. Chem. 26, 1623–1632 (2015).

    CAS  PubMed  Google Scholar 

  65. Tian, X. et al. Development and design of the tertiary amino effect reaction for DNA-encoded library synthesis. MedChemComm 7, 1316–1322 (2016).

    CAS  Google Scholar 

  66. Li, C. J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev. 105, 3095–3165 (2005).

    CAS  PubMed  Google Scholar 

  67. Weisinger, R. M., Marinelli, R. J., Wrenn, S. J. & Harbury, P. B. Mesofluidic devices for DNA-programmed combinatorial chemistry. PLoS ONE 7, e32299 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rozenman, M. M. & Liu, D. R. DNA-templated synthesis in organic solvents. Chembiochem 7, 253–256 (2006).

    CAS  PubMed  Google Scholar 

  69. Liu, K. et al. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers. J. Am. Chem. Soc. 136, 14255–14262 (2014).

    CAS  PubMed  Google Scholar 

  70. Kalliokoski, T. Price-focused analysis of commercially available building blocks for combinatorial library synthesis. ACS Comb. Sci. 17, 600–607 (2015).

    CAS  PubMed  Google Scholar 

  71. Satz, A. L. in A Handbook For DNA-Encoded Chemistry: Theory And Applications For Exploring Chemical Space (ed. Goodnow, R. A. J.) 99–121 (Wiley & Sons, 2014).

    Google Scholar 

  72. Creaser, S. P. in A Handbook For DNA-Encoded Chemistry: Theory And Applications For Exploring Chemical Space (ed. Goodnow, R. A. J.) 123–151 (Wiley & Sons, 2014).

    Google Scholar 

  73. Gilar, M. et al. Ion-pair reversed-phase high-performance liquid chromatography analysis of oligonucleotides: retention prediction. J. Chromatogr. A 958, 167–182 (2002).

    CAS  PubMed  Google Scholar 

  74. Potier, N., Vandorsselaer, A., Cordier, Y., Roch, O. & Bischoff, R. Negative electrospray-ionization mass-spectrometry of synthetic and chemically-modified oligonucleotides. Nucleic Acids Res. 22, 3895–3903 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hargiss, L. O. et al. Reaction profiling by ultra high-pressure liquid chromatography/time-of-flight mass spectrometry in support of the synthesis of DNA-encoded libraries. J. Chromatogr. B 971, 120–125 (2014).

    CAS  Google Scholar 

  76. Feinberg, J. A. in A Handbook For DNA-Encoded Chemistry: Theory And Applications For Exploring Chemical Space (ed. Goodnow, R. A. J.) 201–212 (Wiley & Sons, 2014).

    Google Scholar 

  77. Decurtins, W. et al. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat. Protoc. 11, 764–780 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Blakskjaer, P., Heitner, T. & Hansen, N. J. V. Fidelity by design: yoctoReactor and binder trap enrichment for small-molecule DNA-encoded libraries and drug discovery. Curr. Opin. Chem. Biol. 26, 62–71 (2015).

    CAS  PubMed  Google Scholar 

  79. Denton, K. E. & Krusemark, C. J. Crosslinking of DNA-linked ligands to target proteins for enrichment from DNA-encoded libraries. MedChemComm 7, 2020–2027 (2016).

    CAS  PubMed  Google Scholar 

  80. Zhao, P. et al. Selection of DNA-encoded small molecule libraries against unmodified and non-immobilized protein targets. Angew. Chem. Int. Ed. 53, 10056–10059 (2014).

    CAS  Google Scholar 

  81. McGregor, L. M., Jain, T. & Liu, D. R. Identification of ligand–target pairs from combined libraries of small molecules and unpurified protein targets in cell lysates. J. Am. Chem. Soc. 136, 3264–3270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. McGregor, L. M., Gorin, D. J., Dumelin, C. E. & Liu, D. R. Interaction-dependent PCR: identification of ligand-target pairs from libraries of ligands and libraries of targets in a single solution-phase experiment. J. Am. Chem. Soc. 132, 15522–15224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bao, J. Y. et al. Prediction of protein–DNA complex mobility in gel-free capillary electrophoresis. Anal. Chem. 87, 2474–2479 (2015).

    CAS  PubMed  Google Scholar 

  84. Wu, Z. N. et al. Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. ACS Comb. Sci. 17, 722–731 (2015). The first example of using a DNA-encoded chemical library to find inhibitors of a cell surface target; the inhibitors were discovered using the target in a cell surface environment.

