Screening out irrelevant cell-based models of disease

Abstract

The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Novel assay technologies and their integration.
Figure 2: Evolution of more physiologically relevant cell-culture assay systems.
Figure 3: Contributions of new cell-based assay technologies to the early-stage drug discovery pipeline.
Figure 4: Precompetitive consortia facilitating predictive assay development, experimental and personalized medicine strategies.

References

  1. 1

    Waldmeier, P., Bozyczko-Coyne, D., Williams, M. & Vaught, J. L. Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem. Pharmacol. 72, 1197–1206 (2006).

  2. 2

    Bolognesi, M. L., Matera, R., Minarini, A., Rosini, M. & Melchiorre, C. Alzheimer's disease: new approaches to drug discovery. Curr. Opin. Chem. Biol. 13, 303–308 (2009).

  3. 3

    Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

  4. 4

    Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P. & Kivipelto, M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702–716 (2010).

  5. 5

    Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

  6. 6

    Morens, D. M., Folkers, G. K. & Fauci, A. S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

  7. 7

    Marston, H. D., Folkers, G. K., Morens, D. M. & Fauci, A. S. Emerging viral diseases: confronting threats with new technologies. Sci. Transl Med. 6, 253ps210 (2014).

  8. 8

    Arrowsmith, J. Trial watch: Phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10, 328–329 (2011).

  9. 9

    Laverty, H. et al. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br. J. Pharmacol. 163, 675–693 (2011).

  10. 10

    Bass, N. M. in Current Diagnosis & Treatment in Gastroenterology (eds Friedman, S. E., Grendell, J. H. & McQuaid, K. R.) 664–679 (Lang Medical Books/McGraw-Hill, 2003).

  11. 11

    Masters, J. R. & Stacey, G. N. Changing medium and passaging cell lines. Nat. Protoc. 2, 2276–2284 (2007).

  12. 12

    Nestor, C. E. et al. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems. Genome Biol. 16, 11 (2015).

  13. 13

    Morris, C. C. Maintenace and loss in tissue culture of specific cell characteristics. Adv. Appl. Microbiol. 4, 117–212 (1962).

  14. 14

    Carreau, A., Hafny-Rahbi, B. E., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 15, 1239–1253 (2011).

  15. 15

    Newby, D., Marks, L. & Lyall, F. Dissolved oxygen concentration in culture medium: assumptions and pitfalls. Placenta 26, 353–357 (2005).

  16. 16

    Sullivan, M., Galea, P. & Latif, S. What is the appropriate oxygen tension for in vitro culture? Mol. Hum. Reprod. 12, 653 (2006).

  17. 17

    Halliwell, B. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed. J. 37, 99–105 (2014).

  18. 18

    Tiede, L. M., Cook, E. A., Morsey, B. & Fox, H. S. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis. 2, e246 (2011).

  19. 19

    Redshaw, Z. & Loughna, P. T. Oxygen concentration modulates the differentiation of muscle stem cells toward myogenic and adipogenic fates. Differentiation 84, 193–202 (2012).

  20. 20

    Gebhardt, R. & Matz-Soja, M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol. 20, 8491–8504 (2014).

  21. 21

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

  22. 22

    Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

  23. 23

    Discher, D. E., Janmey, P. & Wang, Y.-l. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

  24. 24

    Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

  25. 25

    Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

  26. 26

    Semler, E. J., Ranucci, C. S. & Moghe, P. V. Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol. Bioeng. 69, 359–369 (2000).

  27. 27

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

  28. 28

    Wells, R. G. Cellular sources of extracellular matrix in hepatic fibrosis. Clin. Liver Dis. 12, 759–768 (2008).

  29. 29

    Teranishi, Y. et al. Involvement of hepatic stellate cell cytoglobin in acute hepatocyte damage through the regulation of CYP2E1-mediated xenobiotic metabolism. Lab Invest. 95, 515–524 (2015).

  30. 30

    Roberts, R. A. et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol. Sci. 96, 2–15 (2007).

