Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Screening out irrelevant cell-based models of disease

Abstract

The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Novel assay technologies and their integration.
Figure 2: Evolution of more physiologically relevant cell-culture assay systems.
Figure 3: Contributions of new cell-based assay technologies to the early-stage drug discovery pipeline.
Figure 4: Precompetitive consortia facilitating predictive assay development, experimental and personalized medicine strategies.

Similar content being viewed by others

References

  1. Waldmeier, P., Bozyczko-Coyne, D., Williams, M. & Vaught, J. L. Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem. Pharmacol. 72, 1197–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bolognesi, M. L., Matera, R., Minarini, A., Rosini, M. & Melchiorre, C. Alzheimer's disease: new approaches to drug discovery. Curr. Opin. Chem. Biol. 13, 303–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morens, D. M., Folkers, G. K. & Fauci, A. S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marston, H. D., Folkers, G. K., Morens, D. M. & Fauci, A. S. Emerging viral diseases: confronting threats with new technologies. Sci. Transl Med. 6, 253ps210 (2014).

    Article  Google Scholar 

  8. Arrowsmith, J. Trial watch: Phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10, 328–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Laverty, H. et al. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br. J. Pharmacol. 163, 675–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bass, N. M. in Current Diagnosis & Treatment in Gastroenterology (eds Friedman, S. E., Grendell, J. H. & McQuaid, K. R.) 664–679 (Lang Medical Books/McGraw-Hill, 2003).

    Google Scholar 

  11. Masters, J. R. & Stacey, G. N. Changing medium and passaging cell lines. Nat. Protoc. 2, 2276–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Nestor, C. E. et al. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems. Genome Biol. 16, 11 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris, C. C. Maintenace and loss in tissue culture of specific cell characteristics. Adv. Appl. Microbiol. 4, 117–212 (1962).

    Article  CAS  PubMed  Google Scholar 

  14. Carreau, A., Hafny-Rahbi, B. E., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newby, D., Marks, L. & Lyall, F. Dissolved oxygen concentration in culture medium: assumptions and pitfalls. Placenta 26, 353–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan, M., Galea, P. & Latif, S. What is the appropriate oxygen tension for in vitro culture? Mol. Hum. Reprod. 12, 653 (2006).

    Article  PubMed  Google Scholar 

  17. Halliwell, B. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed. J. 37, 99–105 (2014).

    PubMed  Google Scholar 

  18. Tiede, L. M., Cook, E. A., Morsey, B. & Fox, H. S. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis. 2, e246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Redshaw, Z. & Loughna, P. T. Oxygen concentration modulates the differentiation of muscle stem cells toward myogenic and adipogenic fates. Differentiation 84, 193–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Gebhardt, R. & Matz-Soja, M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol. 20, 8491–8504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Discher, D. E., Janmey, P. & Wang, Y.-l. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Semler, E. J., Ranucci, C. S. & Moghe, P. V. Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol. Bioeng. 69, 359–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wells, R. G. Cellular sources of extracellular matrix in hepatic fibrosis. Clin. Liver Dis. 12, 759–768 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Teranishi, Y. et al. Involvement of hepatic stellate cell cytoglobin in acute hepatocyte damage through the regulation of CYP2E1-mediated xenobiotic metabolism. Lab Invest. 95, 515–524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts, R. A. et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol. Sci. 96, 2–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Lobsiger, C. S. & Cleveland, D. W. Glial cells as intrinsic components of non-cell autonomous neurodegenerative disease. Nat. Neurosci. 10, 1355–1360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McCormack, E. et al. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol. Immunother. 62, 773–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Pieters, R. et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 76, 2327–2336 (1990).

    CAS  PubMed  Google Scholar 

  34. Hollingsworth, S. J. & Biankin, A. V. The challenges of precision oncology drug development and implementation. Publ. Health Genom. 18, 338–348 (2015).

    Article  Google Scholar 

  35. Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature 526, 361–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Iwadate, Y., Fujimoto, S., Namba, H. & Yamaura, A. Promising survival for patients with glioblastoma multiforme treated with individualised chemotherapy based on in vitro drug sensitivity testing. Br. J. Cancer 89, 1896–1900 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bosanquet, A. G. & Bell, P. B. Ex vivo therapeutic index by drug sensitivity assay using fresh human normal and tumor cells. J. Exp. Ther. Oncol. 4, 145–154 (2004).

