Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calpain research for drug discovery: challenges and potential

Key Points

  • The calpains are a family of proteases with biologically vital functions. However, the mechanistic features of calpains are largely unknown.

  • Calpains have been identified as potential therapeutic targets for various types of diseases, including neurodegenerative and cardiovascular disorders, ophthalmic diseases and cancer.

  • Many disease phenotypes are ameliorated by calpain inhibition, and some calpain inhibitors have entered clinical trials.

  • Many calpain orthologues in parasites or microorganisms are responsible for the pathogenicity and viability of the organism; thus, targeting these calpains is a promising approach for combatting infectious diseases.

  • Some calpain gene defects resulting in loss of calpain activity are pathologically implicated in human disease. Therefore, in addition to therapies that inhibit calpain activity, developing strategies that compensate for calpain loss are an important goal.

  • The development of inhibitors with improved efficiency and specificity for calpains is a critical future research direction. Unveiling the physiological functions of calpains at the molecular level is a key challenge.

Abstract

Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of calpains.
Figure 2: Cross-eye stereo view of CAPN1, 2, 8 and 9.

Similar content being viewed by others

References

  1. Guroff, G. A neutral calcium-activated proteinase from the soluble fraction of rat brain. J. Biol. Chem. 239, 149–155 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Goll, D. E., Thompson, V. F., Li, H., Wei, W. & Cong, J. The calpain system. Physiol. Rev. 83, 731–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Campbell, R. L. & Davies, P. L. Structure−function relationships in calpains. Biochem. J. 447, 335–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Sorimachi, H., Hata, S. & Ono, Y. Impact of genetic insights into calpain biology. J. Biochem. 150, 23–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Murachi, T. Intracellular regulatory system involving calpain and calpastatin. Biochem. Int. 18, 263–294 (1989).

    CAS  PubMed  Google Scholar 

  6. Ishiura, S., Murofushi, H., Suzuki, K. & Imahori, K. Studies of a calcium-activated neutral protease from chicken skeletal muscle. I. Purification and characterization. J. Biochem. 84, 225–230 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Ohno, S. et al. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 312, 566–570 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Letavernier, E. et al. The role of calpains in myocardial remodelling and heart failure. Cardiovasc. Res. 96, 38–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Li, X., Chen, H., Jeong, J. J. & Chishti, A. H. BDA-410: a novel synthetic calpain inhibitor active against blood stage malaria. Mol. Biochem. Parasitol. 155, 26–32 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karmakar, S. et al. Use of an Sm-p80-based therapeutic vaccine to kill established adult schistosome parasites in chronically infected baboons. J. Infect. Dis. 209, 1929–1940 (2014). Shows the effectiveness of rSm-p80, the C-terminal portion of the S. mansoni calpain Smp-157500, as an anti-schistosomiasis vaccine in baboons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, M. et al. Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells. Virus Res. 179, 177–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Staniec, D. et al. Calcium regulates the activity and structural stability of Tpr, a bacterial calpain-like peptidase. J. Biol. Chem. 290, 27248–27260 (2015). The first report to show the existence of calpains — that is, a Ca2+-dependent CysPc motif-containing cysteine protease — in bacteria. This calpain, Tpr, is a possible therapeutic target for periodontitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, W. et al. Activation and alliance of regulatory pathways in C. albicans during mammalian infection. PLoS Biol. 13, e1002076 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yamada, M. et al. Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nat. Med. 15, 1202–1207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamashita, T. et al. A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat. Commun. 3, 1307 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. Hübener, J. et al. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3). Hum. Mol. Genet. 22, 508–518 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Toba, S. et al. Post-natal treatment by a blood–brain-barrier permeable calpain inhibitor, SNJ1945 rescued defective function in lissencephaly. Sci. Rep. 3, 1224 (2013). Shows that the oral and postnatal administration of the calpain inhibitor SNJ1945 substantially ameliorates the lissencephaly phenotype of Lis1+/− mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Amini, M. et al. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury. J. Neurosci. 33, 5773–5784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diepenbroek, M. et al. Overexpression of the calpain-specific inhibitor calpastatin reduces human α-synuclein processing, aggregation and synaptic impairment in [A30P]αSyn transgenic mice. Hum. Mol. Genet. 23, 3975–3989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saito, T. et al. Single App knock-in mouse models of Alzheimer's disease. Nat. Neurosci. 17, 661–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Knaryan, V. H. et al. SNJ-1945, a calpain inhibitor, protects SH-SY5Y cells against MPP+ and rotenone. J. Neurochem. 130, 280–290 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Trager, N. et al. Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J. Neurochem. 130, 268–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Letavernier, E. et al. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ. Res. 102, 720–728 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Yokota, M. et al. Calpain inhibitor entrapped in liposome rescues ischemic neuronal damage. Brain Res. 819, 8–14 (1999). Shows that calpain inhibition protects the brain from ischaemic damage.

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki, T. et al. m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation 124, 2522–2532 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Subramanian, V. et al. Calpain inhibition attenuates angiotensin II-induced abdominal aortic aneurysms and atherosclerosis in low-density lipoprotein receptor-deficient mice. J. Cardiovasc. Pharmacol. 59, 66–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Storr, S. J., Carragher, N. O., Frame, M. C., Parr, T. & Martin, S. G. The calpain system and cancer. Nat. Rev. Cancer 11, 364–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Hoskin, V. et al. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion. Mol. Biol. Cell 26, 3464–3479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grieve, S., Gao, Y., Hall, C., Hu, J. & Greer, P. A. calpain genetic disruption and HSP90 inhibition combine to attenuate mammary tumorigenesis. Mol. Cell. Biol. 36, 2078–2088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leloup, L. & Wells, A. Calpains as potential anti-cancer targets. Expert Opin. Ther. Targets 15, 309–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moreau, K. L. & King, J. A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol. Med. 18, 273–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995). The first report of human calpainopathy using forward genetics, representing one of the greatest milestones in calpain research and causing a paradigm shift in the field.

    Article  CAS  PubMed  Google Scholar 

  33. Hata, S. et al. Calpain 8/nCL-2 and calpain 9/nCL-4 constitute an active protease complex, G-calpain, involved in gastric mucosal defense. PLoS Genet. 6, e1001040 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mahajan, V. B. et al. Calpain-5 mutations cause autoimmune uveitis, retinal neovascularization, and photoreceptor degeneration. PLoS Genet. 8, e1003001 (2012). Reports another human calpainopathy, which is thought to result from gain-of-function mutations, showing the importance of unconventional calpains in human health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kottyan, L. C. et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat. Genet. 46, 895–900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sleiman, P. M. et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun. 5, 5593 (2014). References 35 and 36 identify a third human calpainopathy, known as eosinophilic oesophagitis, by genome-wide association analyses. The classical CAPN14, which is expressed predominantly in the oesophagus, causes eosinophilic oesophagitis by a combination of loss- and gain-of-function mechanisms.