  31. 31

    Lobsiger, C. S. & Cleveland, D. W. Glial cells as intrinsic components of non-cell autonomous neurodegenerative disease. Nat. Neurosci. 10, 1355–1360 (2007).

  32. 32

    McCormack, E. et al. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol. Immunother. 62, 773–785 (2013).

  33. 33

    Pieters, R. et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 76, 2327–2336 (1990).

  34. 34

    Hollingsworth, S. J. & Biankin, A. V. The challenges of precision oncology drug development and implementation. Publ. Health Genom. 18, 338–348 (2015).

  35. 35

    Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature 526, 361–370 (2015).

  36. 36

    Iwadate, Y., Fujimoto, S., Namba, H. & Yamaura, A. Promising survival for patients with glioblastoma multiforme treated with individualised chemotherapy based on in vitro drug sensitivity testing. Br. J. Cancer 89, 1896–1900 (2003).

  37. 37

    Bosanquet, A. G. & Bell, P. B. Ex vivo therapeutic index by drug sensitivity assay using fresh human normal and tumor cells. J. Exp. Ther. Oncol. 4, 145–154 (2004).

  38. 38

    Villman, K., Blomqvist, C., Larsson, R. & Nygren, P. Predictive value of in vitro assessment of cytotoxic drug activity in advanced breast cancer. Anticancer Drugs 16, 609–615 (2005).

  39. 39

    Eriksson, A. et al. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J. 5, e307 (2015).

  40. 40

    Pemovska, T. et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3, 1416–1429 (2013).

  41. 41

    Yamada, S. et al. Distinctive multidrug sensitivity and outcome of acute erythroblastic and megakaryoblastic leukemia in children with Down syndrome. Int. J. Hematol. 74, 428–436 (2001).

  42. 42

    Aljitawi, O. S. et al. A novel three-dimensional stromal-based model for in vitro chemotherapy sensitivity testing of leukemia cells. Leuk. Lymphoma 55, 378–391 (2014).

  43. 43

    Bakker, E., Qattan, M., Mutti, L., Demonacos, C. & Krstic-Demonacos, M. The role of microenvironment and immunity in drug response in leukemia. Biochim. Biophys. Acta 1863, 414–426 (2016).

  44. 44

    Saeed, K. et al. Comprehensive drug testing of patient-derived conditionally reprogrammed cells from castration-resistant prostate cancer. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2016.04.019 (2016).

  45. 45

    Suprynowicz, F. A. et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc. Natl Acad. Sci. USA 109, 20035–20040 (2012).

  46. 46

    Yuan, H. et al. Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N. Engl. J. Med. 367, 1220–1227 (2012).

  47. 47

    van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

  48. 48

    Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).

  49. 49

    Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 12, 109–116 (2016).

  50. 50

    Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

  51. 51

    Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

  52. 52

    Caie, P. D. et al. High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther. 9, 1913–1926 (2010).

  53. 53

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

  54. 54

    Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170–182 (2016).

  55. 55

    Singh, V. K., Kumar, N., Kalsan, M., Saini, A. & Chandra, R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J. Stem Cells 10, 43–62 (2015).

  56. 56

    Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23 (2011).

  57. 57

    Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

  58. 58

    Sakurai, T. et al. A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sci. Rep. 6, 20011 (2016).

  59. 59

    Martella, A., Pollard, S. M., Dai, J. & Cai, Y. Mammalian synthetic biology: time for big MACs. ACS Synth. Biol. http://dx.doi.org/10.1021/acssynbio.6b00074 (2016).

  60. 60

    Annaluru, N., Ramalingam, S. & Chandrasegaran, S. Rewriting the blueprint of life by synthetic genomics and genome engineering. Genome Biol. 16, 125 (2015).

  61. 61

    Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

  62. 62

    Liang, P. et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677–1691 (2013).

  63. 63

    Matsa, E. et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 32, 952–962 (2011).

  64. 64

    Navarrete, E. G. et al. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128, S3–S13 (2013).