    CAS  PubMed  Google Scholar 

  38. Villman, K., Blomqvist, C., Larsson, R. & Nygren, P. Predictive value of in vitro assessment of cytotoxic drug activity in advanced breast cancer. Anticancer Drugs 16, 609–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Eriksson, A. et al. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J. 5, e307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pemovska, T. et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3, 1416–1429 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Yamada, S. et al. Distinctive multidrug sensitivity and outcome of acute erythroblastic and megakaryoblastic leukemia in children with Down syndrome. Int. J. Hematol. 74, 428–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Aljitawi, O. S. et al. A novel three-dimensional stromal-based model for in vitro chemotherapy sensitivity testing of leukemia cells. Leuk. Lymphoma 55, 378–391 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Bakker, E., Qattan, M., Mutti, L., Demonacos, C. & Krstic-Demonacos, M. The role of microenvironment and immunity in drug response in leukemia. Biochim. Biophys. Acta 1863, 414–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Saeed, K. et al. Comprehensive drug testing of patient-derived conditionally reprogrammed cells from castration-resistant prostate cancer. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2016.04.019 (2016).

  45. Suprynowicz, F. A. et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc. Natl Acad. Sci. USA 109, 20035–20040 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yuan, H. et al. Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N. Engl. J. Med. 367, 1220–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Caie, P. D. et al. High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther. 9, 1913–1926 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170–182 (2016).

    CAS  PubMed  Google Scholar 

  55. Singh, V. K., Kumar, N., Kalsan, M., Saini, A. & Chandra, R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J. Stem Cells 10, 43–62 (2015).

    CAS  PubMed  Google Scholar 

  56. Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakurai, T. et al. A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sci. Rep. 6, 20011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martella, A., Pollard, S. M., Dai, J. & Cai, Y. Mammalian synthetic biology: time for big MACs. ACS Synth. Biol. http://dx.doi.org/10.1021/acssynbio.6b00074 (2016).

  60. Annaluru, N., Ramalingam, S. & Chandrasegaran, S. Rewriting the blueprint of life by synthetic genomics and genome engineering. Genome Biol. 16, 125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang, P. et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677–1691 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Matsa, E. et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Navarrete, E. G. et al. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128, S3–S13 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Mioulane, M., Foldes, G., Ali, N. N., Schneider, M. D. & Harding, S. E. Development of high content imaging methods for cell death detection in human pluripotent stem cell-derived cardiomyocytes. J. Cardiovasc. Transl. Res. 5, 593–604 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xu, X. et al. Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of cyclin-dependent kinases and associated cell cycle events. Stem Cell Res. 10, 213–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Usher, L. C. et al. A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J. Neurosci. 30, 4693–4706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Nalayanda, D. D. et al. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed. Microdevices 11, 1081–1089 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koch, P. et al. Presenilin-1 L166P mutant human pluripotent stem cell-derived neurons exhibit partial loss of gamma-secretase activity in endogenous amyloid-beta generation. Am. J. Pathol. 180, 2404–2416 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Burkhardt, M. F. et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 56, 355–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung, C. Y. et al. Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peng, J., Liu, Q., Rao, M. S. & Zeng, X. Using human pluripotent stem cell-derived dopaminergic neurons to evaluate candidate Parkinson's disease therapeutic agents in MPP+ and rotenone models. J. Biomol. Screen 18, 522–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Chiu, P. J. et al. Validation of a [3H]astemizole binding assay in HEK293 cells expressing HERG K+ channels. J. Pharmacol. Sci. 95, 311–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Huang, X. P., Mangano, T., Hufeisen, S., Setola, V. & Roth, B. L. Identification of human Ether-a-go-go related gene modulators by three screening platforms in an academic drug-discovery setting. Assay Drug Dev. Technol. 8, 727–742 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gintant, G., Sager, P. T. & Stockbridge, N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15, 457–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Ivashchenko, C. Y. et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am. J. Physiol. Heart Circ. Physiol. 305, H913–H922 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Ma, Z. et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Schaaf, S. et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS ONE 6, e26397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meyer, T., Leisgen, C., Gonser, B. & Gunther, E. QT-screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes. Assay Drug Dev. Technol. 2, 507–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hansen, A. et al. Development of a drug screening platform based on engineered heart tissue. Circ. Res. 107, 35–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Bridgland-Taylor, M. H. et al. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Methods 54, 189–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Farre, C. et al. Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology. Comb. Chem. High Throughput Screen 12, 24–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Sirenko, O. et al. Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J. Biomol. Screen 18, 39–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, H. R. et al. High throughput measurement of Ca++ dynamics in human stem cell-derived cardiomyocytes by kinetic image cytometery: a cardiac risk assessment characterization using a large panel of cardioactive and inactive compounds. Toxicol. Sci. 148, 503–516 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Cerignoli, F. et al. High throughput measurement of Ca2+ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J. Pharmacol. Toxicol. Methods 66, 246–256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pointon, A., Abi-Gerges, N., Cross, M. J. & Sidaway, J. E. Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicol. Sci. 132, 317–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Peters, M. F., Lamore, S. D., Guo, L., Scott, C. W. & Kolaja, K. L. Human stem cell-derived cardiomyocytes in cellular impedance assays: bringing cardiotoxicity screening to the front line. Cardiovasc. Toxicol. 15, 127–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Rappaz, B. et al. Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy. Opt. Express 23, 13333–13347 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Grosberg, A. et al. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J. Pharmacol. Toxicol. Methods 65, 126–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Banerjee, I. et al. Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. J. Mol. Cell Cardiol. 79, 133–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Macias-Vidal, J. et al. The proteasome inhibitor bortezomib reduced cholesterol accumulation in fibroblasts from Niemann-Pick type C patients carrying missense mutations. FEBS J. 281, 4450–4466 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, 11463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hua, H. et al. iPSC-derived β cells model diabetes due to glucokinase deficiency. J. Clin. Invest. 123, 3146–3153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith, A. S., Davis, J., Lee, G., Mack, D. L. & Kim, D. H. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov. Today http://dx.doi.org/10.1016/j.drudis.2016.04.013 (2016).