    Article  PubMed  Google Scholar 

  37. Li, F. Z. et al. Crosstalk between calpain activation and TGF-β1 augments collagen-I synthesis in pulmonary fibrosis. Biochim. Biophys. Acta 1852, 1796–1804 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Y. et al. Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes 60, 2985–2994 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ni, R. et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes 65, 255–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Olaya, P. & Wasserman, M. Effect of calpain inhibitors on the invasion of human erythrocytes by the parasite Plasmodium falciparum. Biochim. Biophys. Acta 1096, 217–221 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Chandramohanadas, R. et al. Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324, 794–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ersfeld, K., Barraclough, H. & Gull, K. Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J. Mol. Evol. 61, 742–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Vallabhaneni, S., Mody, R. K., Walker, T. & Chiller, T. The global burden of fungal diseases. Infect. Dis. Clin. North Am. 30, 1–11 (2016).

    Article  PubMed  Google Scholar 

  44. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Satoyoshi, E. Therapeutic trials on progressive muscular dystrophy. Intern. Med. 31, 841–846 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Nikkel, A. L. et al. The novel calpain inhibitor A-705253 prevents stress-induced tau hyperphosphorylation in vitro and in vivo. Neuropharmacology 63, 606–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Roudaut, C. et al. Restriction of calpain3 expression to the skeletal muscle prevents cardiac toxicity and corrects pathology in a murine model of limb-girdle muscular dystrophy. Circulation 128, 1094–1104 (2013). Shows that induction of strong proteolytic CAPN3 activity via gene therapy causes severe toxicity owing to its leaked ectopic expression in the heart. Improving the specificity of the promoters driving viral vectors ameliorated toxicity.

    Article  CAS  PubMed  Google Scholar 

  48. Gan-Or, Z. et al. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. Am. J. Hum. Genet. 98, 1038–1046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Croall, D. E. & Ersfeld, K. The calpains: modular designs and functional diversity. Genome Biol. 8, 218 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sorimachi, H., Hata, S. & Ono, Y. Calpain chronicle — an enzyme family under multidisciplinary characterization. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 287–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, S. et al. Massive expansion of the calpain gene family in unicellular eukaryotes. BMC Evol. Biol. 12, 193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rawlings, N. D. Bacterial calpains and the evolution of the calpain (C2) family of peptidases. Biol. Direct 10, 66 (2015). References 51 and 52 extensively classify the calpain homologues in all living organisms, revealing that many functional domains are fused with the CysPc domain. Reference 52 includes analyses of bacterial calpains.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ono, Y., Ojima, K., Shinkai-Ouchi, F., Hata, S. & Sorimachi, H. An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 122, 169–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Maeda, T. The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. FEBS J. 279, 1407–1413 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Joyce, P. I., Satija, R., Chen, M. & Kuwabara, P. E. The atypical calpains: evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. PLoS Genet. 8, e1002602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Azam, M. et al. Disruption of the mouse μ-calpain gene reveals an essential role in platelet function. Mol. Cell. Biol. 21, 2213–2220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dutt, P. et al. m-Calpain is required for preimplantation embryonic development in mice. BMC Dev. Biol. 6, 3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Takano, J. et al. Vital role of the calpain–calpastatin system for placental-integrity-dependent embryonic survival. Mol. Cell. Biol. 31, 4097–4106 (2011). Reveals the essential role of calpain activity in the placenta. Surprisingly, the embryonic lethality of Capn2−/− was rescued by an additional Cast knockout.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galvez, A. S. et al. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ. Res. 100, 1071–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Sorimachi, H. et al. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and μ-types: specific expression of the mRNA in skeletal muscle. J. Biol. Chem. 264, 20106–20111 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Wendt, A., Thompson, V. F. & Goll, D. E. Interaction of calpastatin with calpain: a review. Biol. Chem. 385, 465–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Maki, M., Maemoto, Y., Osako, Y. & Shibata, H. Evolutionary and physical linkage between calpains and penta-EF-hand Ca2+-binding proteins. FEBS J. 279, 1414–1421 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Arthur, J. S., Elce, J. S., Hegadorn, C., Williams, K. & Greer, P. A. Disruption of the murine calpain small subunit gene. Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol. Cell. Biol. 20, 4474–4481 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hanna, R. A., Campbell, R. L. & Davies, P. L. Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456, 409–412 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Moldoveanu, T., Gehring, K. & Green, D. R. Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 456, 404–408 (2008). References 64 and 65 show the 3D structures of an active full-length calpain in complex with Ca2+ and CAST, which are now standard for analysing calpain substrate recognition and inhibitory mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hosfield, C. M., Elce, J. S., Davies, P. L. & Jia, Z. Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation. EMBO J. 18, 6880–6889 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Strobl, S. et al. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc. Natl Acad. Sci. USA 97, 588–592 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fukiage, C., Nakajima, E., Ma, H., Azuma, M. & Shearer, T. R. Characterization and regulation of lens-specific calpain Lp82. J. Biol. Chem. 277, 20678–20685 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Garnham, C. P. et al. Limb-girdle muscular dystrophy type 2A can result from accelerated autoproteolytic inactivation of calpain 3. Biochemistry. 48, 3457–3467 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Soh, B. Y. et al. Identification of active Plasmodium falciparum calpain to establish screening system for Pf-calpain-based drug development. Malar. J. 12, 47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bassuk, A. G. et al. Structural modeling of a novel CAPN5 mutation that causes uveitis and neovascular retinal detachment. PLoS ONE 10, e0122352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Moldoveanu, T., Campbell, R. L., Cuerrier, D. & Davies, P. L. Crystal structures of calpain-E64 and -leupeptin inhibitor complexes reveal mobile loops gating the active site. J. Mol. Biol. 343, 1313–1326 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Cuerrier, D., Moldoveanu, T., Inoue, J., Davies, P. L. & Campbell, R. L. Calpain inhibition by α-ketoamide and cyclic hemiacetal inhibitors revealed by X-ray crystallography. Biochemistry 45, 7446–7452 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Cuerrier, D. et al. Development of calpain-specific inactivators by screening of positional scanning epoxide libraries. J. Biol. Chem. 282, 9600–9611 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Qian, J. et al. Cocrystal structures of primed side-extending α-ketoamide inhibitors reveal novel calpain-inhibitor aromatic interactions. J. Med. Chem. 51, 5264–5270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, K. K. et al. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc. Natl Acad. Sci. USA 93, 6687–6692 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, G. D. et al. Crystal structure of calcium bound domain VI of calpain at 1.9 Å resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat. Struct. Biol. 4, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Deshmukh, L., Wu, L., Guttmann, R. P. & Vinogradova, O. NMR structural characterization of the penta-peptide calpain inhibitor. FEBS Lett. 583, 135–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Low, K. E., Karunan Partha, S., Davies, P. L. & Campbell, R. L. Allosteric inhibitors of calpains: reevaluating inhibition by PD150606 and LSEAL. Biochim. Biophys. Acta 1840, 3367–3373 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Moldoveanu, T., Hosfield, C. M., Lim, D., Jia, Z. & Davies, P. L. Calpain silencing by a reversible intrinsic mechanism. Nat. Struct. Biol. 10, 371–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Davis, T. L. et al. The crystal structures of human calpains 1 and 9 imply diverse mechanisms of action and auto-inhibition. J. Mol. Biol. 366, 216–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Seo, J. et al. Activity-dependent p25 generation regulates synaptic plasticity and Aβ-induced cognitive impairment. Cell 157, 486–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kobayashi, Y. et al. Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1α. Proc. Natl Acad. Sci. USA 87, 5548–5552 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gross, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Conacci-Sorrell, M., Ngouenet, C. & Eisenman, R. N. Myc-nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell 142, 480–493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Conacci-Sorrell, M., Ngouenet, C., Anderson, S., Brabletz, T. & Eisenman, R. N. Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev. 28, 689–707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anderson, S. et al. MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation. Proc. Natl Acad. Sci. USA 113, E5481–E5490 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lek, A. et al. Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair. J. Neurosci. 33, 5085–5094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Redpath, G. M. et al. Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol. Biol. Cell 25, 3037–3048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan, X. X., Jeromin, A. & Jeromin, A. Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr. Transl. Geriatr. Exp. Gerontol. Rep. 1, 85–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harris, A. S., Croall, D. E. & Morrow, J. S. The calmodulin-binding site in α-fodrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem. 263, 15754–15761 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Fukiage, C. et al. SJA6017, a newly synthesized peptide aldehyde inhibitor of calpain: amelioration of cataract in cultured rat lenses. Biochim. Biophys. Acta 1361, 304–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Ono, Y. et al. Functional defects of a muscle-specific calpain, 94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J. Biol. Chem. 273, 17073–17078 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Sorimachi, H., Mamitsuka, H. & Ono, Y. Understanding the substrate specificity of conventional calpains. Biol. Chem. 393, 853–871 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Tompa, P. et al. On the sequential determinants of calpain cleavage. J. Biol. Chem. 279, 20775–20785 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Cuerrier, D., Moldoveanu, T. & Davies, P. L. Determination of peptide substrate specificity for μ-calpain by a peptide library-based approach: the importance of primed side interactions. J. Biol. Chem. 280, 40632–40641 (2005). Using a peptide sequencer, determined the substrate amino acid preference of calpain and invented a highly sensitive fluorescent calpain substrate.