  65. 65

    Mioulane, M., Foldes, G., Ali, N. N., Schneider, M. D. & Harding, S. E. Development of high content imaging methods for cell death detection in human pluripotent stem cell-derived cardiomyocytes. J. Cardiovasc. Transl. Res. 5, 593–604 (2012).

  66. 66

    Xu, X. et al. Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of cyclin-dependent kinases and associated cell cycle events. Stem Cell Res. 10, 213–227 (2013).

  67. 67

    Usher, L. C. et al. A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J. Neurosci. 30, 4693–4706 (2010).

  68. 68

    Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

  69. 69

    Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

  70. 70

    Nalayanda, D. D. et al. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed. Microdevices 11, 1081–1089 (2009).

  71. 71

    Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

  72. 72

    Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

  73. 73

    Koch, P. et al. Presenilin-1 L166P mutant human pluripotent stem cell-derived neurons exhibit partial loss of gamma-secretase activity in endogenous amyloid-beta generation. Am. J. Pathol. 180, 2404–2416 (2012).

  74. 74

    Burkhardt, M. F. et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 56, 355–364 (2013).

  75. 75

    Chung, C. Y. et al. Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

  76. 76

    Peng, J., Liu, Q., Rao, M. S. & Zeng, X. Using human pluripotent stem cell-derived dopaminergic neurons to evaluate candidate Parkinson's disease therapeutic agents in MPP+ and rotenone models. J. Biomol. Screen 18, 522–533 (2013).

  77. 77

    Chiu, P. J. et al. Validation of a [3H]astemizole binding assay in HEK293 cells expressing HERG K+ channels. J. Pharmacol. Sci. 95, 311–319 (2004).

  78. 78

    Huang, X. P., Mangano, T., Hufeisen, S., Setola, V. & Roth, B. L. Identification of human Ether-a-go-go related gene modulators by three screening platforms in an academic drug-discovery setting. Assay Drug Dev. Technol. 8, 727–742 (2010).

  79. 79

    Gintant, G., Sager, P. T. & Stockbridge, N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15, 457–471 (2016).

  80. 80

    Ivashchenko, C. Y. et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am. J. Physiol. Heart Circ. Physiol. 305, H913–H922 (2013).

  81. 81

    Ma, Z. et al. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun. 6, 7413 (2015).

  82. 82

    Schaaf, S. et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS ONE 6, e26397 (2011).

  83. 83

    Meyer, T., Leisgen, C., Gonser, B. & Gunther, E. QT-screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes. Assay Drug Dev. Technol. 2, 507–514 (2004).

  84. 84

    Hansen, A. et al. Development of a drug screening platform based on engineered heart tissue. Circ. Res. 107, 35–44 (2010).

  85. 85

    Bridgland-Taylor, M. H. et al. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Methods 54, 189–199 (2006).

  86. 86

    Farre, C. et al. Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology. Comb. Chem. High Throughput Screen 12, 24–37 (2009).

  87. 87

    Sirenko, O. et al. Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J. Biomol. Screen 18, 39–53 (2013).

  88. 88

    Lu, H. R. et al. High throughput measurement of Ca++ dynamics in human stem cell-derived cardiomyocytes by kinetic image cytometery: a cardiac risk assessment characterization using a large panel of cardioactive and inactive compounds. Toxicol. Sci. 148, 503–516 (2015).

  89. 89

    Cerignoli, F. et al. High throughput measurement of Ca2+ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J. Pharmacol. Toxicol. Methods 66, 246–256 (2012).

  90. 90

    Pointon, A., Abi-Gerges, N., Cross, M. J. & Sidaway, J. E. Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicol. Sci. 132, 317–326 (2013).

  91. 91

    Peters, M. F., Lamore, S. D., Guo, L., Scott, C. W. & Kolaja, K. L. Human stem cell-derived cardiomyocytes in cellular impedance assays: bringing cardiotoxicity screening to the front line. Cardiovasc. Toxicol. 15, 127–139 (2015).

  92. 92

    Rappaz, B. et al. Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy. Opt. Express 23, 13333–13347 (2015).

  93. 93

    Grosberg, A. et al. Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J. Pharmacol. Toxicol. Methods 65, 126–135 (2012).

