Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting hepatic glucose metabolism in the treatment of type 2 diabetes

Key Points

  • Type 2 diabetes is characterized by elevated blood glucose levels and insulin resistance. Current diabetes drugs can lower blood glucose but often have side effects, and the most widely used drug — metformin — does not have a clear mechanism of action.

  • Targeting glucose and glycogen metabolism in the liver is a strategy for type 2 diabetes treatment, as it can decrease hepatic glucose output, but this approach has not been fully explored.

  • Gluconeogenic and glycogenolytic enzymes or their regulators present numerous drug targets that are currently being investigated or have the potential to be developed.

  • Transcriptional co-activators and transcription factors are emerging diabetes drug targets with the ability to control entire gene programmes involved in glucose and glycogen metabolism. It may be possible to specifically target these transcriptional regulators by modulating their protein–protein interactions or post-translational modifications.

  • Novel diabetes drugs would most probably be used in combination with existing therapies to enable sustained blood glucose suppression, and so that each drug could be used at a lower concentration to limit side effects. Drugs decreasing hepatic glucose output may be most effectively used with drugs that work by other mechanisms, such as thiazolidinediones or sodium-glucose co-transporter 2 (SGLT2) inhibitors.

  • Challenges of inhibiting hepatic glucose output include preventing hypoglycaemia, enabling tissue-specific targeting, analysing the possible effects of redirecting carbons to triglyceride or cholesterol synthesis, and avoiding lactic acidosis.

Abstract

Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of glucose homeostasis in non-diabetic and diabetic states.
Figure 2: Key steps of gluconeogenesis and glycogenolysis.
Figure 3: Regulation of gluconeogenic transcription factor and co-activator activity.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and its Burden in the United States, 2014 https://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf (US Department of Health and Human Services, 2014).

  2. Hossain, P., Kawar, B. & El Nahas, M. Obesity and diabetes in the developing world — a growing challenge. N. Engl. J. Med. 356, 213–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. DeFronzo, R. A., Bonadonna, R. C. & Ferrannini, E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15, 318–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell. Metab. 20, 953–966 (2014). This work reviews the complexities surrounding the mechanism of action of metformin, the most widely used antidiabetic drug.

    Article  CAS  PubMed  Google Scholar 

  5. Gribble, F. M. & Reimann, F. Sulphonylurea action revisited: the post-cloning era. Diabetologia 46, 875–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell. Metab. 20, 573–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Derosa, G. & Maffioli, P. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review. Clin. Ther. 34, 1221–1236 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Chao, E. C. & Henry, R. R. SGLT2 inhibition — a novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 9, 551–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Handelsman, Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care 34 (Suppl. 2), 244–250 (2011).

    Article  CAS  Google Scholar 

  11. Bouchoucha, M., Uzzan, B. & Cohen, R. Metformin and digestive disorders. Diabetes Metab. 37, 90–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Del Prato, S. & Pulizzi, N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 55, S20–S27 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Despres, J. P. et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 334, 952–957 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Gallagher, E. J. & LeRoith, D. Epidemiology and molecular mechanisms tying obesity, diabetes, and the metabolic syndrome with cancer. Diabetes Care 36 (Suppl. 2), 233–239 (2013).

    Article  CAS  Google Scholar 

  15. Postic, C., Dentin, R. & Girard, J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab. 30, 398–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, C., Dostou, J. M., Welle, S. L. & Gerich, J. E. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 282, E419–E427 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kiyosue, A., Hayashi, N., Komori, H., Leonsson-Zachrisson, M. & Johnsson, E. Dose-ranging study with the glucokinase activator AZD1656 as monotherapy in Japanese patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 15, 923–930 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Matschinsky, F. M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 8, 399–416 (2009). This review discusses the development of glucokinase activators as drugs for type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  19. Erion, D. M. et al. The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats. PloS ONE 9, e97139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma, R. et al. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment. Drug Metab. Dispos. 43, 190–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Katz, L. et al. AMG 151 (ARRY-403), a novel glucokinase activator, decreases fasting and postprandial glycaemia in patients with type 2 diabetes. Diabetes Obes. Metab. 18, 191–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Zhi, J. & Zhai, S. Effects of piragliatin, a glucokinase activator, on fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus. J. Clin. Pharmacol. 56, 231–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Lloyd, D. J. et al. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature 504, 437–440 (2013). The authors identify two small-molecule inhibitors of the glucokinase–GKRP interaction, and their ability to lower blood glucose levels in diabetic rodents.

