Pursuit of a perfect insulin

Key Points

  • Insulin therapy has been the cornerstone of diabetes treatment for nearly a century, and numerous commercial alternatives are available to control blood glucose. Nonetheless, insulin therapy remains sub-optimal, as manifested by infrequent normalization of blood glucose and the risk of experiencing dangerously low blood glucose levels.

  • Numerous novel insulin analogues and formulations are in development with the goal of further optimizing the time–action profile. Several once-weekly candidates that might minimize the requirement for daily injection in certain patients are currently in early clinical trials.

  • Alternative methods to subcutaneous injection of insulin delivery should improve the convenience of treatment and should probably lead to enhanced diabetic care, especially in patients that resist using injectable therapy despite treatment failure on oral medications. Oral and inhalable insulin formulations currently represent the most promising prospects in non-injectable delivery and constitute a priority area in the refinement of insulin therapy.

  • Substantial interest persists in the development of glucose-sensitive therapy that is responsive to real-time changes in blood glucose. Direct and indirect methods to render insulin therapy less prone to life-threatening hypoglycaemia are being aggressively pursued. Most notably, the combination of insulin and incretin therapy has delivered superior clinical results as measured by improvements in mean plasma glucose concentration (HbA1C), with fewer occurrences of hypoglycaemia and less body weight gain. Separately, advances in glucagon therapy move the field closer to achieving closed-loop insulin pump therapy.

  • Advances in insulin synthesis have stimulated a renewed interest in structural analogues that enhance pharmacodynamic properties, through tissue targeting (hepatospecific), supplemental pharmacology (insulin sensitizers) or selective action only in hyperglycaemia. Given the seminal importance of insulin as a drug we anticipate the continued pursuit of perfect insulin. Normalization of glucose control without the risk of hypoglycaemia and delivery in a patient-friendly form remain the central objectives.

Abstract

Insulin remains indispensable in the treatment of diabetes, but its use is hampered by its narrow therapeutic index. Although advances in peptide chemistry and recombinant DNA-based macromolecule synthesis have enabled the synthesis of structurally optimized insulin analogues, the growing epidemics of obesity and diabetes have emphasized the need for diabetes therapies that are more efficacious, safe and convenient. Accordingly, a broad set of drug candidates, targeting hyperglycaemia plus other disease abnormalities, is now progressing through the clinic. The development of an insulin therapy that is responsive to glucose concentration remains an ultimate goal, with initial prototypes now reaching the proof-of-concept stage. Simultaneously, the first alternatives to injectable delivery have progressed to registration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and sequences of human insulin and analogues.
Figure 2: Experimental insulin analogues.
Figure 3: Design elements of glucose responsive systems.
Figure 4: Chemical synthesis of insulin and related analogues.

References

  1. 1

    Joslin, E. P. & Kahn, C. R. Joslin's Diabetes Mellitus (Lippincott Williams & Wilkins, 2005).

    Google Scholar 

  2. 2

    Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106–110 (1979).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Keefer, L. M., Piron, M.-A. & De Meyts, P. Human insulin prepared by recombinant DNA techniques and native human insulin interact identically with insulin receptors. Proc. Natl Acad. Sci. USA 78, 1391–1395 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Johnson, I. S. Human insulin from recombinant DNA technology. Science 219, 632–637 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Lipska, K. J. et al. Use and out of pocket costs of insulin for type 2 diabetes mellitus from 2000 through 2010. JAMA 311, 2331–2333 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Hirsch, I. B. Insulin analogues. N. Engl. J. Med. 352, 174–183 (2005). An overview of insulin analogues used in treatment at the turn of the century.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Home, P. et al. Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care 37, 1499–1508 (2014). A panel of specialists provides guidelines to initiating insulin therapy in the context of recent findings and novel treatment options.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Cryer, P. Hypoglycemia in Diabetes: Pathophysiology, Prevalence, and Prevention (American Diabetes Association, 2012).

    Google Scholar 

  9. 9

    Caparrotta, T. M. & Evans, M. PEGylated insulin Lispro, (LY2605541) — a new basal insulin analogue. Diabetes Obes. Metab. 16, 388–395 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Gough, S. C. L., Harris, S., Woo, V. & Davies, M. Insulin degludec: overview of a novel ultra long-acting basal insulin. Diabetes Obes. Metab. 15, 301–309 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Edgerton, D. S. et al. Changes in glucose and fat metabolism in response to the administration of a hepato-preferential insulin analog. Diabetes 63, 3946–3954 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Glendorf, T. et al. Engineering of insulin receptor isoform-selective insulin analogues. PloS ONE 6, e20288 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Gough, S. C. et al. One-year efficacy and safety of a fixed combination of insulin degludec and liraglutide in patients with type 2 diabetes: results of a 26-week extension to a 26-week main trial. Diabetes Obes. Metab. 17, 965–973 (2015). This extended clinical study underscores the benefits of combination therapy of insulin with GLP1 analogues.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Hovorka, R. Closed-loop insulin delivery: from bench to clinical practice. Nat. Rev. Endocrinology 7, 385–395 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43, 3595–3629 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Mayer, J. P., Zhang, F. & DiMarchi, R. D. Insulin structure and function. Biopolymers 88, 687–713 (2007). This review focuses on the history of insulin chemical synthesis and the insulin structure–activity relationship.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Romans, R. G., Scott, D. A. & Fisher, A. M. Preparation of crystalline insulin. Ind. Eng. Chem. 32, 908–910 (1940).