  94. 94

    Banerjee, I. et al. Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. J. Mol. Cell Cardiol. 79, 133–144 (2015).

  95. 95

    Macias-Vidal, J. et al. The proteasome inhibitor bortezomib reduced cholesterol accumulation in fibroblasts from Niemann-Pick type C patients carrying missense mutations. FEBS J. 281, 4450–4466 (2014).

  96. 96

    Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, 11463 (2016).

  97. 97

    Hua, H. et al. iPSC-derived β cells model diabetes due to glucokinase deficiency. J. Clin. Invest. 123, 3146–3153 (2013).

  98. 98

    Smith, A. S., Davis, J., Lee, G., Mack, D. L. & Kim, D. H. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov. Today http://dx.doi.org/10.1016/j.drudis.2016.04.013 (2016).

  99. 99

    Chen, I. Y., Matsa, E. & Wu, J. C. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat. Rev. Cardiol. 13, 333–349 (2016).

  100. 100

    Ebert, A. D. et al. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci. Transl Med. 6, 255ra130 (2014).

  101. 101

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

  102. 102

    Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

  103. 103

    Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

  104. 104

    Chen, B. & Huang, B. Imaging genomic elements in living cells using CRISPR/Cas9. Methods Enzymol. 546, 337–354 (2014).

  105. 105

    Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

  106. 106

    Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

  107. 107

    Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

  108. 108

    Agrotis, A. & Ketteler, R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front. Genet. 6, 300 (2015).

  109. 109

    Musunuru, K. Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis. Model. Mech. 6, 896–904 (2013).

  110. 110

    Xue, H., Wu, J., Li, S., Rao, M. S. & Liu, Y. Genetic modification in human pluripotent stem cells by homologous recombination and CRISPR/Cas9 system. Methods Mol. Biol. 1307, 173–190 (2016).

  111. 111

    Moore, J. D. The impact of CRISPR-Cas9 on target identification and validation. Drug Discov. Today 20, 450–457 (2015).

  112. 112

    Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

  113. 113

    Anastasov, N. et al. A 3D-microtissue-based phenotypic screening of radiation resistant tumor cells with synchronized chemotherapeutic treatment. BMC Cancer 15, 466 (2015).

  114. 114

    Chau, D. Y., Johnson, C., MacNeil, S., Haycock, J. W. & Ghaemmaghami, A. M. The development of a 3D immunocompetent model of human skin. Biofabrication 5, 035011 (2013).

  115. 115

    Wenzel, C., Otto, S., Prechtl, S., Parczyk, K. & Steigemann, P. A novel 3D high-content assay identifies compounds that prevent fibroblast invasion into tissue surrogates. Exp. Cell Res. 339, 35–43 (2015).

  116. 116

    Wenzel, C. et al. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp. Cell Res. 323, 131–143 (2014).

  117. 117

    Krausz, E. et al. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening. J. Biomol. Screen 18, 54–66 (2013).

  118. 118

    Vukicevic, S. et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8 (1992).

  119. 119

    Sieh, S. et al. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment. PLoS ONE 7, e40217 (2012).

  120. 120

    Phelps, E. A., Landazuri, N., Thule, P. M., Taylor, W. R. & Garcia, A. J. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. USA 107, 3323–3328 (2010).

  121. 121

    Xu, T. et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001 (2013).

  122. 122

    Mironi-Harpaz, I., Berdichevski, A. & Seliktar, D. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial. Methods Mol. Biol. 1181, 61–68 (2014).

  123. 123

    Harrington, H. et al. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol. Pharm. 11, 2082–2091 (2014).

  124. 124

    Altekar, M. et al. Assay optimization: a statistical design of experiments approach. Clin. Lab Med. 27, 139–154 (2007).

  125. 125

    Havel, J., Link, H., Hofinger, M., Franco-Lara, E. & Weuster-Botz, D. Comparison of genetic algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria. Biotechnol. J. 1, 549–555 (2006).