    CAS  PubMed  Google Scholar 

  85. Goodnow, R.A. Jr & Davie, C. P. 2015 First Boston Symposium of Encoded Library Platforms. MedChemComm 7, 1268–1270 (2016).

    CAS  Google Scholar 

  86. Zambaldo, C., Daguer, J. P., Saarbach, J., Barluenga, S. & Winssinger, N. Screening for covalent inhibitors using DNA-display of small molecule libraries functionalized with cysteine reactive moieties. MedChemComm 7, 1340–1351 (2016).

    CAS  Google Scholar 

  87. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    CAS  PubMed  Google Scholar 

  88. Kollmann, C. S. et al. Application of encoded library technology (ELT) to a protein–protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg. Med. Chem. 22, 2353–2365 (2014).

    CAS  PubMed  Google Scholar 

  89. Phelps, C. in Drug Discovery Chemistry April 19–22, 2016. San Diego, CA (Cambridge Innovation Institute, 2016).

    Google Scholar 

  90. Krusemark, C. J., Tilmans, N. P., Brown, P. O. & Harbury, P. B. Directed chemical evolution with an outsized genetic code. PLoS ONE 11, e0154765 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Charnley, A. K. et al. Crystal structures of human RIP2 kinase catalytic domain complexed with ATP-competitive inhibitors: foundations for understanding inhibitor selectivity. Bioorg. Med. Chem. 23, 7000–7006 (2015).

    CAS  PubMed  Google Scholar 

  92. Deng, H. F. et al. Discovery and optimization of potent, selective, and in vivo efficacious 2-aryl benzimidazole BCATm inhibitors. ACS Med. Chem. Lett. 7, 379–384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ding, Y. et al. Discovery of potent and selective inhibitors for ADAMTS-4 through DNA-encoded library technology (ELT). ACS Med. Chem. Lett. 6, 888–893 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lewis, H. D. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 11, 189–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wood, E. R. et al. The role of phosphodiesterase 12 (PDE12) as a negative regulator of the innate immune response and the discovery of antiviral inhibitors. J. Biol. Chem. 290, 19681–19696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, H. et al. Discovery of a potent class of PI3Kα inhibitors with unique binding mode via encoded library technology (ELT). ACS Med. Chem. Lett. 6, 531–536 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Franzini, R. M., Nauer, A., Scheuermann, J. & Neri, D. Interrogating target-specificity by parallel screening of a DNA-encoded chemical library against closely related proteins. Chem. Commun. 51, 8014–8016 (2015).

    CAS  Google Scholar 

  99. Satz, A. L. DNA encoded library selections and insights provided by computational simulations. ACS Chem. Biol. 10, 2237–2245 (2015).

    CAS  PubMed  Google Scholar 

  100. Encinas, L. et al. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. J. Med. Chem. 57, 1276–1288 (2014).

    CAS  PubMed  Google Scholar 

  101. Buller, F. et al. Selection of carbonic anhydrase IX inhibitors from one million DNA-encoded compounds. ACS Chem. Biol. 6, 336–344 (2011).

    CAS  PubMed  Google Scholar 

  102. Gilmartin, A. G. et al. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat. Chem. Biol. 10, 181–187 (2014).

    CAS  PubMed  Google Scholar 

  103. Disch, J. S. et al. Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J. Med. Chem. 56, 3666–3679 (2013).

    CAS  PubMed  Google Scholar 

  104. Franzini, R. M. et al. Identification of structure–activity relationships from screening a structurally compact DNA-encoded chemical library. Angew. Chem. Int. Ed. 54, 3927–3931 (2015).

    CAS  Google Scholar 

  105. Eidam, O. & Satz, A. L. Analysis of the productivity of DNA encoded libraries. MedChemComm 7, 1323–1331 (2016).

    CAS  Google Scholar 

  106. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    CAS  PubMed  Google Scholar 

  107. Papadatos, G. et al. SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res. 44, D1220–D1228 (2016).

    CAS  PubMed  Google Scholar 

  108. Goodnow, R. A. J. in A Handbook for DNA-Encoded Chemistry: Theory and Applications for Exploring Chemical Space (ed. Goodnow, R. A. J.) 417–426 (Wiley & Sons, 2014).