    CAS  Article  Google Scholar 

  18. 18

    Scott, D. A. & Best, C. H. The preparation of insulin. Ind. Eng. Chem. 17, 238–240 (1925).

    CAS  Article  Google Scholar 

  19. 19

    Hallas-Møller, K. K., Jersild, M. M., Petersen, K. K. & Schlichtkrull, J. J. Zinc insulin preparations for single daily injection: Clinical studies of new preparations with prolonged action. J. Am. Med. Assoc. 150, 1667–1671 (1952).

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Hallas-Møller, K. The lente insulins. Diabetes 5, 7–14 (1956).

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Patel, H. M. & Ryman, B. E. Oral administration of insulin by encapsulation within liposomes. FEBS Letters 62, 60–63 (1976).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Best, C. The prolongation of insulin action. Ohio J. Science 37, 362–377 (1937).

    CAS  Google Scholar 

  23. 23

    Fonte, P., Araújo, F., Reis, S. & Sarmento, B. Oral insulin delivery: how far are we? J. Diabetes Sci. Technol. 7, 520–531 (2013). An overview of available delivery systems for oral insulin administration.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Santos Cavaiola, T. & Edelman, S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin. Ther. 36, 1275–1289 (2014). A recent review discussing the benefits and challenges of inhaled insulin formulations.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Clarke, S. & Foster, J. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 69, 83–93 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Alsaleh, F., Smith, F., Keady, S. & Taylor, K. Insulin pumps: from inception to the present and toward the future. J. Clin. Pharm. Ther. 35, 127–138 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 49, 481 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Sanger, F. & Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 49, 463 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Bliss, M. Rewriting medical history: Charles Best and the Banting and Best myth. J. Hist. Med. Allied Sci. 48, 253–274 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Katsoyannis, P. G., Fukuda, K., Tometsko, A., Suzuki, K. & Tilak, M. Insulin peptides. X. The synthesis of the B chain of insulin and its combination with natural or synthetis A chin to generate insulin activity. J. Am. Chem. Soc. 86, 930–932 (1964).

    CAS  Article  Google Scholar 

  31. 31

    Kung, Y.-T., Du, Y., Huang, W., Chen, C. & Ke, L. Total synthesis of crystalline bovine insulin. Sci. Sin. 14, 1710 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Marglin, B. & Merrifield, R. The synthesis of bovine insulin by the solid phase method1. J. Am. Chem. Soc. 88, 5051–5052 (1966).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Ruttenberg, M. A. Human insulin: facile synthesis by modification of porcine insulin. Science 177, 623–626 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Thim, L. et al. Secretion and processing of insulin precursors in yeast. Proc. Natl Acad. Sci. USA 83, 6766–6770 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  36. 36

    Howey, D. C., Bowsher, R. R., Brunelle, R. L. & Woodworth, J. R. [Lys (B28), Pro (B29)]-human insulin: a rapidly absorbed analogue of human insulin. Diabetes 43, 396–402 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Torlone, E. et al. Pharmacokinetics, pharmacodynamics and glucose counterregulation following subcutaneous injection of the monomeric insulin analogue [Lys (B28), Pro (B29)] in IDDM. Diabetologia 37, 713–720 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Anderson, J. H. et al. Improved mealtime treatment of diabetes mellitus using an insulin analogue. Clin. Ther. 19, 62–72 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Home, P., Lindholm, A. & Riis, A. Insulin aspart versus human insulin in the management of long-term blood glucose control in Type 1 diabetes mellitus: a randomized controlled trial. Diabet. Med. 17, 762–770 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Home, P. D., Lindholm, A., Hylleberg, B. & Round, P. Improved glycemic control with insulin aspart: a multicenter randomized double-blind crossover trial in type 1 diabetic patients. UK Insulin Aspart Study Group. Diabetes Care 21, 1904–1909 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Brange, J. et al. Monomeric insulins obtained by protein engineering and their medical implications. Nature 333, 679–682 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Becker, R. H. & Frick, A. D. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin. Pharmacokinet. 47, 7–20 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Becker, R., Frick, A., Burger, F., Potgieter, J. & Scholtz, H. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp. Clin. Endocrinol. Diabetes 113, 435–443 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Dreyer, M. et al. Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm. Metab. Res. 37, 702–707 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Owens, D. R., Matfin, G. & Monnier, L. Basal insulin analogues in the management of diabetes mellitus: what progress have we made? Diabetes Metab. Res. Rev. 30, 104–119 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Zinman, B. Newer insulin analogs: advances in basal insulin replacement. Diabetes Obes. Metab. 15, 6–10 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Oakley, W., Hill, D. & Oakley, N. Combined use of regular and crystalline protamine (NPH) insulins in the treatment of severe diabetes. Diabetes 15, 219–222 (1966).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Hilgenfeld, R. et al. Controlling insulin bioavailability by crystal contact engineering. Diabetologia 35 (Suppl.), A193 (1992).