  126. 126

    Shaw, R., Fitzek, M., Mouchet, E., Walker, G. & Jarvis, P. Overcoming obstacles in the implementation of factorial design for assay optimization. Assay Drug Dev. Technol. 13, 88–93 (2015).

  127. 127

    Pampaloni, F. et al. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr. Biol. (Camb.) 6, 988–998 (2014).

  128. 128

    Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

  129. 129

    Smyth, M. J., Pietersz, G. A. & McKenzie, I. F. Use of vasoactive agents to increase tumor perfusion and the antitumor efficacy of drug-monoclonal antibody conjugates. J. Natl Cancer Inst. 79, 1367–1373 (1987).

  130. 130

    Froeling, F. E., Marshall, J. F. & Kocher, H. M. Pancreatic cancer organotypic cultures. J. Biotechnol. 148, 16–23 (2010).

  131. 131

    Chee, C. E. et al. Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist 18, 1091–1092 (2013).

  132. 132

    Nobis, M. et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Res. 73, 4674–4686 (2013).

  133. 133

    Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab. Chip 10, 446–455 (2010).

  134. 134

    Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip 15, 2688–2699 (2015).

  135. 135

    Mantella, L. E., Quan, A. & Verma, S. Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc. Cell 7, 7 (2015).

  136. 136

    Zhang, X., Huk, D. J., Wang, Q., Lincoln, J. & Zhao, Y. A microfluidic shear device that accommodates parallel high and low stress zones within the same culturing chamber. Biomicrofluidics 8, 054106 (2014).

  137. 137

    Raasch, M. et al. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Biofabrication 7, 015013 (2015).

  138. 138

    Kobel, S., Valero, A., Latt, J., Renaud, P. & Lutolf, M. Optimization of microfluidic single cell trapping for long-term on-chip culture. Lab. Chip 10, 857–863 (2010).

  139. 139

    Lecault, V. et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8, 581–586 (2011).

  140. 140

    Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

  141. 141

    Johansson, H. J. et al. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer. Nat. Commun. 4, 2175 (2013).

  142. 142

    Salehi-Reyhani, A. et al. A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab. Chip 11, 1256–1261 (2011).

  143. 143

    Toriello, N. M. et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl Acad. Sci. USA 105, 20173–20178 (2008).

  144. 144

    Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106, 14195–14200 (2009).

  145. 145

    Bickle, M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal Chem. 398, 219–226 (2010).

  146. 146

    Isherwood, B. et al. Live cell in vitro and in vivo imaging applications: accelerating drug discovery. Pharmaceutics 3, 141–170 (2011).

  147. 147

    Kummel, A. et al. Integration of multiple readouts into the z' factor for assay quality assessment. J. Biomol. Screen 15, 95–101 (2010).

  148. 148

    Kuhn, J. et al. Label-free cytotoxicity screening assay by digital holographic microscopy. Assay Drug Dev. Technol. 11, 101–107 (2013).

  149. 149

    Rappaz, B., Breton, B., Shaffer, E. & Turcatti, G. Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb. Chem. High Throughput Screen 17, 80–88 (2014).

  150. 150

    Rappaz, B., Kuttler, F., Breton, B. & Turcatti, G. in Label-Free Bisensor Methods in Drug Discovery (ed. Fang, Y.) 307–325 (Springer Science+Business Media, 2015).

  151. 151

    Koos, K., Molnár, J., Kelemen, L., Tamás, G. & Horvath, P. DIC image reconstruction using an energy minimization framework to visualize optical path length distribution. Sci. Rep. 6, 30420 (2015).

  152. 152

    Swoger, J., Pampaloni, F. & Stelzer, E. H. Imaging cellular spheroids with a single (selective) plane illumination microscope. Cold Spring Harb. Protoc. 2014, 106–113 (2014).

  153. 153

    Pampaloni, F., Ansari, N. & Stelzer, E. H. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res. 352, 161–177 (2013).

  154. 154

    Kankaanpaa, P. et al. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods 9, 683–689 (2012).

  155. 155

    Di, Z. et al. Ultra high content image analysis and phenotype profiling of 3D cultured micro-tissues. PLoS ONE 9, e109688 (2014).