    Article  CAS  PubMed  Google Scholar 

  24. Valcarce, C. The importance of tissue selectivity and preservation of the physiological regulation when targeting key metabolic regulators as glucokinase. Keystone Symposia on New Therapeutics for Diabetes and Obesity, http://vtvtherapeutics.com/assets/docs/TTP399_Presentation_Keystone_Symposia_2016-FINAL.pdf (2016).

    Google Scholar 

  25. Agius, L. New hepatic targets for glycaemic control in diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 21, 587–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Oikonomakos, N. G. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy. Curr. Protein Pept. Sci. 3, 561–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Treadway, J. L., Mendys, P. & Hoover, D. J. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin. Investigat. Drugs 10, 439–454 (2001).

    Article  CAS  Google Scholar 

  28. Ogawa, A. K. et al. Glucose-lowering in a db/db mouse model by dihydropyridine diacid glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett. 13, 3405–3408 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Martin, W. H. et al. Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc. Natl Acad. Sci. USA 95, 1776–1781 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rath, V. L. et al. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem. Biol. 7, 677–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Furukawa, S., Murakami, K., Nishikawa, M., Nakayama, O. & Hino, M. FR258900, a novel glycogen phosphorylase inhibitor isolated from Fungus No. 138354. II. Anti-hyperglycemic effects in diabetic animal models. J. Antibiot. 58, 503–506 (2005).

    Article  CAS  Google Scholar 

  32. Suh, S. W. et al. Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide). J. Pharmacol. Exp. Ther. 321, 45–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Torres, T. P. et al. Impact of a glycogen phosphorylase inhibitor and metformin on basal and glucagon-stimulated hepatic glucose flux in conscious dogs. J. Pharmacol. Exp. Ther. 337, 610–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flattem, N. et al. α- and β-cell responses to small changes in plasma glucose in the conscious dog. Diabetes 50, 367–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kazierad, D. J. et al. Effects of multiple ascending doses of the glucagon receptor antagonist, PF-06291874, in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 18, 795–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Vajda, E. J. et al. Pharmacodynamic effects of single doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus (T2DM). Endocrine Society's 97th Annual Meeting and Expo, http://press.endocrine.org/doi/abs/10.1210/endo-meetings.2015.DGM.2.PP01-1 (2015).

  37. Petersen, K. F. & Sullivan, J. T. Effects of a novel glucagon receptor antagonist (Bay 27–9955) on glucagon-stimulated glucose production in humans. Diabetologia 44, 2018–2024 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Guan, H. P. et al. Glucagon receptor antagonism induces increased cholesterol absorption. J. Lipid Res. 56, 2183–2195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiong, Y. et al. Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbo nyl]-β-alanine (MK-0893) for the treatment of type II diabetes. J. Med. Chem. 55, 6137–6148 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kelly, R. P. et al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes. Metab. 17, 414–422 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Kazda, C. M. et al. A randomized, double-blind, placebo-controlled phase 2 study of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes. Diabetes Care 39, 1241–1249 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. van Poelje, P. D. et al. Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats. Diabetes 55, 1747–1754 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Dang, Q. et al. Fructose-1,6-bisphosphatase Inhibitors. 2. Design, synthesis, and structure-activity relationship of a series of phosphonic acid containing benzimidazoles that function as 5′-adenosinemonophosphate (AMP) mimics. J. Med. Chem. 53, 441–451 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Aicher, T. D., Boyd, S. A., McVean, M. & Celeste, A. Novel therapeutics and targets for the treatment of diabetes. Expert Rev. Clin. Pharmacol. 3, 209–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, G. Technology evaluation: ISIS-113715, Isis. Curr. Opin. Mol. Ther. 6, 331–336 (2004).