    Google Scholar 

  49. 49

    Rosenstock, J. et al. Basal insulin therapy in type 2 diabetes 28 week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 24, 631–636 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Guthrie, R. Is there a need for a better basal insulin? Clinical Diabetes 19, 66–70 (2001).

    Article  Google Scholar 

  51. 51

    Jørgensen, S., Vaag, A., Langkjær, L., Hougaard, P. & Markussen, J. NovoSol Basal: pharmacokinetics of a novel soluble long acting insulin analogue. BMJ 299, 415–419 (1989).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Myers, S. et al. W99-S32 a soluble, basal insulin analog. Diabetologia 38 (suppl. 1), A4 (1995).

    Google Scholar 

  53. 53

    Hoeg-Jensen, T. in Peptide and Protein Design for Biopharmaceutical Applications (ed K. J., Jensen) 249–286 (Wiley, 2009).

    Google Scholar 

  54. 54

    Havelund, S. et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm. Res. 21, 1498–1504 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Hermansen, K. et al. 26 week, randomized, parallel, treat to target trial comparing insulin detemir with NPH insulin as add on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care 29, 1269–1274 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Hu, Y. et al. Short-term intensive therapy in newly diagnosed type 2 diabetes partially restores both insulin sensitivity and β cell function in subjects with long-term remission. Diabetes Care 34, 1848–1853 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Retnakaran, R. & Zinman, B. Short-term intensified insulin treatment in type 2 diabetes: long-term effects on β-cell function. Diabetes Obes. Metab. 14, 161–166 (2011).

    Article  CAS  Google Scholar 

  58. 58

    DCCT. Hypoglycemia in the diabetes control and complications trial. Diabetes 46, 271–286 (1997).

  59. 59

    Vora, J. & Heise, T. Variability of glucose cowering effect as a limiting factor in optimizing basal insulin therapy: a review. Diabetes Obes. Metab. 15, 701–712 (2013). The identification of inter-and intra-patient variability as the major issue of the current insulin therapies and establishing it as a primary consideration for future treatments.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Barag, S. H. Insulin therapy for management of type 2 diabetes mellitus: strategies for initiation and long-term patient adherence. J. Am. Osteopath. Assoc. 111, S13–S19 (2011). A discussion of the psychological barriers associated with insulin therapy.

    PubMed  PubMed Central  Google Scholar 

  61. 61

    AntriaBio. Corporation Presentation, Q1 2015. AntriaBio Inc. [online], (2015).

  62. 62

    Ascendis Pharma. TransCon Diabetes Program. Ascendis Pharma Inc [online], (2010).

  63. 63

    Sanofi-Aventis. Sanofi-Aventis acquires from Ascendis Pharma worldwide rights on drug-delivery technology in diabetes and related disorders. Sanofi [online], (2010).

  64. 64

    Hwang, S. Y. et al. Novel very long-acting insulin analog (HM12470) with potential for once-weekly dosing has a favorable PK, PD and mitogenic profile. American Diabetes Association's 74th Scientific Sessions [online], (2014).

  65. 65

    Huh, Y. et al. Use of PKPD model to design and analyze results of a euglycemic clamp study for a very long-acting insulin analogue HM12470. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  66. 66

    Arnold, S., Jowett, J. & Ballance, J. Synergistic action of PE0139, a super-long-acting basal insulin & PB1023 a weekly GLP1 receptor agonist. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  67. 67

    Jowett, J. & Woods, C. Therapeutic agents comprising insulin amino acid sequences. US Patent 20130150291 (2012).

  68. 68

    Marquez, F. et al. PE0139, the first recombinant fully human monomeric super-long-acting basal insulin to display a sustained nearly peakless insulin profile following a single subcutaneous dose in subjects with T2DM supporting weekly dosing. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  69. 69

    Novo Nordisk. Novo Nordisk Receives FDA Approval for Tresiba® (insulin degludec injection) for Adults with Type 1 and Type 2 Diabetes. Novo Nordisk [online], (2015).