  156. 156

    Sandercock, A. M. et al. Identification of anti-tumour biologics using primary tumour models, 3D phenotypic screening and image-based multi-parametric profiling. Mol. Cancer 14, 147 (2015).

  157. 157

    Zhao, S. & Iyengar, R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52, 505–521 (2012).

  158. 158

    Majumder, B. et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169 (2015).

  159. 159

    Mitsopoulos, C., Schierz, A. C., Workman, P. & Al-Lazikani, B. Distinctive behaviors of druggable proteins in cellular networks. PLoS Comput. Biol. 11, e1004597 (2015).

  160. 160

    Bulusu, K. C., Tym, J. E., Coker, E. A., Schierz, A. C. & Al-Lazikani, B. canSAR: updated cancer research and drug discovery knowledgebase. Nucleic Acids Res. 42, D1040–D1047 (2014).

  161. 161

    Hansen, J. & Iyengar, R. Computation as the mechanistic bridge between precision medicine and systems therapeutics. Clin. Pharmacol. Ther. 93, 117–128 (2013).

  162. 162

    Pavlopoulos, G. A., Hooper, S. D., Sifrim, A., Schneider, R. & Aerts, J. Medusa: a tool for exploring and clustering biological networks. BMC Res. Notes 4, 384 (2011).

  163. 163

    Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

  164. 164

    Haibe-Kains, B. et al. Inconsistency in large pharmacogenomic studies. Nature 504, 389–393 (2013).

  165. 165

    Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

  166. 166

    The Cancer Cell Line Encyclopedia Consortium & The Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature 528, 84–87 (2015).

  167. 167

    Hatzis, C. et al. Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res. 74, 4016–4023 (2014).

  168. 168

    Vincent, F. et al. Developing predictive assays: the phenotypic screening “rule of 3”. Sci. Transl Med. 7, 293ps215 (2015).

  169. 169

    O'Brien, P. J. et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 80, 580–604 (2006).

  170. 170

    Pilling, J., Garside, H. & Ainscow, E. Development of a quantitative 96-well method to image glycogen storage in primary rat hepatocytes. Mol. Cell Biochem. 341, 73–78 (2010).

  171. 171

    Szkolnicka, D. et al. Accurate prediction of drug-induced liver injury using stem cell-derived populations. Stem Cells Transl. Med. 3, 141–148 (2014).

  172. 172

    Timpson, P. et al. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J. Vis. Exp. 56, e3089 (2011).

  173. 173

    Kim, E. J. et al. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin. Cancer Res. 20, 5937–5945 (2014).

  174. 174

    Morgan, M. R. et al. Psoriasin (S100A7) associates with integrin β6 subunit and is required for αvβ6-dependent carcinoma cell invasion. Oncogene 30, 1422–1435 (2011).

  175. 175

    Moore, K. M. et al. Therapeutic targeting of integrin αvβ6 in breast cancer. J. Natl Cancer Inst. 106, dju169 (2014).

  176. 176

    Scannell, J. W. & Bosley, J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS ONE 11, e0147215 (2016).

  177. 177

    Edwards, A. M. et al. Preclinical target validation using patient-derived cells. Nat. Rev. Drug Discov. 14, 149–150 (2015).

  178. 178

    Baragana, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

  179. 179

    Aulner, N. et al. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl Trop. Dis. 7, e2154 (2013).

  180. 180

    De Muylder, G. et al. A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop. Dis. 5, e1253 (2011).

  181. 181

    Siqueira-Neto, J. L. et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl Trop. Dis. 6, e1671 (2012).

  182. 182

    Fux, C. A., Shirtliff, M., Stoodley, P. & Costerton, J. W. Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol. 13, 58–63 (2005).

  183. 183

    Calmette, A., Boquet, A. & Negre, L. Contribution à l'étude du bacille tuberculeux bilié. Ann. l'Institut Pasteur 9, 561–570 (in French) (1921).

  184. 184

    de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849 (2000).

  185. 185

    Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).

  186. 186

    Ehrlich, G. D. et al. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol. Med. Microbiol. 59, 269–279 (2010).