    CAS  PubMed  Google Scholar 

  46. Rondinone, C. M. et al. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 51, 2405–2411 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Swarbrick, M. M. et al. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 150, 1670–1679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wrobel, J. et al. PTP1B inhibition and antihyperglycemic activity in the ob/ob mouse model of novel 11-arylbenzo[b]naphtho[2,3-d]furans and 11-arylbenzo[b]naphtho[2,3-d]thiophenes. J. Med. Chem. 42, 3199–3202 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Erbe, D. V. et al. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol. Pharmacol. 67, 69–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Shrestha, S., Bhattarai, B. R., Cho, H., Choi, J. K. & Cho, H. PTP1B inhibitor Ertiprotafib is also a potent inhibitor of IκB kinase β (IKK-β). Bioorg. Med. Chem. Lett. 17, 2728–2730 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Zasloff, M. et al. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. Relat. Metabol. Disord. 25, 689–697 (2001).

    Article  CAS  Google Scholar 

  52. Lantz, K. A. et al. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity 18, 1516–1523 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Cho, H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam. Horm. 91, 405–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Krishnan, N. et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558–566 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bano, G. Glucose homeostasis, obesity and diabetes. Best Pract. Res. Clin. Obstetr. Gynaecol. 27, 715–726 (2013).

    Article  Google Scholar 

  56. Cano, N. Bench-to-bedside review: glucose production from the kidney. Crit. Care 6, 317–321 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mithieux, G., Andreelli, F. & Magnan, C. Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr. Opin. Clin. Nutr. Metabol. Care 12, 419–423 (2009).

    Article  CAS  Google Scholar 

  58. Radziuk, J. & Pye, S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab. Res. Rev. 17, 250–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Taylor, S. I. Deconstructing type 2 diabetes. Cell 97, 9–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Newgard, C. B., Hirsch, L. J., Foster, D. W. & McGarry, J. D. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J. Biol. Chem. 258, 8046–8052 (1983).

    CAS  PubMed  Google Scholar 

  61. Moore, M. C. et al. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J. Clin. Invest. 88, 578–587 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Edgerton, D. S. et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116, 521–527 (2006). This study utilizes a normal dog model to demonstrate that the direct effects of insulin predominately regulate glucose production in the liver, whereas insulin action at the hypothalamus has negligible effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thiebaud, D. et al. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31, 957–963 (1982).

    Article  CAS  PubMed  Google Scholar 

  64. Dobbins, R. L. et al. Role of glucagon in countering hypoglycemia induced by insulin infusion in dogs. Am. J. Physiol. 261, E773–E781 (1991).

    CAS  PubMed  Google Scholar 

  65. Landau, B. R. et al. Contributions of gluconeogenesis to glucose production in the fasted state. J. Clin. Invest. 98, 378–385 (1996). This study examined healthy human subjects to conclude that gluconeogenesis contributes to 50% of glucose production after an overnight fast, and to nearly all of glucose production within the following 2 days.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rothman, D. L., Magnusson, I., Katz, L. D., Shulman, R. G. & Shulman, G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254, 573–576 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Weber, G., Singhal, R. L., Stamm, N. B., Fisher, E. A. & Mentendiek, M. A. Regulation of enzymes involved in gluconeogenesis. Adv. Enzyme Regul. 2, 1–38 (1964).

    Article  CAS  PubMed  Google Scholar 

  68. Abdul-Ghani, M. A., Tripathy, D. & DeFronzo, R. A. Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29, 1130–1139 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. D'Alessio, D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes. Metab. 13 (Suppl. 1), 126–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wajngot, A. et al. Quantitative contributions of gluconeogenesis to glucose production during fasting in type 2 diabetes mellitus. Metabolism 50, 47–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Hwang, J. H. et al. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J. Clin. Invest. 95, 783–787 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Calcutt, N. A., Cooper, M. E., Kern, T. S. & Schmidt, A. M. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat. Rev. Drug Discov. 8, 417–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turner, R. C., Cull, C. A., Frighi, V. & Holman, R. R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281, 2005–2012 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Pfefferkorn, J. A. et al. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotini c acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. J. Med. Chem. 55, 1318–1333 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Cusi, K. et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest. 105, 311–320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999). The authors of this study use knockout mice to demonstrate that PTP1B lowers blood glucose levels, enhances insulin sensitivity and provides resistance to weight gain, identifying PTP1B as a potential target for type 2 diabetes treatment.