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, D. A. et al. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates. Proteomics 6, 2112–2120 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Shinkai-Ouchi, F. et al. Predictions of cleavability of calpain proteolysis by quantitative structure-activity relationship analysis using newly determined cleavage sites and catalytic efficiencies of an oligopeptide array. Mol. Cell. Proteomics 15, 1262–1280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Verspurten, J., Gevaert, K., Declercq, W. & Vandenabeele, P. SitePredicting the cleavage of proteinase substrates. Trends Biochem. Sci. 34, 319–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, Z. et al. GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. PLoS ONE 6, e19001 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan, Y. X., Zhang, Y. & Shen, H. B. LabCaS: Labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins 81, 622–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. duVerle, D. A., Ono, Y., Sorimachi, H. & Mamitsuka, H. Calpain cleavage prediction using multiple kernel learning. PLoS ONE 6, e19035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spencer, M. J. & Mellgren, R. L. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum. Mol. Genet. 11, 2645–2655 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Higuchi, M. et al. Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J. Biol. Chem. 280, 15229–15237 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Takano, J. et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J. Biol. Chem. 280, 16175–16184 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Saido, T. C., Suzuki, H., Yamazaki, H., Tanoue, K. & Suzuki, K. In situ capture of μ-calpain activation in platelets. J. Biol. Chem. 268, 7422–7426 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Saido, T. C. et al. Spatial resolution of fodrin proteolysis in postischemic brain. J. Biol. Chem. 268, 25239–25243 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Taniguchi, S. et al. Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett. 489, 46–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Higuchi, M. et al. Mechanistic involvement of the calpain–calpastatin system in Alzheimer neuropathology. FASEB J. 26, 1204–1217 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Nilsson, P., Saito, T. & Saido, T. C. New mouse model of Alzheimer's. ACS Chem. Neurosci. 5, 499–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saito, T., Matsuba, Y., Yamazaki, N., Hashimoto, S. & Saido, T. C. Calpain activation in Alzheimer's model mice is an artifact of APP and presenilin overexpression. J. Neurosci. 36, 9933–9936 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yokota, M., Saido, T. C., Tani, E., Kawashima, S. & Suzuki, K. Three distinct phases of fodrin proteolysis induced in postischemic hippocampus. Involvement of calpain and unidentified protease. Stroke 26, 1901–1907 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Sorimachi, H. & Ono, Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc. Res. 96, 11–22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kang, M. Y. et al. Receptor-independent cardiac protein kinase Cα activation by calpain-mediated truncation of regulatory domains. Circ. Res. 107, 903–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nishida, K., Yamaguchi, O. & Otsu, K. Degradation systems in heart failure. J. Mol. Cell. Cardiol. 84, 212–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, M., Won, D. J., Krajewski, S. & Gottlieb, R. A. Calpain and mitochondria in ischemia/reperfusion injury. J. Biol. Chem. 277, 29181–29186 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Thompson, J., Hu, Y., Lesnefsky, E. J. & Chen, Q. Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. Am. J. Physiol. Heart Circ. Physiol. 310, H376–H384 (2016).

    Article  PubMed  Google Scholar 

  118. Mehdi, S. Cell-penetrating inhibitors of calpain. Trends Biochem. Sci. 16, 150–153 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Khalil, P. N. et al. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur. J. Pharmacol. 528, 124–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Wan, F. et al. Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation. Am. J. Physiol. Heart Circ. Physiol. 309, H1883–H1893 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Taneike, M. et al. Calpain protects the heart from hemodynamic stress. J. Biol. Chem. 286, 32170–32177 (2011). Shows that cardiac-specific Capns1−/− aggravates fibrosis after transverse aortic constriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mellgren, R. L. et al. Calcium-dependent plasma membrane repair requires m- or μ-calpain, but not calpain-3, the proteasome, or caspases. Biochim. Biophys. Acta 1793, 1886–1893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Perez, J. et al. Calpains released by T lymphocytes cleave TLR2 to control IL-17 expression. J. Immunol. 196, 168–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, S., Meng, T., Liu, J., Zhang, X. & Zhang, J. Cardiac protective effects of dexrazoxane on animal cardiotoxicity model induced by anthracycline combined with trastuzumab is associated with upregulation of calpain-2. Medicine 94, e445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Spencer, M. J., Croall, D. E. & Tidball, J. G. Calpains are activated in necrotic fibers from mdx dystrophic mice. J. Biol. Chem. 270, 10909–10914 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Badalamente, M. A. & Stracher, A. Delay of muscle degeneration and necrosis in mdx mice by calpain inhibition. Muscle Nerve 23, 106–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Stracher, A., Kesner, L., Barton, N. W. & Carver, T. E. Compounds and kits for treating muscle disorders and methods of use thereof. WIPO patent WO2005124563 (2005).

