Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Non-coding RNAs as drug targets

Key Points

  • Non-coding RNAs (ncRNAs) — which include microRNAs (miRNAs), repetitive RNAs, intronic RNAs, and long ncRNAs (lncRNAs) — are a diverse group of biomolecules with broad potential to control gene expression.

  • Compounds that target ncRNAs have the potential to control expression of disease-related genes

  • Development of compounds to target ncRNAs can benefit from understanding the lessons learnt from decades of research using antisense oligonucleotides (ASOs) and duplex RNAs to control expression of mRNA.

  • ASOs that affect splicing or that are complementary to miRNAs are already being tested in multiple clinical trials in a variety of diseases, including cancer and muscular dystrophy

  • lncRNAs can affect transcription or splicing and are emerging as a promising class of novel drug targets.

Abstract

Most of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) may affect normal gene expression and disease progression, making them a new class of targets for drug discovery. Because their mechanisms of action are often novel, developing drugs to target ncRNAs will involve equally novel challenges. However, many potential problems may already have been solved during the development of technologies to target mRNA. Here, we discuss the growing field of ncRNA — including microRNA, intronic RNA, repetitive RNA and long non-coding RNA — and assess the potential and challenges in their therapeutic exploitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulating RNA levels or splicing with ASOs and duplex RNAs.
Figure 2: ASOs and duplex RNAs targeting repetitive RNAs.
Figure 3: Modulating gene expression by targeting cis-acting non-coding RNAs or promoter RNAs.

Similar content being viewed by others

References

  1. Morris, K. V. & Mattick, J. S. The rise of regulatory RNA. Nat. Rev. Genet. 15, 423–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ling, H., Fabbri, M. & Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug. Discov. 12, 847–865 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. St. Laurent, G., Wahlestedt, C. & Kapranov, P. The landscape of long noncoding RNA classification. Trends Genet. 31, 239–251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ebbersen, K. K., Kjems, J. & Hansen, T. B. Circular RNAs: identification, biogenesis and function. Biochim. Biophys. Acta 1859, 163–168 (2016).

    Article  CAS  Google Scholar 

  5. Sato-Kuwabara, Y., Melo, S. A., Soares, F. A. & Calin, G. A. The fusion of two worlds: noncoding RNAs and extracellular RNAs — diagnostic and therapeutic implications. Int. J. Oncol. 46, 17–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. van Rooij, E. & Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zamencnik, P. C. & Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligonucleotide. Proc. Natl Acad. Sci. USA 75, 280–284 (1978).

    Article  Google Scholar 

  8. Sharma, V. K. & Watts, J. K. Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med. Chem. 7, 2221–2242 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt, M. F. Drug target miRNAs: chances and challenges. Trends Biotechnol. 32, 578–585 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Ozcan, G., Ozpolat, B., Coleman, R. L., Sood, A. K. & Lopez-Berestein, G. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Deliv. Rev. 87, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sah, D. W. Y. & Aronin, N. Oligonucleotide therapeutic approaches for Huntington disease J. Clin. Invest. 121, 500–507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21, 1115–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Abramova, T. Frontiers and approaches to chemical synthesis of oligodeoxyribonucleotides. Molecules 18, 1063–1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkw236 (2016).

  17. Geary, R. S., Henry, S. P. & Grillone, L. R. Fomivirsen: clinical pharmacology and potential drug interactions. Clin. Pharmacokinet. 41, 255–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Rader, D. J. & Kastelein, J. J. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 129, 1022–1032 (2014). A demonstration that ASOs can have profound effects on gene expression in humans.

    Article  PubMed  Google Scholar 

  19. McClorey, G. & Wood, M. J. An overview of clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr. Opin. Pharmacol. 24, 52–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Childs-Disney, J. L. & Disney, M. D. Approaches to validate and manipulate RNA targets with small molecules in cells. Annu. Rev. Pharmacol. Toxicol. 56, 123–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Watts, J. K. & Corey, D. R. Silencing disease genes in the laboratory and the clinic. J. Pathol. 226, 365–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Wilson, R. C. & Doudna, J. A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42, 217–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crooke, S. T. Proof of mechanism of antisense drugs. Antisense Nucleic Acid. Drug Dev. 6, 145–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Stein, C. A. Keeping the biotechnology of antisense in context. Nat. Biotechnol. 17, 209 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Crooke, S. T. Evaluating the mechanism of action of antiproliferative antisense drugs. Antisense Nucleic Acid. Drug Dev. 10, 123–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. [No authors listed.] Whither RNAi? Nat. Cell. Biol. 5, 489–490 (2003). Along with references 23–25, this work provides common sense guidelines for interpreting experiments and designing controls.