    Article  CAS  PubMed  Google Scholar 

  80. Delibegovic, M. et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58, 590–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Owen, C. et al. Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia 56, 2286–2296 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, P. J., Cai, S. P., Huang, C., Meng, X. M. & Li, J. Protein tyrosine phosphatase 1B (PTP1B): a key regulator and therapeutic target in liver diseases. Toxicology 337, 10–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Krssak, M. et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53, 3048–3056 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Cline, G. W. et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N. Engl. J. Med. 341, 240–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Furukawa, S. et al. FR258900, a novel glycogen phosphorylase inhibitor isolated from Fungus No. 138354. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 58, 497–502 (2005).

    Article  CAS  Google Scholar 

  87. Tiraidis, C. et al. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase. Protein Sci. 16, 1773–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Somsak, L. et al. New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr. Med. Chem. 15, 2933–2983 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Baker, D. J., Timmons, J. A. & Greenhaff, P. L. Glycogen phosphorylase inhibition in type 2 diabetes therapy: a systematic evaluation of metabolic and functional effects in rat skeletal muscle. Diabetes 54, 2453–2459 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Lu, Z. et al. A new class of glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett. 13, 4125–4128 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Tracey, W. R. et al. Cardioprotective effects of ingliforib, a novel glycogen phosphorylase inhibitor. Am. J. Physiol. Heart Circ. Physiol. 286, H1177–H1184 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Hers, H. G. The control of glycogen metabolism in the liver. Annu. Rev. Biochem. 45, 167–189 (1976).

    Article  CAS  PubMed  Google Scholar 

  93. Hutson, N. J., Brumley, F. T., Assimacopoulos, F. D., Harper, S. C. & Exton, J. H. Studies on the α-adrenergic activation of hepatic glucose output. I. Studies on the α-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J. Biol. Chem. 251, 5200–5208 (1976).

    CAS  PubMed  Google Scholar 

  94. Embi, N., Rylatt, D. B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. FEBS 107, 519–527 (1980).

    CAS  Google Scholar 

  95. Nikoulina, S. E. et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes 49, 263–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Eldar-Finkelman, H., Schreyer, S. A., Shinohara, M. M., LeBoeuf, R. C. & Krebs, E. G. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes 48, 1662–1666 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Coghlan, M. P. et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 7, 793–803 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Lochhead, P. A., Coghlan, M., Rice, S. Q. & Sutherland, C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 50, 937–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Cohen, P. & Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 3, 479–487 (2004). This review discusses the biology of GSK3 inhibitors and their development as a treatment for type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  100. Cline, G. W. et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 51, 2903–2910 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Ring, D. B. et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52, 588–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Kaidanovich-Beilin, O. & Eldar-Finkelman, H. Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J. Pharmacol. Exp. Ther. 316, 17–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Eldar-Finkelman, H. & Martinez, A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Frontiers Mol. Neurosci. 4, 32 (2011).

    Article  CAS  Google Scholar 

  104. Gomez-Valades, A. G. et al. Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi. Mol. Ther. 13, 401–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Georgievska, B. et al. AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J. Neurochem. 125, 446–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Dominguez, J. M. et al. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 287, 893–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Baron, A. D., Schaeffer, L., Shragg, P. & Kolterman, O. G. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36, 274–283 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. Matsuda, M. et al. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism 51, 1111–1119 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Sorensen, H. et al. Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes 55, 2843–2848 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. O'Harte, F. P., Franklin, Z. J. & Irwin, N. Two novel glucagon receptor antagonists prove effective therapeutic agents in high-fat-fed and obese diabetic mice. Diabetes Obes. Metab. 16, 1214–1222 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Qureshi, S. A. et al. A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes 53, 3267–3273 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Rivera, N. et al. A novel glucagon receptor antagonist, NNC 25–0926, blunts hepatic glucose production in the conscious dog. J. Pharmacol. Exp. Ther. 321, 743–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015). The authors of this study discovered that insulin can decrease hepatic gluconeogenesis and protect against hyperglycaemia induced by a high-fat diet through the inhibition of lipolysis in white adipose tissue, which decreases acetyl CoA and pyruvate carboxylase activity in the liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kumashiro, N. et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 62, 2183–2194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bahl, J. J., Matsuda, M., DeFronzo, R. A. & Bressler, R. In vitro and in vivo suppression of gluconeogenesis by inhibition of pyruvate carboxylase. Biochem. Pharmacol. 53, 67–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Farfari, S., Schulz, V., Corkey, B. & Prentki, M. Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49, 718–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. McCommis, K. S. & Finck, B. N. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem. J. 466, 443–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast. Drosophila, and humans. Science 337, 96–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Herzig, S. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Gray, L. R. et al. Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell. Metab. 22, 669–681 (2015). This work demonstrates that the mitochondrial pyruvate carrier contributes significantly to pyruvate-driven gluconeogenesis and hyperglycaemia in type 2 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McCommis, K. S. et al. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell. Metab. 22, 682–694 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Divakaruni, A. S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl Acad. Sci. USA 110, 5422–5427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Colca, J. R. et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)—relationship to newly identified mitochondrial pyruvate carrier proteins. PloS ONE 8, e61551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vacanti, N. M. et al. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell 56, 425–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Barthel, A. & Schmoll, D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285, E685–E692 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Cimbala, M. A. et al. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney. Effects of insulin and cyclic AMP. J. Biol. Chem. 257, 7629–7636 (1982).