  128. Selsby, J. et al. Leupeptin-based inhibitors do not improve the mdx phenotype. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1192–R1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Childers, M. K. et al. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of Duchenne muscular dystrophy. Front. Pharmacol. 2, 89 (2011).

    PubMed  Google Scholar 

  130. Hollinger, K. & Selsby, J. T. The physiological response of protease inhibition in dystrophic muscle. Acta Physiol. 208, 234–244 (2013).

    Article  CAS  Google Scholar 

  131. Wehling-Henricks, M. et al. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddw111 (2016).

  132. Manya, H. et al. Klotho protein deficiency leads to overactivation of μ-calpain. J. Biol. Chem. 277, 35503–35508 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Nabeshima, Y. et al. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes. Sci. Rep. 4, 5847 (2014). Shows that calpain inhibition by orally administering BDA-410 substantially suppresses ageing-related symptoms caused by Kl knockout.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. David, L. L. & Shearer, T. R. Purification of calpain II from rat lens and determination of endogenous substrates. Exp. Eye Res. 42, 227–238 (1986).

    Article  CAS  PubMed  Google Scholar 

  135. Biswas, S., Harris, F., Dennison, S., Singh, J. & Phoenix, D. A. Calpains: targets of cataract prevention? Trends Mol. Med. 10, 78–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, K. et al. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proc. Natl Acad. Sci. USA 112, 1071–1076 (2015). Reveals the connection between calpains and the ubiquitin–proteasome system in cataractogenesis and shows the importance of the K6-conjugated ubiquitin chain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shearer, T. R., Azuma, M., David, L. L. & Murachi, T. Amelioration of cataracts and proteolysis in cultured lenses by cysteine protease inhibitor E64. Invest. Ophthalmol. Vis. Sci. 32, 533–540 (1991).

    CAS  PubMed  Google Scholar 

  138. Abell, A. D. et al. Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew. Chem. Int. Ed. 48, 1455–1458 (2009).

    Article  CAS  Google Scholar 

  139. Morton, J. D. et al. A macrocyclic calpain inhibitor slows the development of inherited cortical cataracts in a sheep model. Invest. Ophthalmol. Vis. Sci. 54, 389–395 (2013). Reports the synthesis of a small-molecule inhibitor using macrocyclic structures that are markedly specific for calpains. These inhibitors show significant therapeutic effects in a sheep cataract model.

    Article  CAS  PubMed  Google Scholar 

  140. Daiger, S. P., Sullivan, L. S. & Bowne, S. J. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 84, 132–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Shinde, V., Kotla, P., Strang, C. & Gorbatyuk, M. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa. Cell Death Dis. 7, e2085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rodriguez-Muela, N. et al. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ. 22, 476–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Koriyama, Y., Ogai, K., Sugitani, K., Hisano, S. & Kato, S. Geranylgeranylacetone suppresses N-methyl-N-nitrosourea-induced photoreceptor cell loss in mice. Adv. Exp. Med. Biol. 854, 237–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Moretti, D., Del Bello, B., Allavena, G. & Maellaro, E. Calpains and cancer: friends or enemies? Arch. Biochem. Biophys. 564, 26–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Raimbourg, Q. et al. The calpain/calpastatin system has opposing roles in growth and metastatic dissemination of melanoma. PLoS ONE 8, e60469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wu, Q., Dhir, R. & Wells, A. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol. Cancer 11, 3 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Miyazaki, T. et al. Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells. Circ. Res. 116, 1170–1181 (2015). Shows the involvement of calpains in pathological angiogenesis in tumours and in ischaemic retinopathy, which are suppressed by the transgenic expression of CAST.

    Article  CAS  PubMed  Google Scholar 

  148. Libertini, S. J. et al. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res. 67, 9001–9005 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Kulkarni, S. et al. Calpain regulates sensitivity to trastuzumab and survival in HER2-positive breast cancer. Oncogene 29, 1339–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Fang, J. et al. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat. Med. 22, 727–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pan, B. & Lentzsch, S. The application and biology of immunomodulatory drugs (IMiDs) in cancer. Pharmacol. Ther. 136, 56–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Weeraratna, A. T. et al. Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene 23, 2264–2274 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Gollob, J. A., Sciambi, C. J., Huang, Z. & Dressman, H. K. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-γ. Cancer Res. 65, 8869–8877 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Roperto, S. et al. Calpain3 is expressed in a proteolitically active form in papillomavirus-associated urothelial tumors of the urinary bladder in cattle. PLoS ONE 5, e10299 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Moretti, D. et al. Calpain-3 impairs cell proliferation and stimulates oxidative stress-mediated cell death in melanoma cells. PLoS ONE 10, e0117258 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Liu, K., Li, L. & Cohen, S. N. Antisense RNA-mediated deficiency of the calpain protease, nCL-4, in NIH3T3 cells is associated with neoplastic transformation and tumorigenesis. J. Biol. Chem. 275, 31093–31098 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Yoshikawa, Y., Mukai, H., Hino, F., Asada, K. & Kato, I. Isolation of two novel genes, down-regulated in gastric cancer. Jpn J. Cancer Res. 91, 459–463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vaish, V. & Sanyal, S. N. Role of sulindac and celecoxib in chemoprevention of colorectal cancer via intrinsic pathway of apoptosis: exploring NHE-1, intracellular calcium homeostasis and calpain 9. Biomed. Pharmacother. 66, 116–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Peng, P. et al. Decreased expression of calpain-9 predicts unfavorable prognosis in patients with gastric cancer. Sci. Rep. 6, 29604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Del Bello, B., Toscano, M., Moretti, D. & Maellaro, E. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells. PLoS ONE 8, e57236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Richard, I. et al. Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IκBα/NFκB pathway perturbation in mice. J. Cell Biol. 151, 1583–1590 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fanin, M. & Angelini, C. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: the yield and the pitfalls. Muscle Nerve 52, 163–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Kramerova, I. et al. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum. Mol. Genet. 17, 3271–3280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ojima, K. et al. Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J. Mol. Biol. 407, 439–449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Franz, T., Winckler, L., Boehm, T. & Dear, T. N. Capn5 is expressed in a subset of T cells and is dispensable for development. Mol. Cell. Biol. 24, 1649–1654 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Singh, R. et al. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J. Biol. Chem. 289, 19383–19394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wert, K. J. et al. CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Hum. Mol. Genet. 24, 4584–4598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Davis, B. P. et al. Eosinophilic esophagitis-linked calpain 14 is an IL-13-induced protease that mediates esophageal epithelial barrier impairment. JCI Insight 1, e86355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wang, Y., Briz, V., Chishti, A., Bi, X. & Baudry, M. Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J. Neurosci. 33, 18880–18892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Forman, O. P., De Risio, L. & Mellersh, C. S. Missense mutation in CAPN1 is associated with spinocerebellar ataxia in the Parson Russell Terrier dog breed. PLoS ONE 8, e64627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, Y. et al. Defects in the CAPN1 gene result in alterations in cerebellar development and cerebellar ataxia in mice and humans. Cell Rep. 16, 79–91 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Berthier, D. et al. Tolerance to trypanosomatids: a threat, or a key for disease elimination? Trends Parasitol. 32, 157–168 (2016).