  70. 70

    Hartman, M. L. et al. Liver enzyme results from 7 basal insulin peglispro (BIL) clinical trials in T1D and T2D. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  71. 71

    Rosenstock, J. et al. better glycemic control and weight loss with the novel long-acting basal insulin LY2605541 compared with insulin glargine in type 1 diabetes: a randomized, crossover study. Diabetes Care 36, 522–528 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Cobry, E. et al. Timing of meal insulin boluses to achieve optimal postprandial glycemic control in patients with type 1 diabetes. Diabetes Technol. Ther. 12, 173–177 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Shah, V. N., Shoskes, A., Tawfik, B. & Garg, S. K. Closed-loop system in the management of diabetes: past, present, and future. Diabetes Technol. Ther. 16, 477–490 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Zhang, Z., Tang, Y., Yao, S., Zhu, S. & Feng, Y. Protein engineering of insulin: two novel fast-acting insulins [B16Ala] insulin and [B26Ala] insulin. Sci. China C Life Sci. 46, 474–480 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Weiss, M. Insulin analogues with chlorinated amino acids, US Patent 9079975 (2015).

  76. 76

    Weiss, M. Halogen-stabilized insulin. US Patent 8921313 (2014).

  77. 77

    Krasner, A. et al. Safety and efficacy of ultra-rapid-acting human insulin formulation BIOD-123 in patients with type 1 diabetes. American Diabetes Association's 74th Scientific Sessions [online], (2014).

  78. 78

    Andersen, G. et al. Ultra-rapid BioChaperone insulin lispro (BC LIS): linear dose-response and faster absorption than insulin Lispro (LIS). Diabetologia 58 (Suppl 1), S449–S449 (2015).

    Google Scholar 

  79. 79

    Hua, Q.-X. et al. Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications. J. Biol. Chem. 283, 14703–14716 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Duttaroy, A. et al. Development of a long-acting insulin analog using albumin fusion technology. Diabetes 54, 251–258 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    DiMarchi, R. D. et al. Single-chain insulin agonists exhibiting high activity at the insulin receptor. US Patent 8940860 (2011).

  82. 82

    Kaur, Z. P. et al. Discovery of high potency, single-chain insulin analogs with a shortened B-chain and nonpeptide linker. ACS Chem. Biol. 8, 1822–1829 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Andersen, A. S., et al. Backbone cyclic insulin. J. Pept. Sci. 16, 473–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Stowell, M. H. & Plam, M. Chemically and thermodynamically stable insulin analogues and improved methods for their production. US Patent 9006176 (2015).

  85. 85

    Wang, Y., Shao, J., Zaro, J. L. & Shen, W.-C. Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production. Diabetes 63, 1779–1788 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Phillips, N. B., Whittaker, J., Ismail-Beigi, F. & Weiss, M. A. Insulin fibrillation and protein design: topological resistance of single-chain analogs to thermal degradation with application to a pump reservoir. J. Diabetes Sci. Technol. 6, 277–288 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Polonsky, K. S. & Rubenstein, A. H. C peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes 33, 486–494 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Eaton, R. P., Allen, R. C. & Schade, D. S. Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J. Clin. Endocrinol. Metab. 56, 1294–1300 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Meier, J. J., Veldhuis, J. D. & Butler, P. C. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes 54, 1649–1656 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Meyer, C., Woerle, H. J., Dostou, J. M., Welle, S. L. & Gerich, J. E. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 287, E1049–E1056 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Canavan, J., Flecknell, P., New, J., Alberti, K. & Home, P. The effect of portal and peripheral insulin delivery on carbohydrate and lipid metabolism in a miniature pig model of human IDDM. Diabetologia 40, 1125–1134 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Sekigami, T. et al. Comparison between closed-loop portal and peripheral venous insulin delivery systems for an artificial endocrine pancreas. J. Artif. Organs 7, 91–100 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Herring, R., Jones, R. H. & Russell-Jones, D. L. Hepatoselectivity and the evolution of insulin. Diabetes Obes. Metab. 16, 1–8 (2014). A review discussing an evolutionary reason for, and the physiological importance of, portal delivery of endogenous insulin.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Edgerton, D. S. et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116, 521–527 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Tompkins, C. V., Brandenburg, D., Jones, R. H. & Sönksen, P. H. Mechanism of action of insulin and insulin analogues. Diabetologia 20, 94–101 (1981).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Glauber, H. S. et al. In vivo deactivation of proinsulin action on glucose disposal and hepatic glucose production in normal man. Diabetes 35, 311–317 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Smeeton, F. et al. Differential effects of insulin detemir and neutral protamine hagedorn (NPH) insulin on hepatic glucose production and peripheral glucose uptake during hypoglycaemia in type 1 diabetes. Diabetologia 52, 2317–2323 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Henry, R. R. et al. Basal insulin peglispro demonstrates preferential hepatic versus peripheral action relative to insulin glargine in healthy subjects. Diabetes Care 37, 2609–2615 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Shojaee-Moradie, F. et al. Novel hepatoselective insulin analog: studies with a covalently linked thyroxyl-insulin complex in humans. Diabetes Care 23, 1124–1129 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100

    Seino, S. & Bell, G. I. Alternative splicing of human insulin receptor messenger RNA. Biochem. Biophys. Res. Commun. 159, 312–316 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Belfiore, A., Frasca, F., Pandini, G., Sciacca, L. & Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 30, 586–623 (2009). A comprehensive review pertaining to insulin receptor structure, its isoforms, interactions with a ligand and signalling pathways.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Mosthaf, L. et al. Journal 9, 2409 (1990).