    CAS  PubMed  Google Scholar 

  128. Granner, D., Andreone, T., Sasaki, K. & Beale, E. Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin. Nature 305, 549–551 (1983).

    Article  CAS  PubMed  Google Scholar 

  129. Magnuson, M. A., Quinn, P. G. & Granner, D. K. Multihormonal regulation of phosphoenolpyruvate carboxykinase-chloramphenicol acetyltransferase fusion genes. Insulin's effects oppose those of cAMP and dexamethasone. J. Biol. Chem. 262, 14917–14920 (1987).

    CAS  PubMed  Google Scholar 

  130. Valera, A., Pujol, A., Pelegrin, M. & Bosch, F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc. Natl Acad. Sci. USA 91, 9151–9154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. DiTullio, N. W. et al. 3-mercaptopicolinic acid, an inhibitor of gluconeogenesis. Biochem. J. 138, 387–394 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Samuel, V. T. et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc. Natl Acad. Sci. USA 106, 12121–12126 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hakimi, P. et al. Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutr. Metab. 2, 33 (2005).

    Article  CAS  Google Scholar 

  134. She, P. et al. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell. Biol. 20, 6508–6517 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Burgess, S. C. et al. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J. Biol. Chem. 279, 48941–48949 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Burgess, S. C. et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell. Metab. 5, 313–320 (2007). The authors of this study found that a 90% reduction in hepatic PEPCK in mice results in only a 40% decrease in gluconeogenic flux, demonstrating that the effect of PEPCK alone on gluconeogenesis is not as strong as expected, and that PEPCK may need to function together with hepatic energy production to control gluconeogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mutel, E. et al. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 60, 3121–3131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abdul-Wahed, A. et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol. Metab. 3, 531–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rhee, J. et al. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc. Natl Acad. Sci. USA 100, 4012–4017 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Codogno, P. & Meijer, A. J. Autophagy in the liver. J. Hepatol. 59, 389–391 (2013).

    Article  PubMed  Google Scholar 

  141. Okar, D. A. & Lange, A. J. Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. BioFactors 10, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Wu, C., Okar, D. A., Newgard, C. B. & Lange, A. J. Increasing fructose 2,6-bisphosphate overcomes hepatic insulin resistance of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 282, E38–E45 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Wu, C., Okar, D. A., Newgard, C. B. & Lange, A. J. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. J. Clin. Invest. 107, 91–98 (2001). This study overexpressed PFK/FBPase 2 in normal and diabetic mice, which resulted in decreased blood glucose levels and hepatic glucose production; these findings suggest that this enzyme may be a target for type 2 diabetes treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cochran, A. G. Antagonists of protein-protein interactions. Chem. Biol. 7, R85–R94 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Song, X. et al. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc. Natl Acad. Sci. USA 113, 4970–4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fontaine, F., Overman, J. & Francois, M. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. Cell Regener. 4, 2 (2015).

    Article  CAS  Google Scholar 

  147. Thompson, A. D., Dugan, A., Gestwicki, J. E. & Mapp, A. K. Fine-tuning multiprotein complexes using small molecules. ACS Chem. Biol. 7, 1311–1320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bhagwat, A. S. & Vakoc, C. R. Targeting transcription factors in cancer. Trends Cancer 1, 53–65 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Darnell, J. E. Jr Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Liang, H. & Ward, W. F. PGC-1α: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145–151 (2006).