    Article  PubMed  Google Scholar 

  173. Marinho, F. A. et al. The calpain inhibitor MDL28170 induces the expression of apoptotic markers in Leishmania amazonensis promastigotes. PLoS ONE 9, e87659 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Cai, P., Gobert, G. N., You, H. & McManus, D. P. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int. J. Parasitol. 46, 453–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Hotez, P. J. et al. Eliminating the neglected tropical diseases: translational science and new technologies. PLoS Negl. Trop. Dis. 10, e0003895 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Tuteja, R. Malaria an overview. FEBS J. 274, 4670–4679 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Rosenthal, P. J. Falcipains and other cysteine proteases of malaria parasites. Adv. Exp. Med. Biol. 712, 30–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Russo, I., Oksman, A., Vaupel, B. & Goldberg, D. E. A calpain unique to alveolates is essential in Plasmodium falciparum and its knockdown reveals an involvement in pre-S-phase development. Proc. Natl Acad. Sci. USA 106, 1554–1559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hanspal, M., Goel, V. K., Oh, S. S. & Chishti, A. H. Erythrocyte calpain is dispensable for malaria parasite invasion and growth. Mol. Biochem. Parasitol. 122, 227–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Hayes, P. et al. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol. 206, 377–384 (2014). Elucidates the physiological functions of ClpGM6, one of 18 calpains in T. brucei , and shows that ClpGM6 is a promising therapeutic target for trypanosomiasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, M., Martin, S. J., Bruno, V. M., Mitchell, A. P. & Davis, D. A. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot. Cell 3, 741–751 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ost, K. S., O'Meara, T. R., Huda, N., Esher, S. K. & Alspaugh, J. A. The Cryptococcus neoformans alkaline response pathway: identification of a novel Rim pathway activator. PLoS Genet. 11, e1005159 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Futai, E. et al. The protease activity of a calpain-like cysteine protease in Saccharomyces cerevisiae is required for alkaline adaptation and sporulation. Mol. Gen. Genet. 260, 559–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Denison, S. H., Orejas, M. & Arst, H. N. Jr. Signaling of ambient pH in Aspergillus involves a cysteine protease. J. Biol. Chem. 270, 28519–28522 (1995).

    Article  CAS  PubMed  Google Scholar 

  185. Ali, M. A., Stepanko, A., Fan, X., Holt, A. & Schulz, R. Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem. Biophys. Res. Commun. 423, 1–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Vondracek, P. et al. in Focus on Birth Defects Research (ed. Engels, J. V.) 161–183 (Nova Science Publishers, 2006).

    Google Scholar 

  187. Krantz, A. Proteases in inflammation. Ann. Rep. Med. Chem. 28, 187–196 (1993).

    CAS  Google Scholar 

  188. Low, K. E. et al. Rational design of calpain inhibitors based on calpastatin peptidomimetics. J. Med. Chem. 59, 5403–5415 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Koshland, D. E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl Acad. Sci. USA 44, 98–104 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chen, H. et al. New tripeptide-based macrocyclic calpain inhibitors formed by N-alkylation of histidine. Chem. Biodivers. 9, 2473–2484 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Jones, S. A. et al. A template-based approach to inhibitors of calpain 2, 20S proteasome, and HIV-1 protease. ChemMedChem 8, 1918–1921 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Jo, H. et al. Development of α-helical calpain probes by mimicking a natural protein–protein interaction. J. Am. Chem. Soc. 134, 17704–17713 (2012). Uses the 3D structure of the CAPN2–CAST complex to develop calpain inhibitors with a CAST-derived α -helix fixed by a linker group, achieving high specificity for calpain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ozaki, T., Nakazawa, M., Yamashita, T. & Ishiguro, S. Delivery of topically applied calpain inhibitory peptide to the posterior segment of the rat eye. PLoS ONE 10, e0130986 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Ozaki, T. et al. Intravitreal injection or topical eye-drop application of a μ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons' rats, a model of retinitis pigmentosa. Biochim. Biophys. Acta 1822, 1783–1795 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Adams, S. E. et al. Conformationally restricted calpain inhibitors. Chem. Sci. 6, 6865–6871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Novinec, M. et al. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat. Commun. 5, 3287 (2014).

    Article  PubMed  CAS  Google Scholar 

  197. Donkor, I. O. An updated patent review of calpain inhibitors (2012 - 2014). Expert Opin. Ther. Pat. 25, 17–31 (2015). A comprehensive and clear review of recent progress in the structures and properties of calpain inhibitors.

    Article  CAS  PubMed  Google Scholar 

  198. Siklos, M., BenAissa, M. & Thatcher, G. R. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B 5, 506–519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lubisch, W. et al. Benzoylalanine-derived ketoamides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability. J. Med. Chem. 46, 2404–2412 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Trumbeckaite, S., Neuhof, C., Zierz, S. & Gellerich, F. N. Calpain inhibitor (BSF 409425) diminishes ischemia/reperfusion-induced damage of rabbit heart mitochondria. Biochem. Pharmacol. 65, 911–916 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Froestl, W., Muhs, A. & Pfeifer, A. Cognitive enhancers (nootropics). Part 2: drugs interacting with enzymes. Update 2014. J. Alzheimers Dis. 42, 1–68 (2014).

    Article  PubMed  Google Scholar 

  202. Mack, H. et al. Carboxamide compounds and their use as calpain inhibitors. US patent US8283363 (2012).

  203. Kling, A. et al. Carboxamide compounds and their use as calpain inhibitors. US patent US8906941 (2014).

  204. Bordet, T. et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J. Pharmacol. Exp. Ther. 322, 709–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Iascone, D. M., Henderson, C. E. & Lee, J. C. Spinal muscular atrophy: from tissue specificity to therapeutic strategies. F1000Prime Rep. 7, 04 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Zanetta, C. et al. Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin. Ther. 36, 128–140 (2014).