  27. Sledz, C. A. & Williams, B. R. RNA interference and double-stranded-RNA-activated pathways. Biochem. Soc. Trans. 32, 952–956 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Svoboda, P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr. Opin. Mol. Ther. 9, 248–257 (2007).

    CAS  PubMed  Google Scholar 

  29. Juliano, R. L. & Carver, K. Cellular uptake and intracellular trafficking of oligonucleotides. Adv. Drug. Deliv. Rev. 87, 35–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Myers, K. J. & Dean, N. M. Sensible use of antisense: how to use oligonucleotides as research tools. Trends Pharmcol. Sci. 21, 19–23 (2000).

    Article  CAS  Google Scholar 

  31. Stein, C. A. The experimental use of antisense oligonucleotides: a guide for the perplexed. J. Clin. Invest. 108, 641–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krieg, A. M. CpG still rocks. Update on an accidental drug. Nucleic Acid. Ther. 22, 77–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Z., Monia, B. P. & Corey, D. R. Telomerase inhibition, telomere shortening, and decreased cell proliferation by cell permeable 2′-O-methoxyethyl oligonucleotides. J. Med. Chem. 45, 5423–5425 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Stein, C. A. et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 38, e3 (2010). Reported application of 'gymnotic' oligonucleotide delivery, providing an important tool for experimenters using ASOs.

    Article  CAS  PubMed  Google Scholar 

  35. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Hammond, S. M. An overview of microRNAs. Adv. Drug Deliv. Rev. 87, 3–14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Z. & Rana, T. M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13, 622–638 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kaboli, P. J., Rahmat, A., Ismail, P. & Ling, K.-H. MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharm. Res. 97, 104–121 (2015).

    Article  CAS  Google Scholar 

  39. Agostini, M. & Knight, R. A. miR-34: from bench to bedside. Oncotarget 5, 872–881 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thakral, S. & Ghoshal, K. miR-122 is a unique molecule with great potential in the diagnosis, prognosis of liver disease and therapy both as miRNA mimic and antimir. Curr. Gene Ther. 15, 142–150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gomez, I. G. et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 125, 141–156 (2015).

    Article  PubMed  Google Scholar 

  42. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Aartsma-Rus, A. & van Ommen, G.-J. B. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13, 1609–1624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Järver, P., O'Donovan, L. & Gait, M. J. A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid. Ther. 24, 37–47 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rigo, F., Seth, P. P. & Bennett, C. F. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Adv. Exp. Med. Biol. 825, 303–352 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Dominski, Z. & Kole, R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad. Sci. USA 90, 8673–8677 (1993). Classic work introducing the concept of ASO-mediated regulation of splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rigo, F. et al. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nat. Chem. Biol. 8, 555–561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sierakowska, H., Sambade, M. J., Agrawal, S. & Kole, R. Repair of thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl Acad. Sci. USA 93, 12840–12844 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mann, C. J. et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl Acad. Sci. USA 98, 42–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. van Deutekom, J. C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357, 2677–2686 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Goemans, N. M. et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N. Engl. J. Med. 364, 1513–1522 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Voit, T. et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory randomised, placebo-controlled Phase 2 study. Lancet Neurol. 13, 987–996 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Lentz, J. J. et al. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat. Med. 19, 345–350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Passini, M. A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3, 72ra18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kole, R. & Krieg, A. M. Exon skipping therapy for Duchenne muscular dystrophy. Adv. Drug. Deliv. Rev. 87, 104–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Mendell, J. R. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79, 257–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiriboga, C. A. et al. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86, 890–897 (2016). Compelling early stage clinical results of an ASO designed to change splicing and upregulate functional SMN protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. [No authors listed.] FDA briefing document: Peripheral and Central Nervous System Drugs Advisory Committee Meeting, November 24, 2015, NDA 206031. US Food and Drug Administration http://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/peripheralandcentralnervoussystemdrugsadvisorycommittee/ucm473737.pdf (2014)