    Article  PubMed  Google Scholar 

  151. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Esterbauer, H., Oberkofler, H., Krempler, F. & Patsch, W. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62, 98–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001). The authors show that PGC1α is strongly induced by fasting in mouse livers, and it also activates the gluconeogenic programme and glucose output in hepatocytes.

    Article  CAS  PubMed  Google Scholar 

  155. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423, 550–555 (2003). This work demonstrates that FOXO1 is required for PGC1α-mediated activation of the insulin-regulated gluconeogenic gene programme.

    Article  CAS  PubMed  Google Scholar 

  156. Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Leone, T. C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Estall, J. L. et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-γ coactivator-1α expression. Diabetes 58, 1499–1508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Burgess, S. C. et al. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice. J. Biol. Chem. 281, 19000–19008 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Li, X., Monks, B., Ge, Q. & Birnbaum, M. J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447, 1012–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Rodgers, J. T., Haas, W., Gygi, S. P. & Puigserver, P. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell. Metab. 11, 23–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dominy, J. E. Jr., Lee, Y., Gerhart-Hines, Z. & Puigserver, P. Nutrient-dependent regulation of PGC-1α's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 1804, 1676–1683 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell. Metab. 3, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Dominy, J. E. Jr. et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 48, 900–913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lee, Y. et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547–551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Teyssier, C., Ma, H., Emter, R., Kralli, A. & Stallcup, M. R. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev. 19, 1466–1473 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lustig, Y. et al. Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase. Genes Dev. 25, 1232–1244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sakai, M. et al. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis. Nat. Med. 18, 612–617 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Dekker, F. J., van den Bosch, T. & Martin, N. I. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov. Today 19, 654–660 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Brooks, C. L. & Gu, W. How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer 9, 123–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chang, H. C. & Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 25, 138–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Ruderman, N. B., Carling, D., Prentki, M. & Cacicedo, J. M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 123, 2764–2772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arany, Z. et al. Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc. Natl Acad. Sci. USA 105, 4721–4726 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhang, L. N. et al. Novel small-molecule PGC-1α transcriptional regulator with beneficial effects on diabetic db/db mice. Diabetes 62, 1297–1307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Burgering, B. M. A brief introduction to FOXOlogy. Oncogene 27, 2258–2262 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Haeusler, R. A., Kaestner, K. H. & Accili, D. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 285, 35245–35248 (2010). This work demonstrates that ablation of hepatic FOXO2 and FOXO3 with FOXO1 lowers blood glucose levels and increases insulin sensitivity to a greater extent than loss of FOXO1 alone, which suggests that FOXO isoforms function together to promote hepatic gluconeogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim, D. H. et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 60, 2763–2774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tikhanovich, I., Cox, J. & Weinman, S. A. Forkhead box class O transcription factors in liver function and disease. J. Gastroenterol. Hepatol. 28 (Suppl. 1), 125–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang, K. et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 153, 631–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Tao, R. et al. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J. Biol. Chem. 286, 14681–14690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Sajan, M. P. et al. Akt-dependent phosphorylation of hepatic FoxO1 is compartmentalized on a WD40/ProF scaffold and is selectively inhibited by aPKC in early phases of diet-induced obesity. Diabetes 63, 2690–2701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hall, J. A., Tabata, M., Rodgers, J. T. & Puigserver, P. USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol. Endocrinol. 28, 912–924 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kato, S., Ding, J., Pisck, E., Jhala, U. S. & Du, K. COP1 functions as a FoxO1 ubiquitin E3 ligase to regulate FoxO1-mediated gene expression. J. Biol. Chem. 283, 35464–35473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nagashima, T. et al. Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol. Pharmacol. 78, 961–970 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Tanaka, H. et al. Effects of the novel Foxo1 inhibitor AS1708727 on plasma glucose and triglyceride levels in diabetic db/db mice. Eur. J. Pharmacol. 645, 185–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Gonzalez, G. A. & Montminy, M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680 (1989).

    Article  CAS  PubMed  Google Scholar 

  193. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  PubMed  Google Scholar 

  194. Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183 (2001). The authors of this study use Creb -knockout mice and mice expressing a dominant-negative CREB inhibitor to show that CREB increases hepatic gluconeogenesis and blood glucose levels through direct activation of PGC1α expression.