    Article  PubMed  Google Scholar 

  207. Magalon, K. et al. Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann. Neurol. 71, 213–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Weber, J. J., Ortiz Rios, M. M., Riess, O., Clemens, L. E. & Nguyen, H. P. The calpain-suppressing effects of olesoxime in Huntington's disease. Rare Dis. 4, e1153778 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Clemens, L. E. et al. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 138, 3632–3653 (2015).

    Article  PubMed  Google Scholar 

  210. Gouarne, C. et al. Olesoxime protects embryonic cortical neurons from camptothecin intoxication by a mechanism distinct from BDNF. Br. J. Pharmacol. 168, 1975–1988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lenglet, T. et al. A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur. J. Neurol. 21, 529–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Walker, M. P. et al. SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum. Mol. Genet. 17, 3399–3410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Stifanese, R. et al. Role of calpain-1 in the early phase of experimental ALS. Arch. Biochem. Biophys. 562, 1–8 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Stracher, A., Kesner, L., Carver, T. E. & Barton, N. W. Compounds for treating neurologic diseases, otologic diseases, or ophthalmologic diseases and methods of use thereof. US patent US20080200399 (2005).

  215. Stracher, A., Kesner, L. & Shulman, A. Targeted delivery of pharmaceutical compounds. US patent US8729024 (2007).

  216. Dugue, R. et al. The effect of the novel blood–brain barrier permeable calpain inhibitor Ala-1.0 in a rat model of traumatic brain injury (Poster). Neurology 86, P3.286 (2016).

    Google Scholar 

  217. Hassen, G. W., Feliberti, J., Kesner, L., Stracher, A. & Mokhtarian, F. Prevention of axonal injury using calpain inhibitor in chronic progressive experimental autoimmune encephalomyelitis. Brain Res. 1236, 206–215 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. David, J. et al. A novel calpain inhibitor for treatment of transient retinal ischemia in the rat. Neuroreport 22, 633–636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. El Chamy Maluf, S. et al. Hypervalent organotellurium compounds as inhibitors of P. falciparum calcium-dependent cysteine proteases. Parasitol. Int. 65, 20–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. De Franceschi, L. et al. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces gardos channel activity in a mouse model of sickle cell disease. FASEB J. 27, 750–759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wieschhaus, A. et al. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology. Biochem. J. 448, 141–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. Paris, C., Loiseau, P. M., Bories, C. & Breard, J. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob. Agents Chemother. 48, 852–859 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Galetovic, A. et al. The repetitive cytoskeletal protein H49 of Trypanosoma cruzi is a calpain-like protein located at the flagellum attachment zone. PLoS ONE 6, e27634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Andresen, K., Tom, T. D. & Strand, M. Characterization of cDNA clones encoding a novel calcium-activated neutral proteinase from Schistosoma mansoni. J. Biol. Chem. 266, 15085–15090 (1991).

    Article  CAS  PubMed  Google Scholar 

  225. Karmakar, S. et al. Cross-species protection: Schistosoma mansoni Sm-p80 vaccine confers protection against Schistosoma haematobium in hamsters and baboons. Vaccine 32, 1296–1303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang, W. et al. Longevity of Sm-p80-specific antibody responses following vaccination with Sm-p80 vaccine in mice and baboons and transplacental transfer of Sm-p80-specific antibodies in a baboon. Parasitol. Res. 113, 2239–2250 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Maemoto, Y. et al. Involvement of calpain-7 in epidermal growth factor receptor degradation via the endosomal sorting pathway. FEBS J. 281, 3642–3655 (2014).

    Article  CAS  PubMed  Google Scholar 

  228. Andree, M. et al. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. EMBO J. 33, 2171–2187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ono, Y. et al. Skeletal muscle-specific calpain is an intracellular Na+-dependent protease. J. Biol. Chem. 285, 22986–22998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hotta, A. & Yamanaka, S. From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu. Rev. Genet. 49, 47–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Li, H. L. et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4, 143–154 (2015).

    Article  CAS  Google Scholar 

  232. Ono, Y. et al. The N- and C-terminal autolytic fragments of CAPN3/p94/calpain-3 restore proteolytic activity by intermolecular complementation. Proc. Natl Acad. Sci. USA 111, E5527–E5536 (2014). Describes the unique characteristic of CAPN3, the iMOC of its proteolytic activity, previously lost by autolysis. This is the first example of this mechanism in a bacterial and eukaryotic protease and is interesting in view of a gene therapy approach for LGMD2A.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Loveland, A. N., Chan, C. K., Brignole, E. J. & Gibson, W. Cleavage of human cytomegalovirus protease pUL80a at internal and cryptic sites is not essential but enhances infectivity. J. Virol. 79, 12961–12968 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Saenz, A. et al. Does the severity of the LGMD2A phenotype in compound heterozygotes depend on the combination of mutations? Muscle Nerve 44, 710–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Ermolova, N. et al. Pathogenity of some limb girdle muscular dystrophy mutations can result from reduced anchorage to myofibrils and altered stability of calpain 3. Hum. Mol. Genet. 20, 3331–3345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Piluso, G. et al. Extensive scanning of the calpain-3 gene broadens the spectrum of LGMD2A phenotypes. J. Med. Genet. 42, 686–693 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. De Cid, R. et al. A new titinopathy: childhood-juvenile onset Emery–Dreifuss-like phenotype without cardiomyopathy. Neurology 85, 2126–2135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Mendell, J. R. et al. A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol. Ther. 23, 192–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Bartoli, M. et al. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not α-sarcoglycan deficiency. Gene Ther. 14, 733–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  240. Tonami, K. et al. Calpain-6 deficiency promotes skeletal muscle development and regeneration. PLoS Genet. 9, e1003668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  242. Lamar, K. M. et al. Overexpression of latent TGFβ binding protein 4 in muscle ameliorates muscular dystrophy through myostatin and TGFβ. PLoS Genet. 12, e1006019 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Cotten, S. W. et al. Genetic myostatin decrease in the golden retriever muscular dystrophy model does not significantly affect the ubiquitin proteasome system despite enhancing the severity of disease. Am. J. Transl. Res. 6, 43–53 (2013).

    PubMed  PubMed Central  Google Scholar 

  244. Kumar, V., Everingham, S., Hall, C., Greer, P. A. & Craig, A. W. Calpains promote neutrophil recruitment and bacterial clearance in an acute bacterial peritonitis model. Eur. J. Immunol. 44, 831–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Elagib, K. E. et al. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev. Cell 27, 607–620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kaneko, Y., Murphy, C. R. & Day, M. L. Calpain 2 activity increases at the time of implantation in rat uterine luminal epithelial cells and administration of calpain inhibitor significantly reduces implantation sites. Histochem. Cell Biol. 141, 423–430 (2014). An impressive study showing that calpain inhibition by ALLNal significantly reduces the number of uterine implantation sites. Calpains have essential roles in the placenta and the use of calpain inhibitors during pregnancy may carry serious risks.