  59. Lu, Q. L., Cirak, S. & Partridge, T. What can we learn from clinical trials of exon skipping for DMD? Mol. Ther. Nucleic Acids 3, e152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kimberling, W. J. et al. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet. Med. 12, 512–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ebermann, I. et al. Deafblindness in French Canadians from Quebec: a predominant founder population in USH1C gene provides the first genetic link with the Acadian population. Genome. Biol. 8, R47 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Faravelli, I., Nizzardo, M., Comi, G. P. & Corti, S. Spinal muscular atrophy — recent therapeutic advances for an old challenge. Nat. Rev. Neurol. 11, 351–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Ionis Pharmaceuticals, Inc. Ionis Pharmaceuticals Reports Data Update from Nusinersen Phase 2 Study in Infants with Spinal Muscular Atrophy and Reviews Neurological Disease Franchise. Ionis Pharmaceuticals Press Release http://ir.ionispharma.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=2158750 (2016).

  64. Schmidt, M. H. M. & Pearson, C. E. Disease-associate repeat instability and mismatch repair. DNA Repair 38, 117–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Nelson, D. L., Orr, H. T. & Warren, S. T. The unstable repeats — three evolving faces of neurological disease. Neuron 77, 825–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. La Spada, A. R. & Taylor, J. P. Repeat expansion disease:progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kay, C., Skotte, N. H., Southwell, A. L. & Hayden, M. R. Personalized gene silencing therapeutics for Huntington disease. Clin. Genet. 86, 29–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Fiszer, A. & Krzyzosiak, W. J. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res. 42, 6787–6810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kuyumcu-Martinez, N. M., Wang, G.-S. & Cooper, T. A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mulders, S. A. et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc. Natl Acad. Sci. USA 106, 13915–13920 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wheeler, T. M. et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325, 336–339 (2009). This study demonstrated that ASOs can target trinucleotide repeats and detailed the investigation of the mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pandey, S. K. et al. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J. Pharmacol. Exp. Ther. 355, 329–340 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wheeler, T. M. et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488, 111–115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02312011 (2014).

  76. Sandi, C., Sandi, M., Anjomani Virmouni, S., Al-Mahdawi, S. & Pook, M. A. Epigenetic-based therapies for Friedreich ataxia. Front. Genet. 5, 165 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Groh, M., Lufino, M. M. P., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014). This paper outlines the mechanism for inhibition of transcription in triplet-repeat disease genes, FXN and Fragile X mental retardation 1 ( FMR1 ), by R-loop formation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Li, L., Matsui, M. & Corey, D. R. Activating frataxin expression by repeat-targeted nucleic acids. Nat. Commun. 7, 10606 (2016). An example of how targeting an intron with ASOs or dsRNAs can derepress a gene by blocking R-loop formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  81. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bergmann, J. H. & Spector, D. L. Long non-coding RNAs: modulators of nuclear structure and function. Curr. Opin. Cell Biol. 26, 10–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. St. Laurent, G. et al. Functional annotation of vlinc class of non-coding RNAs using systems biology approach. Nucleic Acids Res. 44, 3233–3252 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. van Bakel, H., Nislow, C., Blencowe, B. J. & Hughes, T. R. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 8, e1000371 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Clark, M. B. et al. The reality of pervasive transcription. PLoS Biol. 9, e1000625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Bakel, H., Nislow, C., Blencowe, B. J. & Hughes, T. R. Response to “The Reality of Pervasive Transcription”. PLoS Biol. 9, e1001102 (2011). Together with references 87 and 88, this work illustrates the spirited debate over the broader importance of lncRNAs.

    Article  CAS  PubMed Central  Google Scholar 

  90. Bustin, S. A. Why the need for qPCR publication guidelines? — The case for MIQE. Methods 50, 217–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Dodd, D. W., Gagnon, K. T. & Corey, D. R. Digital quantitation of potential therapeutic target RNAs. Nucleic Acids Ther. 23, 188–194 (2013). An example of how RNA copy numbers can be quantified.