  99. Chen, I. Y., Matsa, E. & Wu, J. C. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat. Rev. Cardiol. 13, 333–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ebert, A. D. et al. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci. Transl Med. 6, 255ra130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, B. & Huang, B. Imaging genomic elements in living cells using CRISPR/Cas9. Methods Enzymol. 546, 337–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Agrotis, A. & Ketteler, R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front. Genet. 6, 300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Musunuru, K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis. Model. Mech. 6, 896–904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xue, H., Wu, J., Li, S., Rao, M. S. & Liu, Y. Genetic modification in human pluripotent stem cells by homologous recombination and CRISPR/Cas9 system. Methods Mol. Biol. 1307, 173–190 (2016).

    Article  PubMed  Google Scholar 

  111. Moore, J. D. The impact of CRISPR-Cas9 on target identification and validation. Drug Discov. Today 20, 450–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anastasov, N. et al. A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer 15, 466 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chau, D. Y., Johnson, C., MacNeil, S., Haycock, J. W. & Ghaemmaghami, A. M. The development of a 3D immunocompetent model of human skin. Biofabrication 5, 035011 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Wenzel, C., Otto, S., Prechtl, S., Parczyk, K. & Steigemann, P. A novel 3D high-content assay identifies compounds that prevent fibroblast invasion into tissue surrogates. Exp. Cell Res. 339, 35–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Wenzel, C. et al. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp. Cell Res. 323, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Krausz, E. et al. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening. J. Biomol. Screen 18, 54–66 (2013).

    Article  PubMed  Google Scholar 

  118. Vukicevic, S. et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Sieh, S. et al. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. PLoS ONE 7, e40217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Phelps, E. A., Landazuri, N., Thule, P. M., Taylor, W. R. & Garcia, A. J. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. USA 107, 3323–3328 (2010).

    Article  PubMed  Google Scholar 

  121. Xu, T. et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Mironi-Harpaz, I., Berdichevski, A. & Seliktar, D. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial. Methods Mol. Biol. 1181, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Harrington, H. et al. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol. Pharm. 11, 2082–2091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Altekar, M. et al. Assay optimization: a statistical design of experiments approach. Clin. Lab Med. 27, 139–154 (2007).

    Article  PubMed  Google Scholar 

  125. Havel, J., Link, H., Hofinger, M., Franco-Lara, E. & Weuster-Botz, D. Comparison of genetic algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria. Biotechnol. J. 1, 549–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Shaw, R., Fitzek, M., Mouchet, E., Walker, G. & Jarvis, P. Overcoming obstacles in the implementation of factorial design for assay optimization. Assay Drug Dev. Technol. 13, 88–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Pampaloni, F. et al. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr. Biol. (Camb.) 6, 988–998 (2014).