    Article  CAS  PubMed  Google Scholar 

  196. Herzig, S. et al. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature 426, 190–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Lee, J. M. et al. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB. CRTC2 complex by orphan nuclear receptor small heterodimer partner. J. Biol. Chem. 285, 32182–32191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Dentin, R. et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366–369 (2007). This study demonstrates that TORC2 has a role in diabetic glucose homeostasis, as TORC2 levels are increased in diabetes and insulin inhibits the gluconeogenic gene programme through phosphorylation and subsequent degradation of TORC2.

    Article  CAS  PubMed  Google Scholar 

  199. Oh, K. J. et al. TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. PLoS Genet. 8, e1002986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hammitzsch, A. et al. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc. Natl Acad. Sci. USA 112, 10768–10773 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Best, J. L. et al. Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc. Natl Acad. Sci. USA 101, 17622–17627 (2004). An NMR-based screen is used in this work to identify small molecules that bind to CREB and disrupt its interaction with CBP, which decreases the cellular response to cAMP, showing that small molecules can inhibit cAMP signalling through interference of nuclear protein–protein interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang, Y. et al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl Acad. Sci. USA 107, 3087–3092 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, N. D. et al. Impaired energy homeostasis in C/EBP α knockout mice. Science 269, 1108–1112 (1995). The authors use Cebpa -knockout mice to demonstrate that C/EBPα is needed for full activation of glycogen synthase and genes involved in gluconeogenesis, as well as lipid accumulation in hepatocytes, thus establishing C/EBPα as a regulator of hepatic energy metabolism.

    Article  CAS  PubMed  Google Scholar 

  206. Pedersen, T. A. et al. Distinct C/EBPα motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO J. 26, 1081–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Qiao, L., MacDougald, O. A. & Shao, J. CCAAT/enhancer-binding protein α mediates induction of hepatic phosphoenolpyruvate carboxykinase by p38 mitogen-activated protein kinase. J. Biol. Chem. 281, 24390–24397 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Arizmendi, C., Liu, S., Croniger, C., Poli, V. & Friedman, J. E. The transcription factor CCAAT/enhancer-binding protein beta regulates gluconeogenesis and phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J. Biol. Chem. 274, 13033–13040 (1999).

    Article  CAS  PubMed  Google Scholar 

  209. Watanabe, N. & Osada, H. Small molecules that target phosphorylation dependent protein-protein interaction. Bioorg. Med. Chem. http://dx.doi.org/10.1016/j.bmc.2016.03.023 (2016).

  210. Solt, L. A., Kojetin, D. J. & Burris, T. P. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3, 623–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Yin, L. et al. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007). This work reveals that the haem sensor and circadian clock component REV-ERBα decreases glucose output and gluconeogenic gene expression in liver cells.

    Article  CAS  PubMed  Google Scholar 

  212. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Chopra, A. R. et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322, 1395–1399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kadiri, S. et al. The nuclear retinoid-related orphan receptor-α regulates adipose tissue glyceroneogenesis in addition to hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 309, E105–E114 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Kojetin, D. J. & Burris, T. P. REV-ERB and ROR nuclear receptors as drug targets. Nat. Rev. Drug Discov. 13, 197–216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Grant, D. et al. GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbα. ACS Chem. Biol. 5, 925–932 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kumar, N. et al. Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS Chem. Biol. 6, 218–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Louet, J. F. et al. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell. Metab. 12, 606–618 (2010). The authors find that SRC1 is induced by fasting and increases hepatic glucose production through activation of C/EBPα, which transactivates pyruvate carboxylase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, Y. et al. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol. Endocrinol. 25, 2041–2053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Rousset, S. et al. The biology of mitochondrial uncoupling proteins. Diabetes 53 (Suppl. 1), S130–S135 (2004).

    Article  CAS  PubMed  Google Scholar 

  223. Grundlingh, J., Dargan, P. I., El-Zanfaly, M. & Wood, D. M. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J. Med. Toxicol. 7, 205–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Perry, R. J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell. Metab. 18, 740–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253–1256 (2015). This study demonstrates that a controlled-release mitochondrial protonophore induces mild hepatic mitochondrial uncoupling and decreases insulin resistance and diabetes in rats without causing systemic toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Consoli, A., Nurjhan, N., Capani, F. & Gerich, J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38, 550–557 (1989).