    Article  CAS  Google Scholar 

  92. Gagnon, K. T., Li, L., Chu, Y. Janowski, B. A. & Corey, D. R. RNAi factors are present and active in human cell nuclei. Cell Rep. 6, 211–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gagnon, K. T., Li, L., Janowski, B. A. & Corey, D. R. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat. Protoc. 9, 2045–2060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lennox, K. A. & Behlke, M. A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 44, 863–877 (2016). This study makes the important observation that ASOs function best in nuclei, whereas duplex RNAs function best in the cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  95. Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Froberg, J. E., Yang, L. & Lee, J. T. Guided by RNAs: X-inactivation as a model for lncRNA function. J. Mol. Biol. 425, 3698–3706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Davidovich, C. & Cech, T. R. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21, 2007–2022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Simon, J. A. & Kingston, R. E. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49, 808–824 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, J., Sun, B. K., Erwin, J. A., Song, J.-J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sarma, K., Levasseur, P., Aristarkhov, A. & Lee, J. T. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc. Natl Acad. Sci. USA 107, 22196–22201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Davidovich, C., Zheng, L., Goodrich, K. J. & Cech, T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20, 1250–1257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, X., Schwartz, J. C. & Cech, T. R. Nucleic acid-binding specificity of human FUS protein. Nucleic Acids Res. 43, 7535–7543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Davidovich, C. et al. Towards a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015). A balanced and nuanced investigation from two groups with different viewpoints of the role of PRC2 and its interactions with RNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kalantari, R., Chiang, C.-M. & Corey, D. R. Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res. 44, 524–537 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Roberts, T. C. The microRNA biology of the mammalian nucleus. Mol. Ther. Nucleic Acids 3, e188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Matsui, M. et al. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 41, 10086–10109 (2013). An in-depth study of one mechanism for controlling transcription with miRNAs and synthetic duplex RNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, J., Hu, J. & Corey, D. R. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing. Nucleic Acids Res. 40, 1240–1250 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  PubMed  CAS  Google Scholar 

  112. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eissmann, M. et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 9, 1076–1087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nakagawa, S. et al. MALAT1 is not an essential component of nuclear speckles in mice. RNA 18, 1487–1499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Arun, G. et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 30, 34–51 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Fan, Y. et al. TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin. Cancer Res. 20, 1531–1541 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Engreitz, J. M. et al. RNA–RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159, 188–199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. West, J. A. et al. The noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoshimoto, R., Mayeda, A., Yoshida, M. & Nakagawa, S. MALAT1 and noncoding RNA in cancer. Biochim. Biophys. Acta 1859, 192–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Bird, L. M. Angelman syndrome: review of clinical and molecular aspects. Appl. Clin. Genet. 7, 93–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rougeulle, C., Cardoso, C., Fontés, M., Colleaux, L. & Lalande, M. An imprinted antisense RNA overlaps UBE3A and a scond maternally expressed transcript. Nat. Genet. 19, 15–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Chamberlain, S. J. & Brannan, C. I. The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73, 316–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Meng, L., Person, R. E. & Beaudet, A. L. Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum. Mol. Genet. 21, 3001–3012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meng, L. et al. Towards a therapy for Angelman syndrome by targeting a long noncoding RNA. Nature 518, 409–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016). This study provides an unusually detailed mechanism of action for a well-expressed lncRNA.

    Article  CAS  PubMed  Google Scholar 

  128. Leucci, E. et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 531, 518–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Fogal, V. et al. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol. Cell. Biol. 30, 1303–1318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Begley, C. G. & Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012). This paper points out the low rate of reproducibility for many published results.

    Article  CAS  PubMed  Google Scholar 

  131. Freedman, L. P. & Inglese, J. The increasing urgency for standards in basic biologic research. Cancer Res. 74, 4024–4029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. [No authors listed.] Oblimersen: Augmersosen, BCL-2 antisense oligonucleotide — Genta, G 3139, GC 3139, oblimersen sodium. Drugs R. D. 8, 321–334 (2007).

  133. Kim, R., Emi, M., Tababe, K. & Toge, T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 101, 2491–2501 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Bedikian, A. Y. et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol. 24, 4738–4745 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Bedikian, A. Y. et al. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: 'the AGENDA trial'. Melanoma Res. 24, 237–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Lai, J. C. et al. G3139 (oblimersen) may inhibit prostate cancer cell growth in a partially bis-CpG-dependent non-antisense manner. Mol. Cancer Ther. 2, 1031–1043 (2003).