    Google Scholar 

  109. Kanan, M. W., Rozenman, M. M., Sakurai, K., Snyder, T. M. & Liu, D. R. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature 431, 545–549 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Brown, D. G. & Bostrom, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  PubMed  Google Scholar 

  111. Franzini, R. M. & Randolph, C. Chemical space of DNA-encoded libraries. J. Med. Chem. 59, 6629–6644 (2016).

    CAS  PubMed  Google Scholar 

  112. Li, Y. Z., Zhao, P., Zhang, M. D., Zhao, X. Y. & Li, X. Y. Multistep DNA-templated synthesis using a universal template. J. Am. Chem. Soc. 135, 17727–17730 (2013).

    CAS  PubMed  Google Scholar 

  113. He, Y. & Liu, D. R. A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J. Am. Chem. Soc. 133, 9972–9975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. He, Y. & Liu, D. R. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat. Nanotechnol. 5, 778–782 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meng, W. et al. An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8, 542–548 (2016).

    CAS  PubMed  Google Scholar 

  116. Arico-Muendel, C. C. From haystack to needle: finding value with DNA encoded library technology at GSK. MedChemComm 7, 1898–1909 (2016).

    CAS  Google Scholar 

  117. Ottl, J. in A Handbook for DNA-Encoded Chemistry: Theory and Applications for Exploring Chemical Space (ed. Goodnow, R. A. J.) 319–345 (Wiley & Sons, 2014).

    Google Scholar 

  118. Concha, N. et al. Discovery and characterization of a class of pyrazole inhibitors of bacterial undecaprenyl pyrophosphate synthase. J. Med. Chem. 59, 7299–7304 (2016).

    CAS  PubMed  Google Scholar 

  119. Soutter, H. H. et al. Discovery of novel, co-factor specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology. Proc. Natl Acad. Sci. USA 113, E7880–E7889 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Goodnow Jr.

Ethics declarations

Competing interests

At the time of writing this manuscript R.A.G. was an Executive Director at AstraZeneca. C.E.D. is an investigator at Novartis Pharma, and A.D.K. is a Director at X-Chem.

Related links

DATABASES

eMolecules

PowerPoint slides

Glossary

Lead

A hit compound that has been characterized in terms of its drug-like properties and is likely to be a therapeutically useful starting point for improvements in potency, selectivity and pharmacokinetic profile.

High-throughput screening

(HTS). An assay of many compounds in parallel, often by automated means.

Hits

Compounds identified in a primary screen that upon off-DNA resynthesis show reproducible biochemical activity, which is confirmed in an orthogonal assay.

Split-and-pool synthesis

A combinatorial chemistry practice for creating large numbers of compounds. After the separate reaction of a first set of reagents with a common chemical transformation, the products are pooled together, resulting in a mixture of the products. This mixture is then re-arrayed for another round of separate synthesis, followed by pooling, resulting in the combination of all possible products of the two sets of building blocks.

DNA-encoded chemistry

(DEC). Encoded chemistry with encoded information stored in DNA sequences.

DNA-encoded library

(DEL). A collection of variants with distinguishing characteristics encoded in DNA.

Affinity-mediated selection

Enrichment for binding to a target, usually via target immobilization.

PCR amplification

The use of a template-dependent thermostable polymerase enzyme to amplify DNA through recursive cycles of primer binding, primer extension and thermal denaturation.

Off-DNA resynthesis

The resynthesis of compounds identified in a primary screen for the purposes of assessing their biochemical or biophysical activity in the absence of DNA.

DNA encoding

The establishment of a defined relationship between DNA sequence and chemical history.

Building blocks

Chemical reagents containing at least one reactive handle.

DNA tags

Specific sequences of DNA used to encode a specified chemical step.

Encoded self-assembled chemistry

Molecular fragments that are held in co-proximity via the hybridization of complementary DNA.

DEAE sepharose

Sepharose beads covalently linked to diethylaminoethyl groups for the reversible capture of DNA.

Disynthon

A compound library member resulting from the combination of two types of building block.

Rule of 5

A compound is deemed compliant to the Lipinski 'rule of 5' if its molecular weight is not greater than 500 Da, if its logP is not greater than 5 and if its counts of hydrogen bond donors and acceptors are not greater than 5 and 10, respectively

Fragment-based lead discovery

Discovery of near leads through the assembly of small fragments that bind in a highly efficient manner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodnow, R., Dumelin, C. & Keefe, A. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat Rev Drug Discov 16, 131–147 (2017). https://doi.org/10.1038/nrd.2016.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.213

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research