    Article  CAS  PubMed  Google Scholar 

  247. Duong, L. T., Leung, A. T. & Langdahl, B. Cathepsin K inhibition: a new mechanism for the treatment of osteoporosis. Calcif. Tissue Int. 98, 381–397 (2016).

    Article  CAS  Google Scholar 

  248. Katunuma, N. Structure-based development of specific inhibitors for individual cathepsins and their medical applications. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 29–39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Brocard, C. et al. Cleavage of Na+ channels by calpain increases persistent Na+ current and promotes spasticity after spinal cord injury. Nat. Med. 22, 404–411 (2016). The ameliorating effect of the calpain inhibitor MDL28170 for spasms resulting from spinal cord injury, was shown to be comparable to that of riluzole. The use of MDL28170 with riluzole had an additive effect.

    Article  CAS  PubMed  Google Scholar 

  250. Drag, M. & Salvesen, G. S. Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9, 690–701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26, 163–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  252. Panico, P., Salazar, A. M., Burns, A. L. & Ostrosky-Wegman, P. Role of calpain-10 in the development of diabetes mellitus and its complications. Arch. Med. Res. 45, 103–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  253. Hata, S., Doi, N., Kitamura, F. & Sorimachi, H. Stomach-specific calpain, nCL-2/calpain 8, is active without calpain regulatory subunit and oligomerizes through C2-like domains. J. Biol. Chem. 282, 27847–27856 (2007).

    Article  CAS  PubMed  Google Scholar 

  254. Ono, Y. et al. Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, 94/calpain 3. J. Biol. Chem. 279, 2761–2771 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Hata, S. et al. Domain II of m-calpain is a Ca2+-dependent cysteine protease. FEBS Lett. 501, 111–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  256. Moldoveanu, T. et al. A Ca2+ switch aligns the active site of calpain. Cell 108, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  257. Hata, A., Ohno, S. & Suzuki, K. Transcriptional activation of the gene for the large subunit of human m-calpain by 12-o-tetradecanoyl-phorbol-13-acetate. FEBS Lett. 304, 241–244 (1992).

    Article  CAS  PubMed  Google Scholar 

  258. Santos, D. M., Xavier, J. M., Morgado, A. L., Sol↑, S. & Rodrigues, C. M. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS ONE 7, e33468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Prangsaengtong, O. et al. Calpain 1 and -2 play opposite roles in cord formation of lymphatic endothelial cells via eNOS regulation. Hum. Cell 25, 36–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  260. Wang, Y. et al. Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiol. Dis. 93, 121–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  261. Wang, Y. et al. A molecular brake controls the magnitude of long-term potentiation. Nat. Commun. 5, 3051 (2014).

    Article  PubMed  CAS  Google Scholar 

  262. Li, Z. et al. Novel peptidyl α-keto amide inhibitors of calpains and other cysteine proteases. J. Med. Chem. 39, 4089–4098 (1996).

    Article  CAS  PubMed  Google Scholar 

  263. Zimmerman, U. J., Boring, L., Pak, J. H., Mukerjee, N. & Wang, K. K. The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 50, 63–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  264. Kramerova, I., Kudryashova, E., Tidball, J. G. & Spencer, M. J. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 13, 1373–1388 (2004).

    Article  CAS  PubMed  Google Scholar 

  265. Ojima, K. et al. Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J. Clin. Invest. 120, 2672–2683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Bochner, R. et al. Calpain 12 function revealed through the study of an atypical case of autosomal recessive congenital ichthyosis. J. Invest. Dermatol. http://dx.doi.org/10.1016/j.jid.2016.07.043 (2016).

  267. Sebe, J. Y., Bershteyn, M., Hirotsune, S., Wynshaw-Boris, A. & Baraban, S. C. ALLN rescues an in vitro excitatory synaptic transmission deficit in Lis1 mutant mice. J. Neurophysiol. 109, 429–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  268. Mizukoshi, S. et al. Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration. Exp. Eye Res. 91, 353–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Chen, Y. et al. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell-matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis. Toxicol. Appl. Pharmacol. 275, 176–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Samantaray, S. et al. Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Mol. Neurobiol. 52, 1054–1066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Guyton, M. K. et al. Calpeptin attenuated inflammation, cell death, and axonal damage in animal model of multiple sclerosis. J. Neurosci. Res. 88, 2398–2408 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Das, A. et al. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J. Neurochem. 124, 133–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  273. Nozaki, K., Das, A., Ray, S. K. & Banik, N. L. Calpeptin attenuated apoptosis and intracellular inflammatory changes in muscle cells. J. Neurosci. Res. 89, 536–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Tabata, C., Tabata, R. & Nakano, T. The calpain inhibitor calpeptin prevents bleomycin-induced pulmonary fibrosis in mice. Clin. Exp. Immunol. 162, 560–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Guo, A. et al. Molecular determinants of calpain-dependent cleavage of junctophilin-2 protein in cardiomyocytes. J. Biol. Chem. 290, 17946–17955 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Undrovinas, A., Maltsev, V. A. & Sabbah, H. N. Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure. PLoS ONE 8, e54436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ennes-Vidal, V., Menna-Barreto, R. F., Santos, A. L., Branquinha, M. H. & d'Avila-Levy, C. M. MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut. PLoS ONE 6, e18371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Huang, Q. et al. Reduced syncytin-1 expression in choriocarcinoma BeWo cells activates the calpain1-AIF-mediated apoptosis, implication for preeclampsia. Cell. Mol. Life Sci. 71, 3151–3164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Paquet-Durand, F. et al. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J. Neurochem. 115, 930–940 (2010).

    Article  CAS  PubMed  Google Scholar 

  280. Suzuki, R., Oka, T., Tamada, Y., Shearer, T. R. & Azuma, M. Degeneration and dysfunction of retinal neurons in acute ocular hypertensive rats: involvement of calpains. J. Ocul. Pharmacol. Ther. 30, 419–428 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Takeshita, D. et al. A new calpain inhibitor protects left ventricular dysfunction induced by mild ischemia–reperfusion in in situ rat hearts. J. Physiol. Sci. 63, 113–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  282. Bains, M. et al. Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic brain injury model. J. Neurochem. 125, 125–132 (2012).