    Article  CAS  PubMed  Google Scholar 

  227. Moore, M. C., Coate, K. C., Winnick, J. J., An, Z. & Cherrington, A. D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3, 286–294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell. Metab. 14, 9–19 (2011). This review provides an overview of the regulatory mechanisms of hepatic glucose production, as well as a discussion of the controversies surrounding this topic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Rizza, R. A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59, 2697–2707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bandsma, R. H. et al. Acute inhibition of glucose-6-phosphate translocator activity leads to increased de novo lipogenesis and development of hepatic steatosis without affecting VLDL production in rats. Diabetes 50, 2591–2597 (2001).

    Article  CAS  PubMed  Google Scholar 

  231. Lei, K. J. et al. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat. Genet. 13, 203–209 (1996).

    Article  CAS  PubMed  Google Scholar 

  232. Clar, J. et al. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int. 86, 747–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. van Schaftingen, E. & Gerin, I. The glucose-6-phosphatase system. Biochem. J. 362, 513–532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wulffele, M. G., Kooy, A., de Zeeuw, D., Stehouwer, C. D. & Gansevoort, R. T. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J. Internal Med. 256, 1–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Befroy, D. E. et al. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat. Med. 20, 98–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Inzucchi, S. E., Lipska, K. J., Mayo, H., Bailey, C. J. & McGuire, D. K. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA 312, 2668–2675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wiernsperger, N. F. & Bailey, C. J. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs 58 (Suppl. 1), 31–39; discussion 75–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  238. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  239. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Dornhorst, A. Insulinotropic meglitinide analogues. Lancet 358, 1709–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  246. Brown, D. X. & Evans, M. Choosing between GLP-1 receptor agonists and DPP-4 inhibitors: a pharmacological perspective. J. Nutr. Metab. 2012, 381713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zinman, B. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Bailey, T. Options for combination therapy in type 2 diabetes: comparison of the ADA/EASD position statement and AACE/ACE algorithm. Am. J. Med. 126, S10–S20 (2013).

    Article  PubMed  Google Scholar 

  249. Rojas, L. B. & Gomes, M. B. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol. Metab. Synd. 5, 6 (2013).

    Article  CAS  Google Scholar 

  250. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38, 140–149 (2015).

    Article  PubMed  Google Scholar 

  251. van Poelje, P. D., Potter, S. C. & Erion, M. D. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb. Exp. Pharmacol. 203, 279–301 (2011).

    Article  CAS  Google Scholar 

  252. Bantubungi, K. et al. Cdkn2a/p16Ink4a regulates fasting-induced hepatic gluconeogenesis through the PKA–CREB–PGC1α pathway. Diabetes 63, 3199–3209 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.K.R. received funding from the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK) at the US National Institutes of Health (NIH) (F32 DK102293-01). K.S. was funded by the American Heart Association (15POST22880002). C.D.J.T. received funding from the American Diabetes Association (1-16-PDF-111). P.P. was funded by the NIH NIDDK (R01 DK069966, DK081418, DK089883) and the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Puigserver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Type 2 diabetes

A chronic disease of aberrant glucose homeostasis that is characterized by elevated blood glucose levels and insulin resistance.

Sulfonylureas

Type 2 diabetes drugs that stimulate insulin secretion from the pancreas through inhibition of KATP channels in β-cells.

Thiazolidinediones

Insulin-sensitizing type 2 diabetes drugs that act as peroxisome proliferator-activated receptor-γ (PPARγ) agonists (also known as glitazones).

Gluconeogenesis

A metabolic pathway utilizing carbon substrates to generate glucose.

Hyperinsulinaemia

Excess insulin levels in the blood, often caused by insulin resistance.

Hypoglycaemia

Suppressed blood glucose below normal levels.

Glycogenolysis

A metabolic pathway that breaks down glycogen into glucose.

Hyperglycaemia

Elevated blood glucose above normal levels.

Hepatic steatosis

Fatty liver disease.

Lactic acidosis

Increased acidity in the body due to a build-up of lactate; a potential complication associated with inhibition of hepatic gluconeogenesis.

Insulin secretagogues

Agents that increase insulin release from the pancreas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rines, A., Sharabi, K., Tavares, C. et al. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 15, 786–804 (2016). https://doi.org/10.1038/nrd.2016.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.151

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research