  187. 187

    Kim, J. J. et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11, 457–468 (2012).

  188. 188

    Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

  189. 189

    Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151–157 (2016).

  190. 190

    Guiguemde, W. A. et al. Chemical genetics of Plasmodium falciparum. Nature 465, 311–315 (2010).

  191. 191

    Sundaramurthy, V. et al. Integration of chemical and RNAi multiparametric profiles identifies triggers of intracellular mycobacterial killing. Cell Host Microbe 13, 129–142 (2013).

  192. 192

    Sun, T., Jackson, S., Haycock, J. W. & MacNeil, S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J. Biotechnol. 122, 372–381 (2006).

  193. 193

    Pickl, M. & Ries, C. H. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28, 461–468 (2009).

  194. 194

    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

  195. 195

    Choi, J., Lee, E. K., Choo, J., Yuh, J. & Hong, J. W. Micro 3D cell culture systems for cellular behavior studies: culture matrices, devices, substrates, and in-situ sensing methods. Biotechnol. J. 10, 1682–1688 (2015).

  196. 196

    van Duinen, V., Trietsch, S. J., Joore, J., Vulto, P. & Hankemeier, T. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35, 118–126 (2015).

  197. 197

    Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

  198. 198

    Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

  199. 199

    Eglen, R. M. & Randle, D. H. Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay Drug Dev. Technol. 13, 262–265 (2015).

  200. 200

    Sittampalam, S. et al. Three-dimensional cell culture assays: are they more predictive of in vivo efficacy than 2D monolayer cell-based assays? Assay Drug Dev. Technol. 13, 254–261 (2015).

  201. 201

    Knowlton, S., Onal, S., Yu, C. H., Zhao, J. J. & Tasoglu, S. Bioprinting for cancer research. Trends Biotechnol. 33, 504–513 (2015).

  202. 202

    Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

  203. 203

    Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).

  204. 204

    Fitzgerald, K. A. et al. Life in 3D is never flat: 3D models to optimise drug delivery. J. Control Release 215, 39–54 (2015).

  205. 205

    Han, S. et al. Constructive remodeling of a synthetic endothelial extracellular matrix. Sci. Rep. 5, 18290 (2015).

  206. 206

    Verhulsel, M. et al. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35, 1816–1832 (2014).

  207. 207

    Rimann, M. & Graf-Hausner, U. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23, 803–809 (2012).

  208. 208

    Cushing, M. C. & Anseth, K. S. Materials science. Hydrogel cell cultures. Science 316, 1133–1134 (2007).

  209. 209

    Worthington, P., Pochan, D. J. & Langhans, S. A. Peptide hydrogels — versatile matrices for 3D cell culture in cancer medicine. Front. Oncol. 5, 92 (2015).

  210. 210

    Chen, N., Zhang, Z., Soontornworajit, B., Zhou, J. & Wang, Y. Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials 33, 1353–1362 (2012).

  211. 211

    Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010).

  212. 212

    Bumpers, H. L., Janagama, D. G., Manne, U., Basson, M. D. & Katkoori, V. Nanomagnetic levitation three-dimensional cultures of breast and colorectal cancers. J. Surg. Res. 194, 319–326 (2015).

  213. 213

    Park, J., Koito, H., Li, J. & Han, A. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11, 1145–1153 (2009).

  214. 214

    Kane, B. J., Zinner, M. J., Yarmush, M. L. & Toner, M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78, 4291–4298 (2006).

  215. 215

    Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

  216. 216

    Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery — past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).

  217. 217

    Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).

  218. 218

    Hosseinkhani, H., Hosseinkhani, M., Hattori, S., Matsuoka, R. & Kawaguchi, N. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. A 94, 1–8 (2010).

  219. 219

    Puschmann, T. B. et al. HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins. J. Neurochem. 128, 878–889 (2014).

  220. 220

    Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

  221. 221

    Miyagawa, Y. et al. A microfabricated scaffold induces the spheroid formation of human bone marrow-derived mesenchymal progenitor cells and promotes efficient adipogenic differentiation. Tissue Eng. Part A 17, 513–521 (2011).