    Article  CAS  Google Scholar 

  128. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Smyth, M. J., Pietersz, G. A. & McKenzie, I. F. Use of vasoactive agents to increase tumor perfusion and the antitumor efficacy of drug-monoclonal antibody conjugates. J. Natl Cancer Inst. 79, 1367–1373 (1987).

    CAS  PubMed  Google Scholar 

  130. Froeling, F. E., Marshall, J. F. & Kocher, H. M. Pancreatic cancer organotypic cultures. J. Biotechnol. 148, 16–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Chee, C. E. et al. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist 18, 1091–1092 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nobis, M. et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Res. 73, 4674–4686 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab. Chip 10, 446–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip 15, 2688–2699 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Mantella, L. E., Quan, A. & Verma, S. Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc. Cell 7, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang, X., Huk, D. J., Wang, Q., Lincoln, J. & Zhao, Y. A microfluidic shear device that accommodates parallel high and low stress zones within the same culturing chamber. Biomicrofluidics 8, 054106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Raasch, M. et al. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Biofabrication 7, 015013 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Kobel, S., Valero, A., Latt, J., Renaud, P. & Lutolf, M. Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab. Chip 10, 857–863 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Lecault, V. et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8, 581–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Johansson, H. J. et al. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer. Nat. Commun. 4, 2175 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Salehi-Reyhani, A. et al. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab. Chip 11, 1256–1261 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Toriello, N. M. et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl Acad. Sci. USA 105, 20173–20178 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106, 14195–14200 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Bickle, M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal Chem. 398, 219–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Isherwood, B. et al. Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics 3, 141–170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kummel, A. et al. Integration of multiple readouts into the z' factor for assay quality assessment. J. Biomol. Screen 15, 95–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Kuhn, J. et al. Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Dev. Technol. 11, 101–107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rappaz, B., Breton, B., Shaffer, E. & Turcatti, G. Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb. Chem. High Throughput Screen 17, 80–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Rappaz, B., Kuttler, F., Breton, B. & Turcatti, G. in Label-Free Bisensor Methods in Drug Discovery (ed. Fang, Y.) 307–325 (Springer Science+Business Media, 2015).

  151. Koos, K., Molnár, J., Kelemen, L., Tamás, G. & Horvath, P. DIC image reconstruction using an energy minimization framework to visualize optical path length distribution. Sci. Rep. 6, 30420 (2015).

    Article  CAS  Google Scholar 

  152. Swoger, J., Pampaloni, F. & Stelzer, E. H. Imaging cellular spheroids with a single (selective) plane illumination microscope. Cold Spring Harb. Protoc. 2014, 106–113 (2014).

    PubMed  Google Scholar 

  153. Pampaloni, F., Ansari, N. & Stelzer, E. H. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res. 352, 161–177 (2013).

    Article  PubMed  Google Scholar 

  154. Kankaanpaa, P. et al. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods 9, 683–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Di, Z. et al. Ultra high content image analysis and phenotype profiling of 3D cultured micro-tissues. PLoS ONE 9, e109688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sandercock, A. M. et al. Identification of anti-tumour biologics using primary tumour models, 3D phenotypic screening and image-based multi-parametric profiling. Mol. Cancer 14, 147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao, S. & Iyengar, R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52, 505–521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Majumder, B. et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Mitsopoulos, C., Schierz, A. C., Workman, P. & Al-Lazikani, B. Distinctive behaviors of druggable proteins in cellular networks. PLoS Comput. Biol. 11, e1004597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bulusu, K. C., Tym, J. E., Coker, E. A., Schierz, A. C. & Al-Lazikani, B. canSAR: updated cancer research and drug discovery knowledgebase. Nucleic Acids Res. 42, D1040–D1047 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Hansen, J. & Iyengar, R. Computation as the mechanistic bridge between precision medicine and systems therapeutics. Clin. Pharmacol. Ther. 93, 117–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Pavlopoulos, G. A., Hooper, S. D., Sifrim, A., Schneider, R. & Aerts, J. Medusa: a tool for exploring and clustering biological networks. BMC Res. Notes 4, 384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. The Cancer Cell Line Encyclopedia Consortium & The Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature 528, 84–87 (2015).

  167. Hatzis, C. et al. Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res. 74, 4016–4023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vincent, F. et al. Developing predictive assays: the phenotypic screening “rule of 3”. Sci. Transl Med. 7, 293ps215 (2015).

    Article  CAS  Google Scholar 

  169. O'Brien, P. J. et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 80, 580–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Pilling, J., Garside, H. & Ainscow, E. Development of a quantitative 96-well method to image glycogen storage in primary rat hepatocytes. Mol. Cell Biochem. 341, 73–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Szkolnicka, D. et al. Accurate prediction of drug-induced liver injury using stem cell-derived populations. Stem Cells Transl. Med. 3, 141–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Timpson, P. et al. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J. Vis. Exp. 56, e3089 (2011).

    Google Scholar 

  173. Kim, E. J. et al. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin. Cancer Res. 20, 5937–5945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Morgan, M. R. et al. Psoriasin (S100A7) associates with integrin β6 subunit and is required for αvβ6-dependent carcinoma cell invasion. Oncogene 30, 1422–1435 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Moore, K. M. et al. Therapeutic targeting of integrin αvβ6 in breast cancer. J. Natl Cancer Inst. 106, dju169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Scannell, J. W. & Bosley, J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS ONE 11, e0147215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Edwards, A. M. et al. Preclinical target validation using patient-derived cells. Nat. Rev. Drug Discov. 14, 149–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Baragana, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Aulner, N. et al. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl Trop. Dis. 7, e2154 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. De Muylder, G. et al. A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop. Dis. 5, e1253 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Siqueira-Neto, J. L. et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop. Dis. 6, e1671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 13, 58–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Calmette, A., Boquet, A. & Negre, L. Contribution à l'étude du bacille tuberculeux bilié. Ann. l'Institut Pasteur 9, 561–570 (in French) (1921).

    Google Scholar 

  184. de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ehrlich, G. D. et al. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol. Med. Microbiol. 59, 269–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kim, J. J. et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11, 457–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Guiguemde, W. A. et al. Chemical genetics of Plasmodium falciparum. Nature 465, 311–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sundaramurthy, V. et al. Integration of chemical and RNAi multiparametric profiles identifies triggers of intracellular mycobacterial killing. Cell Host Microbe 13, 129–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Sun, T., Jackson, S., Haycock, J. W. & MacNeil, S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J. Biotechnol. 122, 372–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Pickl, M. & Ries, C. H. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28, 461–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Choi, J., Lee, E. K., Choo, J., Yuh, J. & Hong, J. W. Micro 3D cell culture systems for cellular behavior studies: culture matrices, devices, substrates, and in-situ sensing methods. Biotechnol. J. 10, 1682–1688 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. van Duinen, V., Trietsch, S. J., Joore, J., Vulto, P. & Hankemeier, T. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35, 118–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Eglen, R. M. & Randle, D. H. Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay Drug Dev. Technol. 13, 262–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Sittampalam, S. et al. Three-dimensional cell culture assays: are they more predictive of in vivo efficacy than 2D monolayer cell-based assays? Assay Drug Dev. Technol. 13, 254–261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Knowlton, S., Onal, S., Yu, C. H., Zhao, J. J. & Tasoglu, S. Bioprinting for cancer research. Trends Biotechnol. 33, 504–513 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fitzgerald, K. A. et al. Life in 3D is never flat: 3D models to optimise drug delivery. J. Control Release 215, 39–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Han, S. et al. Constructive remodeling of a synthetic endothelial extracellular matrix. Sci. Rep. 5, 18290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Verhulsel, M. et al. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35, 1816–1832 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Rimann, M. & Graf-Hausner, U. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23, 803–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Cushing, M. C. & Anseth, K. S. Materials science. Hydrogel cell cultures. Science 316, 1133–1134 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Worthington, P., Pochan, D. J. & Langhans, S. A. Peptide hydrogels — versatile matrices for 3D cell culture in cancer medicine. Front. Oncol. 5, 92 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Chen, N., Zhang, Z., Soontornworajit, B., Zhou, J. & Wang, Y. Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials 33, 1353–1362 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bumpers, H. L., Janagama, D. G., Manne, U., Basson, M. D. & Katkoori, V. Nanomagnetic levitation three-dimensional cultures of breast and colorectal cancers. J. Surg. Res. 194, 319–326 (2015).

    Article  PubMed  Google Scholar 

  213. Park, J., Koito, H., Li, J. & Han, A. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11, 1145–1153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kane, B. J., Zinner, M. J., Yarmush, M. L. & Toner, M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78, 4291–4298 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery — past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Hosseinkhani, H., Hosseinkhani, M., Hattori, S., Matsuoka, R. & Kawaguchi, N. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. A 94, 1–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Puschmann, T. B. et al. HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins. J. Neurochem. 128, 878–889 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

    Article  CAS  PubMed  Google Scholar 

  221. Miyagawa, Y. et al. A microfabricated scaffold induces the spheroid formation of human bone marrow-derived mesenchymal progenitor cells and promotes efficient adipogenic differentiation. Tissue Eng. Part A 17, 513–521 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  223. Carragher, N. O. Profiling distinct mechanisms of tumour invasion for drug discovery: imaging adhesion, signalling and matrix turnover. Clin. Exp. Metastasis 26, 381–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Kenny, H. A., Krausz, T., Yamada, S. D. & Lengyel, E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int. J. Cancer 121, 1463–1472 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Du, G., Fang, Q. & den Toonder, J. M. Microfluidics for cell-based high throughput screening platforms-A review. Anal. Chim. Acta 903, 36–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Baker, M. Tissue models: a living system on a chip. Nature 471, 661–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Wood, L., Kamm, R. & Asada, H. Stochastic modeling and identification of emergent behaviours of an endothelial cell population in angiogenic pattern formation. Int. J. Robot. Res. 30, 659–677 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Ebner for assistance in the writing of this manuscript. E.D.N is supported by the program Paris Alliance of Cancer Research Institutes (PACRI), Investissements d'Avenir, launched by the French government with the reference ANR-11-PHUC-002. N.A. and S.L.S. are grateful for support from the 7th Framework Programme of the European Commission (LEISHDRUG project, 223414) and the French Government (L'Agence nationale de la recherche (ANR)) programmes: Investissements d'Avenir programme ('Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases'; grant ANR-10-LABX-62-IBEID); France BioImaging (FBI; grant ANR-10-INSB-04-01) and the Fondation Française pour la Recherche Médicale (FRM; Grands Équipements Program). N.O.C. acknowledges a fellowship award from Research Councils UK (RCUK). P.H. acknowledges support from the Hungarian National Brain Research Program (grant MTA-SE-NAP B-BIOMAG). V.P. and P.H. acknowledge support from the TEKES Finland Distinguished Professor Programme (FiDiPro) Fellow Grant (40294/13). M.C.M is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the The Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) foundation, and received funding from the Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505), MINECO (grant BIO2014-62200-EXP) and the Innovative Training Networks (ITN) EU Horizon 2020 (EU-H2020) programme (grant 641639 BIOPOL). V.P. and P.Ö. received funding from the European Union's 7th Framework Programme (FP7/2007–2013; grant 258068); EU-FP7 Systems Microscopy Network of Excellence (NoE) project, the Sigrid Juselius Foundation, the Cancer Society of Finland, the Academy of Finland (Centre of Excellence in Translational Cancer Biology), the Magnus Ehrnrooth foundation and the TEKES FiDiPro Fellow Grant (40294/13), and TEKES New Generation Biobanking Grant (40294/11). Research in the Kallioniemi group at the Science for Life Laboratory received funding from K. Wallenberg and A. Wallenberg (grant 2015.0291), and the Karolinska Institutet. G.T. is supported by École Polytechnique Fédérale de Lausanne (EPFL) and the Swiss National Science Foundation/ National Centres of Competence in Research (SNF/NCCR) in Chemical Biology. D.E. acknowledges research support from Cancer Research UK (CRUK) and the Higher Education Funding Council for England (HEFCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil O. Carragher.

Ethics declarations

Competing interests

L.P. is a founder and shareholder of OcellO B.V., a contract research organization that offers drug screening services. The content of the article is not influenced in any way by his involvement.

P.H. is the founder and a shareholder of Single-cell technologies Inc., a biodata analysis company. The content of the article is not influenced in any way by his involvement.

A.M.D. is the inventor of the suspension technology referred to in the article as Happy Cell. He is also a board member, director and shareholder of the company that distributes this technology. The content of the article is not influenced in any way by his involvement.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvath, P., Aulner, N., Bickle, M. et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15, 751–769 (2016). https://doi.org/10.1038/nrd.2016.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.175

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research