    CAS  Google Scholar 

  103. 103

    Moller, D. E., Yokota, A., Caro, J. F. & Flier, J. S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol. Endocrinol. 3, 1263–1269 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Leibiger, B. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic β cells. Mol. Cell 7, 559–570 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Sara, G. V. et al. Receptor-isoform-selective insulin analogues give tissue-preferential effects. Biochem. J. 440, 301–308 (2011).

    Article  CAS  Google Scholar 

  106. 106

    Siddle, K. Signalling by insulin & IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 47, R1–R10 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Owens, D. R., Zinman, B. & Bolli, G. Alternative routes of insulin delivery. Diabet. Med. 20, 886–898 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Khafagy, E.-S., Morishita, M., Onuki, Y. & Takayama, K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv. Drug Deliv. Rev. 59, 1521–1546 (2007).

    CAS  Article  Google Scholar 

  109. 109

    Mack, G. S. Pfizer dumps Exubera. Nat. Biotechnol. 25, 1331–1332 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Iyer, H., Khedkar, A. & Verma, M. Oral insulin — a review of current status. Diabetes Obes. Metab. 12, 179–185 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Heinemann, L. Insulin pens and new ways of insulin delivery. Diabetes Technol. Ther. 16, S44–S55 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  112. 112

    Kling, J. Sanofi to propel inhalable insulin Afrezza into market. Nat. Biotechnol. 32, 851–852 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113

    Neumiller, J. & Campbell, R. K. Technosphere® Insulin. BioDrugs 24, 165–172 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114

    Rosenstock, J. et al. Prandial inhaled insulin plus basal insulin glargine versus twice daily biaspart insulin for type 2 diabetes: a multicentre randomised trial. Lancet 375, 2244–2253 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    MannKind Corporation. MannKind Corporation announces termination of license and collaboration agreement with Sanofi. MannKind Corpoartion [online], (2016).

  116. 116

    Eldor, R., Arbit, E., Corcos, A. & Kidron, M. Glucose-reducing effect of the ORMD 0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study. PloS ONE 8, e59524 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Novo Nordisk. OI338GT (NN1953) Phase II trial. Novo Nordisk [online], (2016).

  118. 118

    Novo Nordisk. Financial report for the period 1 January 2014 to 31 March 2014. Novo Nordisk Company Announcement [online], (2014).

  119. 119

    Wu, Q., Wang, L., Yu, H., Wang, J. & Chen, Z. Organization of glucose-responsive systems and their properties. Chem. Rev. 111, 7855–7875 (2011). A thorough review of glucose-responsive systems and glucose sensors.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Wu, W. & Zhou, S. Responsive materials for self-regulated insulin delivery. Macromol. Biosci 13, 1464–1477 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121

    Merck & Co., Inc. Merck to Acquire SmartCells, Inc. Merck Press Releases [online], (2010).

  122. 122

    Zion, T. C. & Lancaster, T. M. Crystalline insulin-conjugates. US Patent 8906850 (2010).

  123. 123

    Chou, D. H.-C. et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124

    Hoeg-Jensen, T., Havelund, S., Nielsen, P. K. & Markussen, J. Reversible insulin self-assembly under carbohydrate control. J. Am. Chem. Soc. 127, 6158–6159 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125

    Hoeg-Jensen, T. et al. Glucose dependent release of insulin from glucose sensing insulin derivatives. US Patent 316999 (2008).

  126. 126

    Hoeg-Jensen, T., Jakobsen, P., Sensfuss, U., Fledelius, C. & Ribel-Madsen, U. Insulin derivatives. US Patent WO2011000823 (2010).

  127. 127

    Garg, S. K. The role of basal insulin and glucagon-like peptide 1 agonists in the therapeutic management of type 2 diabetes — a comprehensive review. Diabetes Technol. Ther. 12, 11–24 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Vora, J. Combining incretin-based therapies with insulin realizing the potential in type 2 diabetes. Diabetes Care 36, S226–S232 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129

    Balena, R., Hensley, I., Miller, S. & Barnett, A. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature. Diabetes Obes. Metab. 15, 485–502 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Holst, J. & Vilsbøll, T. Combining GLP-1 receptor agonists with insulin: therapeutic rationales and clinical findings. Diabetes Obes. Metab. 15, 3–14 (2013). A review discussing the benefits of insulin and GLP1A combination therapy with early clinical examples.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131

    Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP 1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132

    Mathieu, C. et al. A comparison of adding liraglutide versus a single daily dose of insulin aspart to insulin degludec in subjects with type 2 diabetes (BEGIN: VICTOZA ADD-ON). Diabetes Obes. Metab. 16, 636–644 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133

    Rosenstock, J. et al. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: a comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. Diabetes Care 37, 2317–2325 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134

    Gough, S. One-year efficacy and safety of IDegLira in patients with type 2 diabetes. American Diabetes Association's 74th Scientific Sessions [online], (2014).