  222. 222

    Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).

  223. 223

    Carragher, N. O. Profiling distinct mechanisms of tumour invasion for drug discovery: imaging adhesion, signalling and matrix turnover. Clin. Exp. Metastasis 26, 381–397 (2009).

  224. 224

    Kenny, H. A., Krausz, T., Yamada, S. D. & Lengyel, E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int. J. Cancer 121, 1463–1472 (2007).

  225. 225

    Du, G., Fang, Q. & den Toonder, J. M. Microfluidics for cell-based high throughput screening platforms-A review. Anal. Chim. Acta 903, 36–50 (2016).

  226. 226

    Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

  227. 227

    Baker, M. Tissue models: a living system on a chip. Nature 471, 661–665 (2011).

  228. 228

    Wood, L., Kamm, R. & Asada, H. Stochastic modeling and identification of emergent behaviours of an endothelial cell population in angiogenic pattern formation. Int. J. Robot. Res. 30, 659–677 (2011).

Download references

Acknowledgements

The authors thank H. Ebner for assistance in the writing of this manuscript. E.D.N is supported by the program Paris Alliance of Cancer Research Institutes (PACRI), Investissements d'Avenir, launched by the French government with the reference ANR-11-PHUC-002. N.A. and S.L.S. are grateful for support from the 7th Framework Programme of the European Commission (LEISHDRUG project, 223414) and the French Government (L'Agence nationale de la recherche (ANR)) programmes: Investissements d'Avenir programme ('Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases'; grant ANR-10-LABX-62-IBEID); France BioImaging (FBI; grant ANR-10-INSB-04-01) and the Fondation Française pour la Recherche Médicale (FRM; Grands Équipements Program). N.O.C. acknowledges a fellowship award from Research Councils UK (RCUK). P.H. acknowledges support from the Hungarian National Brain Research Program (grant MTA-SE-NAP B-BIOMAG). V.P. and P.H. acknowledge support from the TEKES Finland Distinguished Professor Programme (FiDiPro) Fellow Grant (40294/13). M.C.M is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the The Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) foundation, and received funding from the Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505), MINECO (grant BIO2014-62200-EXP) and the Innovative Training Networks (ITN) EU Horizon 2020 (EU-H2020) programme (grant 641639 BIOPOL). V.P. and P.Ö. received funding from the European Union's 7th Framework Programme (FP7/2007–2013; grant 258068); EU-FP7 Systems Microscopy Network of Excellence (NoE) project, the Sigrid Juselius Foundation, the Cancer Society of Finland, the Academy of Finland (Centre of Excellence in Translational Cancer Biology), the Magnus Ehrnrooth foundation and the TEKES FiDiPro Fellow Grant (40294/13), and TEKES New Generation Biobanking Grant (40294/11). Research in the Kallioniemi group at the Science for Life Laboratory received funding from K. Wallenberg and A. Wallenberg (grant 2015.0291), and the Karolinska Institutet. G.T. is supported by École Polytechnique Fédérale de Lausanne (EPFL) and the Swiss National Science Foundation/ National Centres of Competence in Research (SNF/NCCR) in Chemical Biology. D.E. acknowledges research support from Cancer Research UK (CRUK) and the Higher Education Funding Council for England (HEFCE).

Author information

Correspondence to Neil O. Carragher.

Ethics declarations

Competing interests

L.P. is a founder and shareholder of OcellO B.V., a contract research organization that offers drug screening services. The content of the article is not influenced in any way by his involvement.

P.H. is the founder and a shareholder of Single-cell technologies Inc., a biodata analysis company. The content of the article is not influenced in any way by his involvement.

A.M.D. is the inventor of the suspension technology referred to in the article as Happy Cell. He is also a board member, director and shareholder of the company that distributes this technology. The content of the article is not influenced in any way by his involvement.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horvath, P., Aulner, N., Bickle, M. et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15, 751–769 (2016). https://doi.org/10.1038/nrd.2016.175

Download citation

Further reading