    Article  CAS  Google Scholar 

  283. Simoes, A. T., Goncalves, N., Nobre, R. J., Duarte, C. B. & Pereira de Almeida, L. Calpain inhibition reduces ataxin-3 cleavage alleviating neuropathology and motor impairments in mouse models of Machado–Joseph disease. Hum. Mol. Genet. 23, 4932–4944 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Nimmrich, V. et al. Inhibition of calpain prevents NMDA-induced cell death and beta-amyloid-induced synaptic dysfunction in hippocampal slice cultures. Br. J. Pharmacol. 159, 1523–1531 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Vengeliene, V. et al. The calpain inhibitor A-705253 attenuates alcohol-seeking and relapse with low side-effect profile. Neuropsychopharmacology 41, 979–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  286. Ozaki, T. et al. Inhibitory peptide of mitochondrial μ-calpain protects against photoreceptor degeneration in rhodopsin transgenic S334ter and P23H rats. PLoS ONE 8, e71650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Mallik, S. K. et al. Synthesis and evaluation of peptidyl α, β-unsaturated carbonyl derivatives as anti-malarial calpain inhibitors. Arch. Pharm. Res. 35, 469–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  288. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT02220738 (2016).

  289. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT02573740 (2016).

  290. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT01808885 (2014).

  291. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT02628743 (2016).

  292. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT01285583 (2013).

  293. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT00868166 (2012).

  294. US National Library of Medicine. ClinicalTrials.govhttp://clinicaltrials.gov/ct2/show/NCT02496975 (2015).

  295. Wang, M. S. et al. Calpain inhibition protects against Taxol-induced sensory neuropathy. Brain 127, 671–679 (2004).

    Article  PubMed  Google Scholar 

  296. Frederick, J. R. et al. Neuroprotection with delayed calpain inhibition after transient forebrain ischemia. Crit. Care Med. 36, S481–S485 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Schumacher, P. A., Siman, R. G. & Fehlings, M. G. Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J. Neurochem. 74, 1646–1655 (2000).

    Article  CAS  PubMed  Google Scholar 

  298. Lu, S. et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc. Natl Acad. Sci. USA 111, E5292–E5301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Sandmann, S., Prenzel, F., Shaw, L., Schauer, R. & Unger, T. Activity profile of calpains I and II in chronically infarcted rat myocardium — influence of the calpain inhibitor CAL 9961. Br. J. Pharmacol. 135, 1951–1958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bartoli, M. et al. Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol. Ther. 13, 250–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  301. Siddiqui, A. A. et al. Characterization of the immune response to DNA vaccination strategies for schistosomiasis candidate antigen, Sm-p80 in the baboon. Vaccine 23, 1451–1456 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all of the laboratory members for their invaluable support, Y. Ogata for thoroughly surveying the clinical trial studies of calpain-related agents, S. Ishiura for valuable advice on early clinical studies of calpain inhibitors, and L. Miglietta and G. Gray for their excellent English editing. This work was supported in part by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) (JP25440059 to Y.O. and JP15H02389 to H.S.), Open Partnership Joint Projects of the JSPS Bilateral Joint Research Projects (to H.S.), a Takeda Science Foundation research grant (to Y.O. and H.S.), the Council for Science, Technology and Innovation's Strategic Innovation Promotion Programme “Technologies for creating next-generation agriculture, forestry, and fisheries” (funded by BTRAI-NARO to H.S.), and a research grant of The Naito Foundation (to H.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takaomi C. Saido or Hiroyuki Sorimachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1

Supplementary information figure and table (PDF 2820 kb)

Glossary

Clan

Peptidases and their proteinaceous inhibitors are systematically classified by the online MEROPS database. A clan is composed of multiple families, each of which corresponds to a group of orthologous peptidases. Members of a clan share similar primary and tertiary structures. This classification system complements and extends the previously established enzyme classification system, which includes all enzymes.

CysPc motif

A protease catalytic domain of calpains. CysPc-containing proteases belong to the same clan as papain, but unlike the catalytic domain of papain the CysPc divides into two separate structures, protease core 1 (PC1) and PC2, in the absence of Ca2+. Amino acid sequence comparisons suggest that all of the calpain species for which 3D structures are not yet solved share similarity in their CysPc domain.

α-Ketoamide inhibitor

A class of reversible inhibitors for cysteine, serine or threonine proteases that add an electrophile to these active site amino acid residues. Many inhibitors of this class have been developed by systematically replacing aldehyde moieties of known calpain inhibitors with α-ketoamide, and subsequently modifying other positions to improve effectiveness.

Calpainopathies

Diseases caused by a genetic defect in a calpain gene. The pathogenic mechanism can be either loss of function (for example, limb-girdle muscular dystrophy type 2A is caused by inactivating mutations in the CAPN3 gene) or gain of function (for example, autosomal dominant neovascular inflammatory vitreoretinopathy is caused by an excessive activation of CAPN5 due to mutations).

Calpain-type β-sandwich

(CBSW). A domain whose 3D structure, but not primary sequence, shows overall similarity to the C2 domain, a calcium-binding motif found in protein kinase C, synaptotagmins and other calcium-related proteins. The CBSW domain has a role in substrate recognition.

Penta-EF-hand

(PEF). Among the proteins with Ca2+-binding EF-hand motifs, those with five EF-hand motifs in tandem comprise the PEF family. The fifth EF region is often involved in homo- or heterodimerization. Classical calpains have a PEF domain, and hence also belong to the PEF family.

CAPNS1

(Calpain small subunit 1). A PEF family member. A paralogue called CAPNS2 has an unknown function. In vivo, CAPNS1 is an essential component of the two conventional calpains, calpain-1 and calpain-2. However, in vitro, the cysteine protease domains isolated from CAPN1 and CAPN2 (mini-calpains) are functional as active proteases.

Macrocyclic inhibitor

Macrocyclic structures introduced into linear peptides or compounds often improve potency by providing well-defined conformations, such as α-helices and β-strands in the case of peptides, thereby facilitating interactions with their targets, which include proteases. This strategy has been used to develop improved calpain inhibitors.

Neglected tropical diseases

Among various parasitic and infectious diseases, 17 diseases have been recognized by the World Health Organization as targets for which control would promote an exodus from poverty somewhere in the world.

Intrinsically unstructured protein

A protein that does not possess a fixed or stable 3D structure (also called an 'intrinsically disordered protein'). Some of these proteins remain unstructured even in their functional state, whereas others adopt a fixed structure after binding to another protein. For example, calpastatin has tandemly repeated calpain inhibitory sequences, neither of which assumes a defined structure unless calpastatin is bound to calpain.

Intermolecular complementation

(iMOC). A phenomenon in which single-polypeptide-derived fragments, none of which are capable of expressing the activity of the original protein, reconstitute the original activity through spontaneous and noncovalent interaction under physiological conditions. In this process, the amino acids essential for the activity are provided by different fragments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, Y., Saido, T. & Sorimachi, H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 15, 854–876 (2016). https://doi.org/10.1038/nrd.2016.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.212

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer