Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic drug discovery: breaking through the immune barrier

Key Points

  • Epigenetic dysfunction has been extensively studied in the context of oncology but is increasingly emerging as a key driver of pathology in immune-mediated inflammatory diseases.

  • The diversity of cell types in the immune system and the ability of these cells to 'remember' both this identity and prior encounters with pathogens or antigens has long suggested a crucial role for epigenetics.

  • Dramatic progress in the identification, optimization and development of new inhibitors for multiple epigenetic targets has enabled unprecedented advancement of these inhibitors towards clinical studies in a few short years.

  • The increased understanding of the importance of epigenetic memory in immune system diseases together with the availability of novel epigenetic drugs will lead to the imminent and inevitable transition of these molecules into autoimmune and inflammatory disease clinical trials.

Abstract

Immune-mediated diseases are clinically heterogeneous but they share genetic and pathogenic mechanisms. These diseases may develop from the interplay of genetic factors and environmental or lifestyle factors. Exposure to such factors, including infectious agents, is associated with coordinated changes in gene transcription owing to epigenetic alterations. A growing understanding of how epigenetic mechanisms control gene expression patterns and cell function has been aided by the development of small-molecule inhibitors that target these processes. These chemical tools have helped to reveal the importance of epigenetics in guiding cell fate decisions during immune responses and have also highlighted the potential for targeting epigenetic mechanisms for the treatment of inflammation and immune-mediated diseases. In this Review, we discuss the most advanced areas of epigenetic drug development for autoimmune and inflammatory diseases and summarize the promising preclinical data in this exciting and evolving field. These agents will inevitably begin to move into clinical trials for use in patients with immune-mediated diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Regulation of gene transcription by DNA methylation.
Figure 2: Epigenetic modifications linked to activation-induced alterations in gene expression in immune cells.
Figure 3: BET bromodomain inhibitors target multiple mechanisms associated with rheumatoid arthritis.

References

  1. 1

    Meng, H. et al. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 11, 604–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015); corrigendum 530, 242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Schmidl, C. et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 19, 1165–1174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009). The first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Zhang, Y. et al. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet. 5, e1000438 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Campanero, M. R., Armstrong, M. I. & Flemington, E. K. CpG methylation as a mechanism for the regulation of E2F activity. Proc. Natl Acad. Sci. USA 97, 6481–6486 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989).

    CAS  PubMed  Google Scholar 

  9. 9

    Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Filippova, G. N. et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 28, 335–343 (2001).

    CAS  PubMed  Google Scholar 

  12. 12

    Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998). An important illustration of the mechanisms of crosstalk between DNA methylation and histone modifications to control gene expression.

    CAS  PubMed  Google Scholar 

  14. 14

    Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). This paper provides evidence for a role for TET enzymes in active DNA CpG demethylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Maiti, A. & Drohat, A. C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implicatons for active demethylation of CpG sites. J. Biol. Chem. 286, 35334–35338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Zhou, T. et al. Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Mol. Cell 54, 879–886 (2014).

    CAS  PubMed  Google Scholar 

  21. 21

    Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S. & Jacobsen, S. E. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Szulwach, K. E. et al. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 7, e1002154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Hon, G. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Marina, R. J. et al. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing. EMBO J. 35, 335–355 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    CAS  Google Scholar 

  29. 29

    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    CAS  Google Scholar 

  30. 30

    Talbert, P. B. & Henikoff, S. Histone variants — ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010).

    CAS  PubMed  Google Scholar 

  31. 31

    Hong, L., Schroth, G. P., Matthews, H. R., Yau, P. & Bradbury, E. M. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J. Biol. Chem. 268, 305–314 (1993).

    CAS  PubMed  Google Scholar 

  32. 32

    Zeng, L. & Zhou, M. M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    CAS  PubMed  Google Scholar 

  33. 33

    Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007). A seminal introduction to the role and importance of chromatin marks in health and disease.

    CAS  Google Scholar 

  34. 34

    Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007). A comprehensive review of the ability of tandem binding domains to recognize combinatorial marks to 'read' the histone code.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  Google Scholar 

  36. 36

    Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  37. 37

    Ramsey, S. A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol. 4, e1000021 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. 38

    Kittan, N. A. et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS ONE 8, e78045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Ramirez-Carrozzi, V. R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Kaikkonen, M.-U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013). References 40 and 41 are the first papers to demonstrate the dynamic induction of enhancers in macrophages responding to PAMPs.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    CAS  PubMed  Google Scholar 

  42. 42

    Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    CAS  PubMed  Google Scholar 

  43. 43

    Palmer, E. The cell antigen receptor: a logical response to an unknown ligand. J. Recept. Signal Transduct. Res. 26, 367–378 (2006).

    CAS  PubMed  Google Scholar 

  44. 44

    van Noesel, C. J. & van Lier, R. A. Architecture of the human B-cell antigen receptors. Blood 82, 363–373 (1993).

    CAS  PubMed  Google Scholar 

  45. 45

    Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002). An early study confirming the changing patterns of histone acetylation at cytokine genes during T H cell differentiation.

    CAS  PubMed  Google Scholar 

  46. 46

    Koyanagi, M. et al. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in TH1 cells. J. Biol. Chem. 280, 31470–31477 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Winders, B. R., Schwartz, R. H. & Bruniquel, D. A. Distinct region of the murine IFN-γ promoter is hypomethylated from early T cell development through mature naive and Th1 cell differentiation, but is hypermethylated in Th2 cells. J. Immunol. 173, 7377–7384 (2004).

    CAS  PubMed  Google Scholar 

  48. 48

    Akimzhanov, A. M., Yang, X. O. & Dong, C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J. Biol. Chem. 282, 5969–5972 (2007).

    CAS  PubMed  Google Scholar 

  49. 49

    Chang, S. & Aune, T. M. Dynamic changes in histone-methylation 'marks' across the locus encoding interferon-γ during the differentiation of T helper type 2 cells. Nat. Immunol. 8, 723–731 (2007).

    CAS  PubMed  Google Scholar 

  50. 50

    Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Ichiyama, K. et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42, 613–626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Kersh, E. N. et al. Rapid demethylation of the IFN-γ gene occurs in memory but not naive CD8 T cells. J. Immunol. 176, 4083–4093 (2006).

    CAS  PubMed  Google Scholar 

  53. 53

    Zediak, V. P., Johnnidis, J. B., Wherry, E. J. & Berger, S. L. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. J. Immunol. 186, 2705–2709 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Syrbe, U. et al. Differential regulation of P-selectin ligand expression in naive versus memory CD4+ T cells: evidence for epigenetic regulation of involved glycosyltransferase genes. Blood 104, 3243–3248 (2004).

    CAS  PubMed  Google Scholar 

  55. 55

    Steinfelder, S. et al. Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells. Blood 117, 2839–2846 (2011).

    CAS  PubMed  Google Scholar 

  56. 56

    Fitzpatrick, D. R., Shirley, K. M. & Kelso, A. Cutting edge: stable epigenetic inheritance of regional IFN-γ promoter demethylation in CD44highCD8+ T lymphocytes. J. Immunol. 162, 5053–5057 (1999).

    CAS  PubMed  Google Scholar 

  57. 57

    Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Yamashita, M. et al. Interleukin (IL)-4-independent maintenance of histone modification of the IL-4 gene loci in memory Th2 cells. J. Biol. Chem. 279, 39454–39464 (2004).

    CAS  PubMed  Google Scholar 

  59. 59

    Fann, M. et al. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response. Blood 108, 3363–3370 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Araki, Y., Fann, M., Wersto, R. & Weng, N. P. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J. Immunol. 180, 8102–8108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based complex regulation of differential gene transcription and function of CD8 memory T cells. Immunity 30, 912–925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Northrop, J. K., Wells, A. D. & Shen, H. Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. J. Immunol. 181, 865–868 (2008).

    CAS  Google Scholar 

  63. 63

    Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 9, 599–608 (2012).

    CAS  PubMed  Google Scholar 

  64. 64

    McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    CAS  PubMed  Google Scholar 

  65. 65

    Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Lin, Z. et al. Identification of disease-associated DNA methylation in B cells from Crohn's disease and ulcerative colitis patients. Dig. Dis. Sci. 57, 3145–3153 (2012).

    CAS  PubMed  Google Scholar 

  67. 67

    Lleo, A. et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology 55, 153–160 (2012).

    CAS  PubMed  Google Scholar 

  68. 68

    Liu, C. C. et al. Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol. Lett. 135, 96–99 (2011).

    CAS  PubMed  Google Scholar 

  69. 69

    Glossop, J. R. et al. Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations. Epigenetics 9, 1228–1237 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Altorok, N. et al. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjögren's syndrome. Arthritis Rheumatol. 66, 731–739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Park, G., Han, J., Park, S. G., Kim, S. & Kim, T. Y. DNA methylation analysis of CD4+ T cells in patients with psoriasis. Arch. Dermatol. Res. 306, 259–268 (2014).

    CAS  PubMed  Google Scholar 

  72. 72

    Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990). This paper provided early evidence of epigenetic alterations correlating with disease status in SLE and RA.

    CAS  PubMed  Google Scholar 

  73. 73

    Absher, D. M. et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 9, e1003678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Rakyan, V. K. et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 7, e1002300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Mastronardi, F. G., Noor, A., Wood, D. D., Paton, T. & Moscarello, M. A. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J. Neurosci. Res. 85, 2006–2016 (2007).

    CAS  PubMed  Google Scholar 

  76. 76

    Bos, S. D. et al. Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS ONE 10, e0117403 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Graves, M. C. et al. Methylation differences at the HLA-DRB1 locus in CD4+ T-cells are associated with multiple sclerosis. Mult. Scler. 20, 1033–1041 (2014).

    CAS  PubMed  Google Scholar 

  78. 78

    Fukuhara, T. et al. Hypermethylation of MST1 in IgG4-related autoimmune pancreatitis and rheumatoid arthritis. Biochem. Biophys. Res. Commun. 463, 968–974 (2015).

    CAS  PubMed  Google Scholar 

  79. 79

    Lian, X. et al. DNA demethylation of CD40L in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum. 64, 2338–2345 (2012).

    CAS  PubMed  Google Scholar 

  80. 80

    Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179, 6352–6358 (2007).

    CAS  PubMed  Google Scholar 

  81. 81

    Lu, Q., Wu, A. & Richardson, B. C. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J. Immunol. 174, 6212–6219 (2005).

    CAS  PubMed  Google Scholar 

  82. 82

    Jiang, H. et al. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin. Immunol. 143, 39–44 (2012).

    CAS  PubMed  Google Scholar 

  83. 83

    Wang, Y. Y. et al. DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br. J. Dermatol. 171, 39–47 (2014).

    CAS  PubMed  Google Scholar 

  84. 84

    Kennedy, A. et al. A novel upstream enhancer of FOXP3, sensitive to methylation-induced silencing, exhibits dysregulated methylation in rheumatoid arthritis Treg cells. Eur. J. Immunol. 44, 2968–2978 (2014).

    CAS  PubMed  Google Scholar 

  85. 85

    Li, Y. et al. Abnormal DNA methylation in CD4+ T cells from people with latent autoimmune diabetes in adults. Diabetes Res. Clin. Pract. 94, 242–248 (2011).

    CAS  PubMed  Google Scholar 

  86. 86

    Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3 . Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  87. 87

    Cribbs, A. P. et al. Treg cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol. 66, 2344–2354 (2014).

    CAS  PubMed  Google Scholar 

  88. 88

    Wang, Y., Fan, P. S. & Kahaleh, B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    CAS  PubMed  Google Scholar 

  89. 89

    Wang, Y. & Kahaleh, B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J. Cell. Mol. Med. 17, 1291–1299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Dees, C. et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann. Rheum. Dis. 73, 1232–1239 (2014).

    CAS  PubMed  Google Scholar 

  91. 91

    Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).

    CAS  PubMed  Google Scholar 

  92. 92

    Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    CAS  PubMed  Google Scholar 

  93. 93

    Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).

    CAS  PubMed  Google Scholar 

  94. 94

    Ai, R. et al. DNA methylome signature in early rheumatoid arthritis synoviocytes compared with longstanding rheumatoid arthritis synoviocytes. Arthritis Rheumatol. 67, 1978–1980 (2015). This paper describes emerging evidence for epigenetic changes becoming apparent early in RA disease progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Calabrese, R. et al. TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells. Biochim. Biophys. Acta 1842, 1130–1136 (2014).

    CAS  PubMed  Google Scholar 

  96. 96

    Zhao, M. et al. Increased 5-hydroxymethylcytosine in CD4+ T cells in systemic lupus erythematosus. J. Autoimmun. 69, 64–73 (2016).

    PubMed  Google Scholar 

  97. 97

    Hu, N. et al. Abnormal histone modification patterns in lupus CD4+ T cells. J. Rheumatol. 35, 804–810 (2008).

    CAS  PubMed  Google Scholar 

  98. 98

    Zhang, P., Su, Y., Chen, H., Zhao, M. & Lu, Q. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J. Dermatol. Sci. 60, 40–42 (2010).

    CAS  PubMed  Google Scholar 

  99. 99

    Wang, Y. et al. Aberrant histone modification in peripheral blood B cells from patients with systemic sclerosis. Clin. Immunol. 149, 46–54 (2013).

    CAS  PubMed  Google Scholar 

  100. 100

    Wada, T. T. et al. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem. Biophys. Res. Commun. 444, 682–686 (2014).

    CAS  PubMed  Google Scholar 

  101. 101

    Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    CAS  PubMed  Google Scholar 

  102. 102

    Sorm, F., Piskala, A., Cihak, A. & Vesely, J. 5-Azacytidine, a new, highly effective cancerostatic. Experimentia 20, 202–203 (1964).

    CAS  Google Scholar 

  103. 103

    Jones, P. A. & Taylor, S. M. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93 (1980).

    CAS  PubMed  Google Scholar 

  104. 104

    Lu, L. & Randerath, K. Mechanism of 5-azacytidine-induced transfer RNA cytosine-5-methyltransferase deficiency. Cancer Res. 40, 2701–2705 (1980).

    CAS  PubMed  Google Scholar 

  105. 105

    Lee, T. & Karon, M. Inhibition of protein synthesis in 5-azacytidine-treated HeLa cells. Biochem. Pharmacol. 25, 1737–1742 (1976).

    CAS  PubMed  Google Scholar 

  106. 106

    Almstedt, M. et al. The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk. Res. 34, 899–905 (2010).

    CAS  PubMed  Google Scholar 

  107. 107

    Lal, G. et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol. 182, 259–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Wu, C. J. et al. The DNA methylation inhibitor 5-azacytidine increases regulatory T cells and alleviates airway inflammation in ovalbumin-sensitized mice. Int. Arch. Allergy Immunol. 160, 356–364 (2013).

    CAS  PubMed  Google Scholar 

  109. 109

    Chan, M. W. Y. et al. Low-dose 5-aza-2′-deoxycytidine pretreatment inhibits experimental autoimmune encephalomyelitis by induction of regulatory T cells. Mol. Med. 20, 248–256 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Mangano, K. et al. Hypomethylating agent 5-aza-2′-deoxycytidine (DAC) ameliorates multiple sclerosis in mouse models. J. Cell. Physiol. 229, 1918–1925 (2014).

    CAS  PubMed  Google Scholar 

  111. 111

    Zheng, Q. et al. Induction of Foxp3 demethylation increases regulatory CD4+CD25+ T cells and prevents the occurrence of diabetes in mice. J. Mol. Med. 87, 1191–1205 (2009).

    CAS  PubMed  Google Scholar 

  112. 112

    Dunn, J. et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J. Clin. Invest. 124, 3187–3199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Cao, Q. et al. Inhibiting DNA methylation by 5-aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology 155, 4925–4938 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Guo, H. et al. Inhibiting cardiac allograft rejection with interleukin-35 therapy combined with decitabine treatment in mice. Transpl. Immunol. 29, 99–104 (2013).

    CAS  PubMed  Google Scholar 

  115. 115

    Goodyear, O. C. et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood 119, 3361–3369 (2012).

    CAS  PubMed  Google Scholar 

  116. 116

    Adair, S. & Hogan, K. Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol. Immunother. 58, 589–601 (2009).

    CAS  PubMed  Google Scholar 

  117. 117

    Dubovsky, J. A. et al. Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen. Clin. Cancer Res. 15, 3406–3415 (2009).

    CAS  PubMed  Google Scholar 

  118. 118

    Wang, L. et al. Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model. Cancer Immunol. Res. 3, 1030–1041 (2015).

    CAS  PubMed  Google Scholar 

  119. 119

    Wang, Y. et al. Hypomethylation and overexpression of ITGAL (CD11a) in CD4+ T cells in systemic sclerosis. Clin. Epigenet. 6, 25 (2014).

    CAS  Google Scholar 

  120. 120

    Kadoch, C., Copeland, R. A. & Keilhack, H. PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry 55, 1600–1614 (2016).

    CAS  PubMed  Google Scholar 

  121. 121

    Su, I. et al. Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121, 425–436 (2005).

    CAS  PubMed  Google Scholar 

  122. 122

    He, S. et al. The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease. Blood 122, 4119–4128 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Zhang, Y. et al. The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124, 737–749 (2014).

    CAS  Google Scholar 

  124. 124

    Yang, X. P. et al. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci. Rep. 5, 10643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Tough, D. F., Lewis, H. D., Rioja, I., Lindon, M. J. & Prinjha, R. K. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br. J. Pharmacol. 171, 4981–5010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Fang, T. C. et al. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J. Exp. Med. 209, 661–669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Gregoretti, I., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17–31 (2004).

    CAS  PubMed  Google Scholar 

  128. 128

    Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011).

    CAS  Google Scholar 

  129. 129

    Khan, O. & La Thangue, N. B. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol. Cell Biol. 90, 85–94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Lobera, M. et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 9, 319–325 (2013).

    CAS  PubMed  Google Scholar 

  131. 131

    Cantley, M. D. & Haynes, D. R. Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs. Inflammopharmacology 21, 301–307 (2013).

    CAS  Google Scholar 

  132. 132

    Hu, E. et al. Identification of novel isoform-selective inhibitors within class i histone deacetylases. J. Pharmacol. Exp. Ther. 307, 720–728 (2003).

    CAS  PubMed  Google Scholar 

  133. 133

    Jochems, J. et al. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 39, 389–400 (2014).

    CAS  PubMed  Google Scholar 

  134. 134

    Schlimme, S. et al. Carbamate prodrug concept for hydroxamate HDAC inhibitors. ChemMedChem 6, 1193–1198 (2011).

    CAS  PubMed  Google Scholar 

  135. 135

    Greer, C. B. et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep. 13, 1444–1455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).

    CAS  PubMed  Google Scholar 

  137. 137

    Leoni, F. et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl Acad. Sci. USA 99, 2995–3000 (2002). Early evidence of the ability of HDAC inhibition to modulate cytokine production and inflammation.

    CAS  PubMed  Google Scholar 

  138. 138

    Leoni, F. et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo . Mol. Med. 11, 1–15 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Li, S. et al. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo . J. Biol. Chem. 290, 2368–2378 (2015).

    CAS  PubMed  Google Scholar 

  140. 140

    Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Li, Y. et al. Inhibition of histone deacetylase 6 improves long-term survival in a lethal septic model. J. Trauma Acute Care Surg. 78, 378–385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Wu, C., Li, A., Leng, Y., Li, Y. & Kang, J. Histone deacetylase inhibition by sodium valproate regulates polarization of macrophage subsets. DNA Cell Biol. 31, 592–599 (2011).

    CAS  PubMed  Google Scholar 

  143. 143

    Wang, B., Morinobu, A., Horiuchi, M., Liu, J. & Kumagai, S. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell. Immunol. 253, 54–58 (2008).

    CAS  PubMed  Google Scholar 

  144. 144

    Frikeche, J. et al. Impact of valproic acid on dendritic cells function. Immunobiology 217, 704–710 (2012).

    CAS  PubMed  Google Scholar 

  145. 145

    Brogdon, J. et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector function. Blood 109, 1123–1130 (2007).

    CAS  PubMed  Google Scholar 

  146. 146

    Bosisio, D. et al. Blocking TH17-polarizing cytokines by histone deacetylase inhibitors in vitro and in vivo . J. Leukocyte Biol. 84, 1540–1548 (2008).

    CAS  PubMed  Google Scholar 

  147. 147

    Su, R. C., Becker, A. B., Kozyrskyj, A. L. & HayGlass, K. T. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J. Allergy Clin. Immunol. 121, 57–63 (2008).

    CAS  PubMed  Google Scholar 

  148. 148

    Arbez, J., Lamarthée, B., Gaugler, B. & Saas, P. Histone deacetylase inhibitor valproic acid affects plasmacytoid dendritic cells phenotype and function. Immunobiology 219, 637–643 (2014).

    CAS  PubMed  Google Scholar 

  149. 149

    Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Waibel, M. et al. Manipulation of B-cell responses with histone deacetylase inhibitors. Nat. Commun. 6, 6838 (2015).

    CAS  PubMed  Google Scholar 

  151. 151

    Chung, Y., Lee, M., Wang, A. & Yao, L. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).

    CAS  PubMed  Google Scholar 

  152. 152

    Choi, J. H. et al. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89–96 (2005).

    CAS  PubMed  Google Scholar 

  153. 153

    Hartman, H., Wetterholm, E., Thorlacius, H. & Regnér, S. Histone deacetylase regulates trypsin activation, inflammation, and tissue damage in acute pancreatitis in mice. Dig. Dis. Sci. 60, 1284–1289 (2015).

    CAS  PubMed  Google Scholar 

  154. 154

    Marumo, T. et al. Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am. J. Physiol. Renal Physiol. 298, F133–F141 (2009).

    PubMed  Google Scholar 

  155. 155

    Zhao, T. C., Du, J., Zhuang, S., Liu, P. & Zhang, L. X. HDAC inhibition elicits myocardial protective effect through modulation of MKK3/Akt-1. PLoS ONE 8, e65474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Zhang, L., Jin, S., Wang, C., Jiang, R. & Wan, J. Histone deacetylase inhibitors attenuate acute lung injury during cecal ligation and puncture-induced polymicrobial sepsis. World J. Surg. 34, 1676–1683 (2010).

    PubMed  Google Scholar 

  157. 157

    Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164, 10–21 (2005).

    CAS  PubMed  Google Scholar 

  158. 158

    Glauben, R., Sonnenberg, E., Wetzel, M., Mascagni, P. & Siegmund, B. Histone deacetylase inhibitors modulate interleukin 6-dependent CD4+ T cell polarization in vitro and in vivo . J. Biol. Chem. 289, 6142–6151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Regna, N. L. et al. Class I and II histone deacetylase inhibition by ITF2357 reduces SLE pathogenesis in vivo . Clin. Immunol. 151, 29–42 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Reddy, P. et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA 101, 3921–3926 (2004).

    CAS  Google Scholar 

  161. 161

    Joosten, L. A., Leoni, F., Meghji, S. & Mascagni, P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med. 17, 391–396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Lewis, E. C. et al. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet β cells in vivo and in vitro . Mol. Med. 17, 369–377 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Glauben, R. et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J. Immunol. 176, 5015–5022 (2006).

    CAS  PubMed  Google Scholar 

  164. 164

    Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21WAF1/Cip1 expression. Arthritis Rheum. 50, 3365–3376 (2004).

    CAS  PubMed  Google Scholar 

  165. 165

    Hsieh, I. N. et al. Preclinical anti-arthritic study and pharmacokinetic properties of a potent histone deacetylase inhibitor MPT0G009. Cell Death Dis. 5, e1166 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Cantley, M. D. et al. Inhibiting histone deacetylase 1 suppresses both inflammation and bone loss in arthritis. Rheumatology 54, 1713–1723 (2015).

    CAS  PubMed  Google Scholar 

  167. 167

    Nakamura, T. et al. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-β production. J. Immunol. 175, 5809–5816 (2005).

    CAS  PubMed  Google Scholar 

  168. 168

    Schroeder, T. M. & Westendorf, J. J. Histone deacetylase inhibitors promote osteoblast maturation. J. Bone Miner. Res. 20, 2254–2263 (2005).

    CAS  PubMed  Google Scholar 

  169. 169

    Grabiec, A. M. et al. Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J. Immunol. 184, 2718–2728 (2010).

    CAS  PubMed  Google Scholar 

  170. 170

    Jüngel, A. et al. Trichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis. Ann. Rheum. Dis. 65, 910–912 (2006).

    PubMed  Google Scholar 

  171. 171

    Gillespie, J. et al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum. 64, 418–422 (2012).