    CAS  PubMed  Google Scholar 

  137. Benimetskaya, L. et al. Relative Bcl-2 independence of drug-induced cytotoxicity and resistance in 518A2 melanoma cells. Clin. Cancer Res. 10, 8371–8379 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Anderson, E. M. et al. Gene profiling study of G3139- and Bcl-2 targeting siRNAs identifies a unique G3139 molecular signature. Cancer Gene Ther. 13, 406–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Winkler, J., Stessl, M., Amartey, J. & Noe, C. R. Off-target effects related to the phosphorothioate modifications of nucleic acids. ChemMedChem. 5, 1344–1352 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Gjertsen, B. T., Bredholt, T., Anensen, N. & Vintemyr, O. K. Bcl-2 antisense in the treatment of human malignancies: a delusion in targeted therapy. Curr. Pharm. Biotechnol. 8, 373–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Westphal, S. P. Behind the mask. New Scientist 179, 32–35 (2003).

    Google Scholar 

  142. Beg, M. S. et al. Safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors. Mol. Cancer. Ther. 14 (12 Suppl. 2) C43 (2015).

    Google Scholar 

  143. Regulus Therapeutics Inc. All HCV patients treated with a single SC administration of 4 mg/kg of RG-101 responded with mean viral load reduction of 4.8 log10 at day 29 and 9/14 patients are below the limit of quantification at day 57. Regulus Therapeutics press release, http://ir.regulusrx.com/releasedetail.cfm?ReleaseID=895314 (2015).

  144. Regulus Therapeutics Inc. RG-101 interim analysis shows 97% response at 8 week follow-up. Regulus Therapeutics press release, http://ir.regulusrx.com/releasedetail.cfm?ReleaseID=955249 (2016).

  145. Regulus Therapeutics Inc. Regulus to present additional preclinical data supporting RG-012 as a novel microRNA therapeutic in development for Alport Syndrome at ASN's Kidney Week 2015. Regulus Therapeutics press release, http://ir.regulusrx.com/releasedetail.cfm?ReleaseID=935181 (2015).

  146. Regulus Therapeutics Inc. RG-125(AZD4076), a microRNA therapeutic targeting microRNA-103/107 being developed for the treatment of NASH in patients with type 2 diabetes/pre-diabetes, enters Phase I clinical development. Regulus Therapeutics press release, http://ir.regulusrx.com/releasedetail.cfm?ReleaseID=947579 (2015).

  147. Janssen, H. L. A. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Gebert, L. F. et al. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42, 609–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Ottosen, S. et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob. Agents Chemother. 59, 599–608 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. van der Ree, M. H. et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 43, 102–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. BioMarin Pharmaceutical Inc. BioMarin announces withdrawal of market authorization application for Kyndrisa (drisapersen) in Europe. BioMarin Pharmaceutical press release, http://investors.bmrn.com/releasedetail.cfm?ReleaseID=973536 (2016).

  152. Haché, M. et al. Intrathecal injections in children with spinal muscular atrophy: Nusinersen clinical trial experience. J. Child Neurol. 31, 899–906 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM106151, GM73042 and GM118103) and the Robert Welch Foundation (I-1244). D.R.C. holds the Rusty Kelley Professorship in Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Corey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Antisense oligonucleotides

(ASOs). Synthetic single-stranded oligonucleotides that are designed to bind to complementary cellular RNA sequences by Watson–Crick base pairing.

Droplet digital PCR

(ddPCR). A PCR technology that uses nanolitre-sized oil–water emulsion droplets as PCR reaction vessels and quantifies concentrations of target DNA templates based on counting the number of PCR-positive droplets using a flow cytometer.

Long non-coding RNAs

(lncRNAs). Relatively long (>200 nucleotides) non-coding RNA transcripts.

MicroRNAs

(miRNAs). Small (~22 nucleotides) non-coding transcripts that are generally thought to silence gene translation through RNA interference.

Non-coding RNAs

(ncRNAs). RNA transcripts that do not code for protein.

Off-target effect

Phenotypic effects in a cell or animal that occur upon addition of a synthetic compound and that are not caused by interactions with the intended cellular target.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, M., Corey, D. Non-coding RNAs as drug targets. Nat Rev Drug Discov 16, 167–179 (2017). https://doi.org/10.1038/nrd.2016.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2016.117

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research