  135. 135

    Vilsbøll, T. et al. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide — regardless of etiology and phenotype. J. Clin. Endocrinol. Metab. 88, 4897–4903 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  136. 136

    Miyawaki, K. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Medicine 8, 738–742 (2002).

    CAS  Article  Google Scholar 

  137. 137

    Kim, S.-J. et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS ONE 7, e40156 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138

    Kerr, B. D. et al. Fatty acid derivatised analogues of glucose-dependent insulinotropic polypeptide with improved antihyperglycaemic and insulinotropic properties. Biochem. Pharmacol. 78, 1008–1016 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139

    Gault, V. A., Porter, D. W., Irwin, N. & Flatt, P. R. Comparison of sub-chronic metabolic effects of stable forms of naturally occurring GIP (1–30) and GIP (1–42) in high-fat fed mice. J. Endocrinol. 208, 265–271 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl Med. 5, 209ra151 (2013). An example of improved pharmacology obtained through combination of two incretin hormones.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  141. 141

    Baeshen, N. A. et al. Cell factories for insulin production. Microb. Cell Fact. 13, 141 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142

    Keasling, J. D., Mendoza, A. & Baran, P. S. Synthesis: a constructive debate. Nature 492, 188–189 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143

    Liu, F., Luo, E. Y., Flora, D. B. & Mayer, J. P. Concise synthetic routes to human insulin. Org. Lett. 15, 960–963 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Liu, F., Luo, E. Y., Flora, D. B. & Mezo, A. R. A. Synthetic route to human insulin using isoacyl peptides. Angew. Chem. Int. Ed. Engl. 53, 3983–3987 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145

    Zaykov, A. N., Mayer, J. P., Gelfanov, V. M. & DiMarchi, R. D. Chemical synthesis of insulin analogs through a novel precursor. ACS Chem. Biol. 9, 683–691 (2013).

    Article  CAS  Google Scholar 

  146. 146

    Walsh, G. Therapeutic insulins and their large-scale manufacture. Appl. Microbiol. Biotechnol. 67, 151–159 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147

    Avital-Shmilovici, M. et al. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography. J. Am. Chem. Soc. 135, 3173–3185 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148

    Sohma, Y., Hua, Q.-X., Whittaker, J., Weiss, M. A. & Kent, S. B. H. Design and folding of [GluA4(OβThrB30)]Insulin (“ester insulin”): a minimal proinsulin surrogate that can be chemically converted into human insulin. Angew. Chem. Int. Ed. Engl. 49, 5489–5493 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149

    Tofteng, A. P., Jensen, K. J., Schäffer, L. & Hoeg-Jensen, T. Total synthesis of desB30 insulin analogues by biomimetic folding of single-chain precursors. ChemBioChem 9, 2989–2996 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150

    Qiang, G. et al. Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 63, 1394–1409 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Bhaskar, V. et al. Fully human, allosteric monoclonal antibody that activates the insulin receptor and improves glycemic control. Diabetes 61, 1263–1271 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152

    Bedinger, D. H., Goldfine, I. D., Corbin, J. A., Roell, M. K. & Adams, S. H. Differential pathway coupling of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody. J. Pharmacol. Exp. Ther. 353, 35–43 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153

    Schäffer, L. et al. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks. Proc. Natl Acad. Sci. USA 100, 4435–4439 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  154. 154

    Knudsen, L. et al. Agonism and antagonism at the insulin receptor. PloS ONE 7, e51972 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155

    Jensen, M., Hansen, B., De Meyts, P., Schäffer, L. & Ursø, B. Activation of the insulin receptor by insulin and a synthetic peptide leads to divergent metabolic and mitogenic signaling and responses. J. Biol. Chem. 282, 35179–35186 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156

    Yunn, N.-O. et al. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation. Nucleic Acids Res. 43, 7688–7701 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157

    Mameli, C. et al. 7 year follow up retrospective, international, multicenter study of insulin pump therapy in children and adolescents with type 1 diabetes. Acta Diabetol. 51, 205–210 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158

    Pickup, J. C. Diabetes: insulin pump therapy for type 2 diabetes mellitus. Nat. Rev. Endocrinology 10, 647–649 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159

    Pickup, J. C. Insulin-pump therapy for type 1 diabetes mellitus. N. Engl. J. Med. 366, 1616–1624 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160

    Bouwens, L., Houbracken, I. & Mfopou, J. K. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat. Rev. Endocrinology 9, 598–606 (2013). Stem-cell technology offers a prospect of in vitro production of pancreatic β-cells and organ restoration.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161

    Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162

    Goh, S.-K. et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34, 6760–6772 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163

    Brethauer, S. A. et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann. Surg. 258, 628–636 (2013). Discussion of bariatric surgery as a potential cure for T2D.

    PubMed  PubMed Central  Article  Google Scholar 

  164. 164

    Sjöström, L. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351, 2683–2693 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  165. 165

    Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. 166

    Rodgers, R. J., Tschöp, M. H. & Wilding, J. P. Anti-obesity drugs: past, present and future. Dis. Model. Mech. 5, 621–626 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167

    Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models — association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297, E1105–E1114 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168

    Holland, W. L. et al. An FGF21 adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17, 790–797 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169

    Denroche, H. C., Huynh, F. K. & Kieffer, T. J. The role of leptin in glucose homeostasis. J. Diabetes Investig. 3, 115–129 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170

    Fani, L., Bak, S., Delhanty, P., van Rossum, E. & van den Akker, E. The melanocortin 4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int. Journal Obes. 38, 163–169 (2014).

    CAS  Article  Google Scholar 

  171. 171

    Pearson, T. L. Practical aspects of insulin pen devices. J. Diabetes Sci. Technol. 4, 522–531 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  172. 172

    Zijlstra, E., Heinemann, L. & Plum-Mörschel, L. Oral insulin reloaded a structured approach. J. Diabetes Sci. Technol. 8, 458–465 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173

    Kidron, M., Neutel, J. & Arbit, E. Preprandial oral insulin (ORMD-0801) reduces rapid-acting insulin requirements and fasting glucose levels in T1DM patients (poster). American Diabetes Association's 75th Scientific Sessions [online], (2015).

  174. 174

    Geiss, L. S., Herman, W. H. & Smith, P. J. in Diabetes in America (ed R. Aubert) 233–255 (DIANE Publishing, 1995).

    Google Scholar 

  175. 175

    Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 29, 2104–2114 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176

    Wang, F., Surh, J. & Kaur, M. Insulin degludec as an ultralong-acting basal insulin once a day: a systematic review. Diabetes Meta. Synd. Obes. 5, 191–204 (2012).

    CAS  Article  Google Scholar 

  177. 177

    Sorli, C. et al. Elderly patients with diabetes experience a lower rate of nocturnal hypoglycaemia with insulin degludec than with insulin glargine: a meta-analysis of Phase IIIa trials. Drugs Aging 30, 1009–1018 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178

    Birkeland, K. I. et al. Insulin degludec in a flexible daily dosing regimen provides similar glycaemic control without increasing rates of hypoglycaemia compared to dosing the same time daily in type 2 diabetes. Diabetologia 54 (Suppl. 1), 542 (2011).

    Google Scholar 

  179. 179

    Dorey, E. FDA dashes Novo's hopes. Nat. Biotechnol. 31, 266–266 (2013).

    CAS  Article  Google Scholar 

  180. 180

    Sinha, V. P. et al. Single-dose pharmacokinetics and glucodynamics of the novel, long-acting basal insulin LY2605541 in healthy subjects. J.Clin. Pharmacol. 54, 792–799 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181

    Bergenstal, R. M. et al. Lower glucose variability and hypoglycemia measured by continuous glucose monitoring with novel long-acting insulin LY2605541 versus insulin glargine. Diabetes Care 37, 659–665 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  182. 182

    Jacober, S. J. et al. Contrasting weight changes with LY2605541, a novel long-acting insulin, and insulin glargine despite similar improved glycaemic control in T1DM and T2DM. Diabetes Obes. Metab. 16, 351–356 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. 183

    Wigley, F. M., Londono, J. H., Wood, S. H., Shipp, J. C. & Waldman, R. H. Insulin across respiratory mucosae by aerosol delivery. Diabetes 20, 552–556 (1971).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184

    Eli Lilly and Company. Lilly Ends Basal Insulin Peglispro Development Program. Lilly Investor Press Release [online], (2014).

  185. 185

    Buse, J. B. et al. Superior HbA1c reduction with basal insulin peglispro (BIL) versus insulin glargine (GL) alone or with oral antihyperglycemic medications (OAMs) in T2D patients (Pts) previously treated with basal insulin: IMAGINE 5. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  186. 186

    Blevins, T. et al. Superior HbA1c reduction with basal insulin peglispro (BIL) versus insulin glargine (GL) and preprandial insulin lispro in a double-blind study in patients (pts) with type 2 diabetes (T2D): IMAGINE 4. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  187. 187

    Bergenstal, R. M. et al. Superior reduction of HbA1c in a double-blind, randomized study of basal insulin peglispro (BIL) versus insulin glargine (GL) in patients (pts) with T1D: IMAGINE 3. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  188. 188

    Hansen, R. et al. LY2605541: leveraging hydrodynamic size to develop a novel basal insulin. Diabetes 61, A228 (2012).

    Google Scholar 

  189. 189

    Zijlstra, E. et al. Dance 501 inhaled human insulin has a dose-linear response and similar within-subject variability as rapid-acting insulin lispro. American Diabetes Association's 75th Scientific Sessions [online], (2015).

  190. 190

    Smith, N. B. et al. Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs. Ultrasound Med. Biol. 29, 311–317 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  191. 191

    Transdermal Specialties Inc. The U-Strip — Insulin Patch. Transdermal Specialties [online], (2015).

  192. 192

    Gough, S. C. L. et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a Phase 3, open-label, randomised, 26 week, treat to target trial in insulin-naive patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2, 885–893 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193

    Rosenstock, J. et al. Improved glucose control without increased hypoglycemia risk at any level of HbA1c reduction with insulin glargine/lixisenatide fixed-ratio combination (LixiLan) versus insulin glargine alone both added on to metformin in type 2 diabetes (T2DM). American Diabetes Association's 75th Scientific Sessions [online], (2015).

  194. 194

    Sanofi. FDA accepts Sanofi new drug application for once-daily fixed-ratio combination of insulin glargine and lixisenatide. Sanofi [online], (2016).

  195. 195

    Onishi, Y., Ono, Y., Rabøl, R., Endahl, L. & Nakamura, S. Superior glycaemic control with once-daily insulin degludec/insulin aspart versus insulin glargine in Japanese adults with type 2 diabetes inadequately controlled with oral drugs: a randomized, controlled phase 3 trial. Diabetes Obes. Metab. 15, 826–832 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196

    Fulcher, G. R. et al. Comparison of insulin degludec/insulin aspart and biphasic insulin aspart 30 in uncontrolled, insulin-treated type 2 diabetes: a phase 3a, randomized, treat to target trial. Diabetes Care 37, 2084–2090 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  197. 197

    Hirsch, I. B. et al. Insulin degludec/insulin aspart administered once daily at any meal, with insulin aspart at other meals versus a standard basal-bolus regimen in patients with type 1 diabetes. A 26 week, phase 3, randomized, open-label, treat to target trial. Diabetes Care 35, 2174–2181 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this review to the memory of Ronald Chance. They are also thankful for all the guidance provided to them over the years by multiple international authorities in the biology and chemistry of insulin, specifically J. Amatruda, J. Caro, P. Cryer, B. Frank, J. Galloway, V. Gelfanov, S. Kent, R. Kahn, D. Kelly, P. Li, F. Liu, D. Perez-Tilve, S. Taylor, M. Tschoep, L. Vignati, M. Weiss and R. Whitcomb.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Alexander N. Zaykov or Richard D. DiMarchi.

Ethics declarations

Competing interests

R.D.D. is a founder and Chief Scientific Officer of Calibrium LLC. J.P.M. is employee and shareholder of Calibrium LLC. A.N.Z. is a consultant and shareholder of Calibrium LLC.

Related links

FURTHER INFORMATION

RCSB Protein Data Bank
3INS

PowerPoint slides

Glossary

Diabetes mellitus

A metabolic disease associated with elevated levels of glucose that results from pancreatic insufficiency in insulin production and/or reduced target-tissue insulin sensitivity. Type 1 or juvenile diabetes is caused by immunological destruction of insulin-producing pancreatic β-cells. Type 2 or adult-onset diabetes is a progressive condition characterized by insulin resistance and is often associated with obesity.

Insulin analogues

Compounds derived from insulin that has been altered in its structure for the primary purpose of enhanced pharmaceutics or pharmacology. The two main types of insulin analogues are basal or sustained-action analogues, which are used for daytime and night time glucose control, and bolus or rapid-acting analogues, which are used for mealtime glucose control and pump administration.

Subcutaneous delivery

The drug is delivered through injection to the subcutis, the layer of tissue located immediately beneath the skin layer. It remains the most common method of insulin administration.

Extended time–action profile

Characteristic of long-acting insulin analogues, which produce relatively stable insulin levels for 12–24 hours after injection. These analogues are sometimes referred to as 'peakless' insulins by virtue of their flat pharmacokinetic profiles.

Therapeutic index

The ratio between the dose of the drug that causes an adverse effect relative to the therapeutic dose. Insulin has an inherently low therapeutic index. This represents a persistent risk for overdosing that can result in life-threatening hypoglycaemia.

Incretin hormone

A gut-derived peptide hormone that stimulates insulin secretion after food consumption. Additional functions of incretin hormones include inhibition of glucagon secretion, restriction of gastric motility and appetite suppression. The two most prominent physiological hormones within this class are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1).

Single-chain insulin

(SCI). An insulin analogue or its precursor in which the two individual peptide chains (A and B) are covalently connected. The two chains can be linked by a connecting sequence (such as the proinsulin C-peptide), synthetic linker or fused directly through an amide bond.

β-cells

Functional endocrine cells that are located in pancreatic islets and are responsible for biosynthesis, storage and secretion of insulin under glucose control.

Gastric bypass surgery

A bariatric procedure that surgically reduces the size of the stomach. This restricts the quantity of absorbed nutrients and alters local hormone production and action to collectively achieve body weight reduction.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaykov, A., Mayer, J. & DiMarchi, R. Pursuit of a perfect insulin. Nat Rev Drug Discov 15, 425–439 (2016). https://doi.org/10.1038/nrd.2015.36

Download citation

Further reading