    CAS  PubMed  Google Scholar 

  172. 172

    Furlan, A. et al. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol. Med. 17, 353–362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Choi, S. W. et al. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans. Blood 125, 815–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Bodar, E. J., Simon, A. & van der Meer, J. W. Effects of the histone deacetylase inhibitor ITF2357 in autoinflammatory syndromes. Mol. Med. 17, 363–368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011). First evidence of clinical efficacy for HDAC inhibition in patients with juvenile arthritis.

    CAS  PubMed  Google Scholar 

  176. 176

    Kong, S., Yeung, P. & Fang, D. The class III histone deacetylase sirtuin 1 in immune suppression and its therapeutic potential in rheumatoid arthritis. J. Genet. Genomics 40, 347–354 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Gao, X., Xu, Y. X., Janakiraman, N., Chapman, R. A. & Gautam, S. C. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem. Pharmacol. 62, 1299–1308 (2001).

    CAS  PubMed  Google Scholar 

  178. 178

    Zou, T. et al. Resveratrol inhibits CD4+ T cell activation by enhancing the expression and activity of Sirt1. PLoS ONE 8, e75139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Sharma, S., Chopra, K., Kulkarni, S. K. & Agrewala, J. N. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clin. Exp. Immunol. 147, 155–163 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Xuzhu, G. et al. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function. Ann. Rheum. Dis. 71, 129–135 (2012).

    PubMed  Google Scholar 

  181. 181

    Shindler, K. S. et al. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 30, 328–339 (2010).

    PubMed  PubMed Central  Google Scholar 

  182. 182

    Dittenhafer-Reed, K. E., Feldman, J. L. & Denu, J. M. Catalysis and mechanistic insights on sirtuin activation. ChemBioChem 12, 281–289 (2011).

    CAS  PubMed  Google Scholar 

  183. 183

    Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Jia, Y. et al. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264.7 cells. PLoS ONE 10, e0120849 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. 185

    Ichikawa, T. et al. Sirtuin 1 activator SRT1720 suppresses inflammation in an ovalbumin-induced mouse model of asthma. Respirology 18, 332–339 (2013).

    PubMed  Google Scholar 

  186. 186

    Hoffmann, E. et al. Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. Br. J. Clin. Pharmacol. 75, 186–196 (2013).

    CAS  Google Scholar 

  187. 187

    Libri, V. et al. A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS ONE 7, e51395 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Filippakopoulos, P. & Knapp, S. The bromodomain interaction module. FEBS Lett. 586, 2692–2704 (2012).

    CAS  PubMed  Google Scholar 

  189. 189

    Chung, C. W. Small molecule bromodomain inhibitors: extending the druggable genome. Prog. Med. Chem. 51, 1–55 (2012).

    CAS  PubMed  Google Scholar 

  190. 190

    Barda, S. et al. Expression of BET genes in testis of men with different spermatogenic impairments. Fertil. Steril. 97, 46–52 (2012).

    CAS  PubMed  Google Scholar 

  191. 191

    Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    CAS  Google Scholar 

  192. 192

    Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Zhang, W. et al. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation inhuman CD4+ T cells. J. Biol. Chem. 287, 43137–43155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Lamonica, J. M. et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA 108, E159–E168 (2011).

    Google Scholar 

  195. 195

    Huang, B., Yang, X. D., Zhou, M. M., Ozato, K. & Chen, L. F. Brd4 coactivates transcriptional activation of NF-κB via specific binding to acetylated RelA. Mol. Cell. Biol. 29, 1375–1387 (2009).

    CAS  Google Scholar 

  196. 196

    Shi, J. et al. Disrupting the interaction of BRD4 with diacetylated twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25, 210–225 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010). References 197 and 198 are the first disclosures of BET inhibitors and their function in regulating inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198

    Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). First paper on OTX015-related JQ1 and its role in NUT-midline cancer inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199

    Noel, J. K. et al. Development of the BET bromodomain inhibitor OTX015. Mol. Cancer Ther. 12, C244 (2013).

    Google Scholar 

  200. 200

    Mirguet, O. et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J. Med. Chem. 56, 7501–7515 (2013).

    CAS  Google Scholar 

  201. 201

    Zhang, G. et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem. 287, 28840–28851 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    Fish, P. V. et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J. Med. Chem. 55, 9831–9837 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Khmelnitsky, Y. L. et al. In vitro biosynthesis, isolation, and identification of predominant metabolites of 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (RVX-208). Eur. J. Med. Chem. 64, 121–128 (2013).

    CAS  Google Scholar 

  204. 204

    Ran, X. et al. Structure-based design of γ-carboline analogues as potent and specific BET bromodomain inhibitors. J. Med. Chem. 58, 4927–4939 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205

    Dittmann, A. et al. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol. 9, 495–502 (2014). First disclosure and characterization of a BET-BD1 selective inhibitor.

    CAS  Google Scholar 

  206. 206

    Gacias, M. et al. Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression. Chem. Biol. 21, 841–854 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Belkina, A. C., Nikolajczyk, B. S. & Denis, G. V. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J. Immunol. 190, 3670–3678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Barrett, E., Brothers, S., Wahlestedt, C. & Beurel, E. I-BET151 selectively regulates IL-6 production. Biochim. Biophys. Acta 1842, 1549–1555 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209

    Wienerroither, S. et al. Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins. Mol. Cell. Biol. 34, 415–427 (2014).

    PubMed  PubMed Central  Google Scholar 

  210. 210

    Meng, S. et al. BET inhibitor JQ1 blocks inflammation and bone destruction. J. Dental Res. 93, 657–662 (2014).

    CAS  Google Scholar 

  211. 211

    Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and Toll-like receptor signaling. Immunity 39, 454–469 (2013).

    CAS  PubMed  Google Scholar 

  212. 212

    Chan, C. H. et al. BET bromodomain inhibition suppresses transcriptional responses to cytokine-Jak-STAT signaling in a gene-specific manner in human monocytes. Eur. J. Immunol. 45, 287–297 (2015).

    CAS  PubMed  Google Scholar 

  213. 213

    Toniolo, P. A. et al. Inhibiting STAT5 by the BET bromodomain inhibitor JQ1 disrupts human dendritic cell maturation. J. Immunol. 194, 3180–3190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Bandukwala, H. S. et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc. Natl Acad. Sci. USA 109, 14532–14537 (2012). Describes the first demonstration that BET bromodomain inhibition can modulate T H 1 cell differentiation and pathogenicity.

    CAS  Google Scholar 

  215. 215

    Mele, D. A. et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J. Exp. Med. 210, 2181–2190 (2013). Evidence for the effects of BET inhibition in modulating T H 17 differentiation and pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216

    Belkina, A. C., Blanton, W. P., Nikolajczyk, B. S. & Denis, G. V. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J. Leukocyte Biol. 95, 451–460 (2014).

    PubMed  Google Scholar 

  217. 217

    Stanlie, A., Yousif, A., Akiyama, H., Honjo, T. & Begum, N. Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining. Mol. Cell 55, 97–110 (2014).

    CAS  PubMed  Google Scholar 

  218. 218

    Park-Min, K. H. et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat. Commun. 5, 5418 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219

    Klein, K. et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 75, 422–429 (2016).

    CAS  PubMed  Google Scholar 

  220. 220

    Perry, M. M., Durham, A. L., Austin, P. J., Adcock, I. M. & Chung, K. F. BET bromodomains regulate transforming growth factor-β-induced proliferation and cytokine release in asthmatic airway smooth muscle. J. Biol. Chem. 290, 9111–9121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221

    Clifford, R. L. et al. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L962–L972 (2015).

    PubMed  PubMed Central  Google Scholar 

  222. 222

    Khan, Y. M., Kirkham, P., Barnes, P. J. & Adcock, I. M. Brd4 is essential for il-1β-induced inflammation in human airway epithelial cells. PLoS ONE 9, e95051 (2014).

    PubMed  PubMed Central  Google Scholar 

  223. 223

    Brown, J.-D. et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol. Cell 56, 1–13 (2014).

    Google Scholar 

  224. 224

    Michaeloudes, C. et al. Bromodomain and extraterminal proteins suppress NF-E2-related factor 2-mediated antioxidant gene expression. J. Immunol. 192, 4913–4920 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225

    Jahagirdar, R. et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis 236, 91–100 (2014).

    CAS  PubMed  Google Scholar 

  226. 226

    Nadeem, A. et al. Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation. Pharmacol. Res. 99, 248–257 (2015).

    CAS  PubMed  Google Scholar 

  227. 227

    Fu, W. et al. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells. eLife 3, e04631 (2014).

    PubMed  PubMed Central  Google Scholar 

  228. 228

    Zhang, Q. G., Qian, J. & Zhu, Y. C. Targeting bromodomain-containing protein 4 (BRD4) benefits rheumatoid arthritis. Immunol. Lett. 166, 103–108 (2015).

    CAS  PubMed  Google Scholar 

  229. 229

    Prinjha, R. K., Witherington, J. & Lee, K. Place your BETs: the therapeutic potential of bromodomains. Trends Pharmacol. Sci. 33, 146–153 (2012).

    CAS  Google Scholar 

  230. 230

    Schulz, D. et al. Bromodomain proteins contribute to maintenance of bloodstream form stage identity in the African trypanosome. PLoS Biol. 13, e1002316 (2015).

    PubMed  PubMed Central  Google Scholar 

  231. 231

    Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012). First disclosure of a small-molecule inhibitor that illustrates the importance of the enzymatic activity of JMJD3/UTX in modulating macrophage activation and inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Epinova Discovery Performance Unit and Tarakhovsky laboratory for helpful discussions and sharing of informative unpublished data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rab K. Prinjha.

Ethics declarations

Competing interests

D.F.T., P.P.T. and R.K.P. are employees and shareholders of GlaxoSmithKline, which is involved in Research and Development of epigenetic inhibitors for the treatment of disease. A.T. has received research support and consultancy payments from GlaxoSmithKline.

PowerPoint slides

41573_2016_BFnrd2016185_MOESM444_ESM.ppt

PowerPoint slide for Fig. 1

41573_2016_BFnrd2016185_MOESM445_ESM.ppt

PowerPoint slide for Fig. 2

41573_2016_BFnrd2016185_MOESM446_ESM.ppt

PowerPoint slide for Fig. 3

41573_2016_BFnrd2016185_MOESM447_ESM.ppt

PowerPoint slide for Table 1

41573_2016_BFnrd2016185_MOESM448_ESM.ppt

PowerPoint slide for Table 2

41573_2016_BFnrd2016185_MOESM449_ESM.ppt

PowerPoint slide for Table 3

Glossary

CpG dinucleotides

Sequences of DNA in which a cytosine nucleotide is followed by a guanine nucleotide in the 5′ → 3′ direction. CpG islands are regions with a high frequency of CpG sites, and are most frequently found near gene promoters.

Innate immune cells

White blood cells that mediate innate immunity and include basophils, dendritic cells, eosinophils, Langerhans cells, mast cells, monocytes, macrophages, neutrophils, innate lymphoid cells and natural killer cells. Innate immune cells use germ line-encoded receptors to recognize evolutionarily conserved features of pathogens.

Adaptive immune cells

White blood cells, including T cells and B cells, that express highly diverse antigen receptors that confer exquisitely specific recognition of proteins. Based on the clonal distribution of these receptors, which are generated through somatic recombination of variable gene segments, T cell and B cell populations are able to adapt to changing protein sequences associated with pathogen evolution.

Major histocompatibility complex

(MHC). A cluster of genes encoding proteins that are important for lymphocyte activation. MHC molecules bind to small fragments of proteins from inside a cell and present these at the cell surface. By scanning MHC molecules, lymphocytes can assess cells for signs of infection or damage.

Effector T cell subsets

Activated T cells that express specialized functions linked to defence against different types of pathogen, and which are commonly defined by their production of particular cytokines. The best characterized effector T cell subsets include T-helper 1 (TH1) (interferon-γ (IFNγ)), TH2 (interleukin-4 (IL-4), IL-5 and IL-13) and TH17 (IL-17A and IL-17F).

Cytokine

A small protein released by cells that typically affects the behaviour of other cells through binding to specific receptors. Cytokines can stimulate diverse functional responses and have a key role in controlling the function of the immune system. Certain pro-inflammatory cytokines (for example, tumour necrosis factor and interleukin-6) have been shown to have a causative role in human inflammatory disease, whereas others (for example, IL-10) have an anti-inflammatory function.

Regulatory T cells

(Treg cells). A special subset of T cells that prevent other immune cells from attacking the body's own tissues and other harmless environmental materials, such as food and commensal organisms. Defects in Treg cells cause severe inflammatory and autoimmune disease.

Peripheral blood mononuclear cells

(PBMCs). Cells found in the circulating blood that have round nuclei, including lymphocytes (T cells and B cells), monocytes, macrophages and dendritic cells.

SLE disease activity index

(Systemic lupus erythematosus disease activity index). Composite scoring system derived from a list of clinical symptoms and laboratory tests that is used to evaluate the activity of lupus in clinical studies, primarily for the purpose of determining whether a new drug evaluated for the disease is effective.

Chemokines

A class of cytokine proteins that regulate immune and inflammatory responses primarily by modulating cell migration properties and localization of target cells such as leukocytes. The biological functions of chemokines are typically mediated by signalling through G protein-coupled chemokine receptors.

Allogeneic haematopoietic cell transplantation

The transplantation of multipotent haematopoietic stem cells, usually derived from bone marrow, peripheral blood or umbilical cord blood, in which the major histocompatibility complex (MHC) of the recipient differs from that of the donor. The MHC mismatch causes donor and recipient immune cells to respond to one another, potentially resulting in graft rejection (recipient responding to donor) or graft-versus-host disease (donor responding to recipient).

Hyper-IgD and periodic fever syndrome

(HIDS). A periodic fever syndrome, characterized by attacks of fever, joint pain and skin lesions, which is associated with elevated blood levels of the immunoglobulin D (IgD) subclass of immunoglobulin.

Schnitzler syndrome

An autoimmune and inflammatory disorder characterized by chronic hives and periodic fever, bone and joint pain, weight loss, fatigue, swollen lymph glands and an enlarged spleen and liver.

Mediator

A large multiprotein complex, comprising > 30 subunits, that binds to and relays information from transcription factors and is required for gene transcription by RNA polymerase II.

P-TEFb

A protein complex containing the cyclin-dependent kinase CDK9 and one of several cyclin subunits (cyclin T1, T2 or K) that has an essential role in the regulation of gene transcription by RNA polymerase II (Pol II). CDK9-mediated phosphorylation of both negative regulators of Pol II and subunits of Pol II itself allow for the productive transcriptional elongation of mRNAs by Pol II.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tough, D., Tak, P., Tarakhovsky, A. et al. Epigenetic drug discovery: breaking through the immune barrier. Nat Rev Drug Discov 15, 835–853 (2016). https://doi.org/10.1038/nrd.2016.185

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing