Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Evolution of strategies to improve preclinical cardiac safety testing

Abstract

The early and efficient assessment of cardiac safety liabilities is essential to confidently advance novel drug candidates. This article discusses evolving mechanistically based preclinical strategies for detecting drug-induced electrophysiological and structural cardiotoxicity using in vitro human ion channel assays, human-based in silico reconstructions and human stem cell-derived cardiomyocytes. These strategies represent a paradigm shift from current approaches, which rely on simplistic in vitro assays that measure blockade of the Kv11.1 current (also known as the hERG current or IKr) and on the use of non-human cells or tissues. These new strategies have the potential to improve sensitivity and specificity in the early detection of genuine cardiotoxicity risks, thereby reducing the likelihood of mistakenly discarding viable drug candidates and speeding the progression of worthy drugs into clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Link between delayed repolarization and torsades de pointes proarrhythmia.
Figure 2: Ionic basis for ventricular repolarization and drug-induced proarrhythmia.
Figure 3: Role of delayed repolarization and multi-channel blockade in defining proarrhythmic risk.
Figure 4: Elements of the Comprehensive in vitro Proarrhythmia Assay.
Figure 5: Electrophysiological approaches for evaluating proarrhythmia with human stem cell-derived cardiomyocytes.

Similar content being viewed by others

References

  1. Dessertenne, F. La tachycardie ventriculaire a deux foyers opposes variables. Arch. Mal. Coeur Vaiss. 59, 263–272 (in French) (1966).

    CAS  PubMed  Google Scholar 

  2. Fabiato, A. & Coumel, P. Torsades de pointes, a quarter of a century later: a tribute to Dr. F. Dessertenne. Cardiovasc. Drugs. Ther. 5, 167–169 (1991).

    CAS  PubMed  Google Scholar 

  3. Kannankeril, P., Roden, D. M. & Darbar, D. Drug-induced long QT syndrome. Pharmacol. Rev. 62, 760–781 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Roden, D. M. Cellular basis of drug-induced torsades de pointes. Br. J. Pharm. 154, 1502–1507 (2008).

    CAS  Google Scholar 

  5. Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    CAS  PubMed  Google Scholar 

  6. Sanguinetti, M. C. HERG1 channelopathies. Pflugers Arch. 460, 265–276 (2010).

    CAS  PubMed  Google Scholar 

  7. Rampe, D. & Brown, A. M. A history of the role of the hERG channel in cardiac risk assessment. J. Pharmacol. Toxicol. Methods. 68, 13–22 (2013).

    CAS  PubMed  Google Scholar 

  8. Vandenberg, J. I. et al. hERG K+ channels: structure, function, and clinical significance. Physiol. Rev. 92, 1393–1478 (2012).

    CAS  PubMed  Google Scholar 

  9. Hasinoff, B. B. & Patel, D. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol. Appl. Pharmacol. 249, 132–139 (2010).

    CAS  PubMed  Google Scholar 

  10. Cheng, H. & Force, T. Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog. Cardiovasc. Dis. 53, 114–120 (2010).

    CAS  PubMed  Google Scholar 

  11. Greineder, C. F., Kohnstamm, S. & Ky, B. Heart failure associated with sunitinib: lessons learned from animal models. Curr. Hypertens. Rep. 13, 436–441 (2011).

    CAS  PubMed  Google Scholar 

  12. Cross, M. J. et al. Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury. Br. J. Pharmacol. 172, 957–974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chi, K. R. Revolution dawning in cardiotoxicity testing. Nat. Rev. Drug Discov. 12, 565–567 (2013).

    CAS  PubMed  Google Scholar 

  14. Sager, P. T., Gintant, G., Turner, R., Pettit, S. & Stockbridge, N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167, 292–300 (2014).

    PubMed  Google Scholar 

  15. Stockbridge, N., Morganroth, J., Shah, R. R. & Garnett, C. Dealing with global safety issues: was the response to QT-liability of non-cardiac drugs well coordinated? Drug Saf. 36, 167–182 (2013).

    PubMed  Google Scholar 

  16. Committee for Propprietary Medicinal Products. Points to consider: the assessment of the potential for QT interval prolongation by non-cardiovsacular medicinal products. FDA [online], (1997).

  17. Woosley, R. L., Chen, Y., Freiman, J. P. & Gillis, R. A. Mechanism of the cardiotoxic actions of terfenadine. JAMA 269, 1532–1536 (1993).

    CAS  PubMed  Google Scholar 

  18. Spector, P. S., Curran, M. E., Keating, M. T. & Sanguinetti, M. C. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ. Res. 78, 499–503 (1996).

    CAS  PubMed  Google Scholar 

  19. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 80, 795–803 (1995).

    CAS  PubMed  Google Scholar 

  20. U.S. Department of Health and Human Services. The non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval Prolongation) by human pharmaceuticals S7B. FDA [online], (2005).

  21. U.S. Department of Health and Human Services. E14: the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. FDA [online], (2005).

  22. Cavero, I. Safety Pharmacology Society: 8th annual meeting. Expert Opin. Drug Saf. 8, 237–247 (2009).

    PubMed  Google Scholar 

  23. Lindgren, S. et al. Benchmarking safety pharmacology regulatory packages and best practice. J. Pharmacol. Toxicol. Methods. 58, 99–109 (2008).

    CAS  PubMed  Google Scholar 

  24. Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11, 909–922 (2012).

    CAS  PubMed  Google Scholar 

  25. De Ponti, F. in Antitargets: Prediction and Prevention of Drug Side Effects (eds Vaz, R. J. & Klabunde, T.) 55–88 (Wiley-VCH, 2008).

    Google Scholar 

  26. Gintant, G. An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol. Ther. 129, 109–119 (2011).

    CAS  PubMed  Google Scholar 

  27. Kramer, J. et al. Mice models: superior to the HERG model in predicting torsade de pointes. Nat. Sci. Rep. 3, 2100 (2013).

    Google Scholar 

  28. Lacerda, A. E. et al. Alfuzosin delays cardiac repolarization by a novel mechanism. J. Pharmacol. Exp. Ther. 324, 427–433 (2008).

    CAS  PubMed  Google Scholar 

  29. Tzeis, S. & Andrikopoulos, G. Antiarrhythmic properties of ranolazine — from bench to bedside. Expert Opin. Investig. Drugs 21, 1733–1741 (2012).

    CAS  PubMed  Google Scholar 

  30. Mirams, G. R. et al. Prediction of thorough QT study results using action potential simulations based on ion channel screens. J. Pharmacol. Toxicol. Methods. 70, 246–254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Roden, D. M. Taking the 'idio' out of 'idiosyncratic': predicting torsades de pointes. Pacing Clin. Electrophysiol. 21, 1029–1034 (1998).

    CAS  PubMed  Google Scholar 

  32. Varró, A. & Baczkó, I. Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. Br. J. Pharmacol. 164, 14–36 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Bril, A. et al. Combined potassium and calcium channel blocking activities as the basis for antiarrhythmic properties with low proarrhythmic risk: experimental antiarrhythmic effect of BRL-32872. J. Pharmacol. Exp. Ther. 276, 637–646 (1996).

    CAS  PubMed  Google Scholar 

  34. Martin, R. L. et al. The utility of hERG and repolarization assays in evaluating delayed cardiac repolarization: influence of multi-channel block. J. Cardiovasc. Pharmacol. 43, 369–379 (2004).

    CAS  PubMed  Google Scholar 

  35. Zhang, S., Zhou, Z., Gong, Q., Makielski, J. C. & January, C. T. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ. Res. 84, 989–998 (1999).

    CAS  PubMed  Google Scholar 

  36. Sager, P. T. Key clinical considerations for demonstrating the utility of preclinical models to predict clinical drug-induced torsades de pointes. Br. J. Pharmacol. 154, 1544–1549 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, L. et al. Reduction of repolarization reserve unmasks the proarrhythmic role of endogenous late Na+ current in the heart. Am. J. Physiol. Heart Circ. Physiol. 297, H1048–H1057 (2009).

    CAS  PubMed  Google Scholar 

  38. Janse, M. J. et al. Repolarization gradients in the intact heart: transmural or apico-basal? Prog. Biophys. Mol. Biol. 109, 6–15 (2012).

    PubMed  Google Scholar 

  39. Sadrieh, A. et al. Quantifying the origins of population variability in cardiac electrical activity through sensitivity analysis of the electrocardiogram. J. Physiol. 591, 4207–4222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Vijayakumar, R. et al. Electrophysiologic substrate in congenital long QT syndrome: noninvasive mapping with electrocardiographic imaging (ECGI). Circulation 130, 1936–1943 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Redfern, W. S. et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58, 32–45 (2003).

    CAS  PubMed  Google Scholar 

  42. Wallis, R. M. Integrated risk assessment and predictive value to humans of non-clinical repolarization assays. Br. J. Pharmacol. 159, 115–121 (2010).

    CAS  PubMed  Google Scholar 

  43. Deeks, J. J. & Altman, D. G. Diagnostic tests 4: likelihood ratios. BMJ 329, 168–169 (2004).

    PubMed  PubMed Central  Google Scholar 

  44. O'Hara, T. & Rudy, Y. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. Am. J. Physiol. Heart Circ. Physiol. 302, H1023–H1030 (2012).

    CAS  PubMed  Google Scholar 

  45. Husti, Z. et al. Combined inhibition of key potassium currents has different effects on cardiac repolarization reserve and arrhythmia susceptibility in dogs and rabbits. Can. J. Physiol. Pharmacol. 4, 1–10 (2015).

    Google Scholar 

  46. Lu, H. R., Mariën, R., Saels, A. & De Clerck, F. Species plays an important role in drug-induced prolongation of action potential duration and early afterdepolarizations in isolated Purkinje fibers. J. Cardiovasc. Electrophysiol. 12, 93–102 (2001).

    CAS  PubMed  Google Scholar 

  47. Wu, Y., Carlsson, L., Liu, T., Kowey, P. R. & Yan, G. X. Assessment of the proarrhythmic potential of the novel antiarrhythmic agent AZD7009 and dofetilide in experimental models of torsades de pointes. J. Cardiovasc. Electrophysiol. 16, 898–904 (2005).

    PubMed  Google Scholar 

  48. Liu, T. et al. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm 3, 948–956 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. Chen, X., Cordes, J. S., Bradley, J. A., Sun, Z. & Zhou, J. Use of arterially perfused rabbit ventricular wedge in predicting arrhythmogenic potentials of drugs. J. Toxicol. Methods 54, 261–272 (2006).

    CAS  Google Scholar 

  50. Hondeghem, L. M., Carlsson, L. & Duker, G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 103, 2004–2013 (2001).

    CAS  PubMed  Google Scholar 

  51. Hondeghem, L. M. & Hoffmann, P. Blinded test in isolated female rabbit heart reliably identifies action potential duration prolongation and proarrhythmic drugs: importance of triangulation, reverse use dependence, and instability. J. Cardiovasc. Pharmacol. 41, 14–24 (2003).

    CAS  PubMed  Google Scholar 

  52. Lawrence, C. L., Bridgland-Taylor, M. H., Pollard, C. E., Hammond, T. G. & Valentin, J. P. A rabbit Langendorff heart proarrhythmia model: predictive value for clinical identification of torsades de pointes. Br. J. Pharmacol. 149, 845–860 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jost, N. et al. Ionic mechanisms limiting cardiac repolarization-reserve in humans compared to dogs. J. Physiol. 591, 4189–4206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chain, A. S. et al. Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation. Br. J. Clin. Pharmacol. 76, 708–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vos, M. A., van Opstal, J. M., Leunissen, J. D. & Verduyn, S. C. Electrophysiologic parameters and predisposing factors in the generation of drug-induced torsade de pointes arrhythmias. Pharmacol. Ther. 92, 109–122 (2001).

    CAS  PubMed  Google Scholar 

  56. Sato, T., Hirao, K. & Hiejima, K. The relationship between early afterdepolarization and the occurrence of torsades de pointes — an in vivo canine model study. Jpn Circ. J. 57, 543–552 (1993).

    CAS  PubMed  Google Scholar 

  57. Vos, M. A., Verduyn, S. C., Gorgels, A. P., Lipcsei, G. C. & Wellens, H. J. Reproducible induction of early after depolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation 91, 864–872 (1995).

    CAS  PubMed  Google Scholar 

  58. Roden, D. M. Early after-depolarizations and torsade de pointes: implications for the control of cardiac arrhythmias by prolonging repolarization. Eur Heart J. 14(Suppl. H), 56–61 (1993).

    PubMed  Google Scholar 

  59. Poelzing, S. & Rosenbaum, D. S. Cellular mechanisms of torsade de pointes. Novartis Found. Symp. 266, 204–217 (2005).

    CAS  PubMed  Google Scholar 

  60. Huffaker, R. B., Weiss, J. N. & Kogan, B. Effects of early afterdepolarizations on reentry in cardiac tissue: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 292, H3089–H3102 (2007).

    CAS  PubMed  Google Scholar 

  61. Vandersickel, N. et al. A study of early afterdepolarizations in a model for human ventricular tissue. PLoS ONE 9, e84595 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Starmer, C. F. Characterizing EAD Likelihood with a safety factor or the proarrhythmic potential of slowed repolarization and early afterdepolarizations (EADs). itlab [online], (2005).

    Google Scholar 

  63. Viswanathan, P. C. & Rudy, Y. Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc. Res. 42, 530–542 (1999).

    CAS  PubMed  Google Scholar 

  64. Qu, Z. et al. Early afterdepolarizations in cardiac myocytes: beyond reduced repolarization reserve. Cardiovasc. Res. 99, 6–15 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chi, K. R. Revolution dawning in cardiotoxicity testing. Nat. Rev. Drug Discov. 12, 565–567 (2013).

    CAS  PubMed  Google Scholar 

  66. Sager, P. T., Gintant, G., Turner, J. R., Pettit, S. & Stockbridge, N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167, 292–300 (2014).

    PubMed  Google Scholar 

  67. Farre, C. & Fertig, N. HTS techniques for patch clamp-based ion channel screening — advances and economy. Expert Opin. Drug Discov. 7, 515–524 (2012).

    CAS  PubMed  Google Scholar 

  68. Corrias, A. et al. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. Philos. Trans. A Math. Phys. Eng. Sci. 368, 3001–3025 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Romero, L., Trenor, B., Yang, P. C., Saiz, J. & Clancy, C. E. In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. J. Mol. Cell Cardiol. 72, 126–137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Veroli, D. I. et al. hERG inhibitors with similar potency but different binding kinetics do not pose the same proarrhythmic risk: implications for drug safety assessment. J. Cardiovasc. Electrophysiol. 25, 197–207 (2014).

    Google Scholar 

  71. Polak, S., Wis´niowska, B. & Brandys, J. Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs' cardiotoxic properties. J. Appl. Toxicol. 29, 183–206 (2009).

    CAS  PubMed  Google Scholar 

  72. Danker, T. & Möller, C. Early identification of hERG liability in drug discovery programs by automated patch clamp. Front. Pharmacol. 5, 203 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Brimecombe, J. C., Kirsch, G. E. & Brown, A. M. Test article concentrations in the hERG assay: losses through the perfusion, solubility and stability. J. Pharmacol. Toxicol. Methods 59, 29–34 (2009).

    CAS  PubMed  Google Scholar 

  74. Kirsch, G. E. et al. Variability in the measurement of hERG potassium channel inhibition: effects of temperature and stimulus pattern. J. Pharmacol. Toxicol. Methods 50, 93–101 (2004).

    CAS  PubMed  Google Scholar 

  75. Milnes, J. T., Witchel, H. J., Leaney, J. L., Leishman, D. J. & Hancox, J. C. Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37 °C: cisapride versus dofetilide. J. Pharmacol. Toxicol. Methods 61, 178–191 (2010).

    CAS  PubMed  Google Scholar 

  76. Margulis, M. et al. Protein binding-dependent decreases in hERG channel blocker potency assessed by whole-cell voltage clamp in serum. J. Cardiovasc. Pharmacol. 55, 368–376 (2010).

    CAS  PubMed  Google Scholar 

  77. ten Tusscher, K. H., Noble, D., Noble, P. J. & Panfilov, A. V. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004).

    CAS  PubMed  Google Scholar 

  78. O'Hara, T., Virág, L., Varró, A. & Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7, e1002061 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zemzemi, N. et al. Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. Br. J. Pharmacol. 168, 718–733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Okada, J. et al. Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator. Sci. Adv. 1, e1400142 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Mirams, G. R., Davies, M. R., Cui, Y., Kohl, P. & Noble, D. Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. Br. J. Pharmacol. 167, 932–945 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Elshrif, M. M. & Cherry, E. M. A quantitative comparison of the behavior of human ventricular cardiac electrophysiology models in tissue. PLoS ONE 9, e84401 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Sarkar, A. X. & Sobie, E. A. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Comput. Biol. 6, e1000914 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Sarker, A. X. & Sobie, E. A. Quantification of repolarization reserve to understand interpatient variability in the response to pro-arrhythmic drugs: a computational analysis. Heart Rhythm 8, 1749–1755 (2011).

    Google Scholar 

  85. Groenendaal, W. et al. Cell-specific cardiac electrophysiology models. PLoS Comput. Biol. 11, e1004242 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Beattie, K. A. et al. Evaluation of an in silico cardiac safety assay: using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. J. Pharmacol. Toxicol. Methods 68, 88–96 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mirams, G. R. et al. Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk. Cardiovasc. Res. 91, 53–61 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Romero, L., Pueyo, E., Fink, M. & Rodríguez, B. Impact of ionic current variability on human ventricular cellular electrophysiology. Am. J. Physiol. Heart Circ. Physiol. 297, H1436–H1445 (2009).

    CAS  PubMed  Google Scholar 

  89. Di Veroli, G. Y., Davies, M. R., Zhang, H., Abi-Gerges, N. & Boyett, M. R. High-throughput screening of drug-binding dynamics to HERG improves early drug safety assessment. Am. J. Physiol. Heart Circ. Physiol. 304, H104–H117 (2013).

    CAS  PubMed  Google Scholar 

  90. Moreno, J. D. et al. Ranolazine for congenital and acquired late INa-linked arrhythmias: in silico pharmacological screening. Circ. Res. 113, e50–e61 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Trenor, B. et al. In silico assessment of drug safety in human heart applied to late sodium current blockers. Channels (Austin) 7, 249–262 (2013).

    CAS  Google Scholar 

  92. Chang, M. G. et al. Dynamics of early afterdepolarization-mediated triggered activity in cardiac monolayers. Biophys. J. 102, 2706–2714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Qu, Y., Gao, B., Fang, M. & Vargas, H. M. Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J. Pharmacol. Toxicol. Methods. 68, 74–81 (2013).

    CAS  PubMed  Google Scholar 

  94. Wagner, S., Maier, L. S. & Bers, D. M. Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ. Res. 116, 1956–1970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Heijman, J. et al. Determinants of beat-to-beat variability of repolarization duration in the canine ventricular myocyte: a computational analysis. PLoS Comput. Biol. 9, e1003202 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Christophe, B. Simulation of early after-depolarization in non-failing human ventricular myocytes: can this help cardiac safety pharmacology? Pharmacol. Rep. 365, 1281–1293 (2013).

    Google Scholar 

  97. Grskovic, M., Javaherian, A., Strulovici, B. & Daley, G. Q. Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nat. Rev. Drug Discov. 10, 915–929 (2011).

    CAS  PubMed  Google Scholar 

  98. Dick, E., Rajamohan, D., Ronksley, J. & Denning, C. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem. Soc. Trans. 38, 1037–1045 (2010).

    CAS  PubMed  Google Scholar 

  99. Matsa, E. & Denning, C. In vitro uses of human pluripotent stem cell-derived cardiomyocytes. J. Cardiovasc. Transl. Res. 5, 581–592 (2012).

    PubMed  Google Scholar 

  100. Rajamohan, D. et al. Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays 35, 281–298 (2013).

    CAS  PubMed  Google Scholar 

  101. Hoekstra, M., Mummery, C. L., Wilde, A. A., Bezzina, C. R. & Verkerk, A. O. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front. Physiol. 3, 346 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Jeong, E. M. et al. Metabolic stress, reactive oxygen species, and arrhythmia. J. Mol. Cell. Cardiol. 52, 454–463 (2012).

    CAS  PubMed  Google Scholar 

  103. Karagueuzian, H. S., Nguyen, T. P., Qu, Z. & Weiss, J. N. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias. Front. Physiol. 4, 19 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Hille, B., Dickson, E., Kruse, M. & Falkenburger, B. Dynamic metabolic control of an ion channel. Prog. Mol. Biol. Transl. Sci. 123, 219–247 (2014).

    CAS  PubMed  Google Scholar 

  105. Heath, B. M. & Terrar, D. A. Protein kinase C enhances the rapidly activating delayed rectifier potassium current, IKr, through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J. Physiol. 522, 391–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Cockerill, S. L. et al. Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits. J. Physiol. 581, 479–493 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mewe, M. et al. Modulation of cardiac ERG1 K+ channels by cGMP signaling. J. Mol. Cell. Cardiol. 49, 48–57 (2010).

    CAS  PubMed  Google Scholar 

  108. Yang, T. et al. Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current. Circulation 130, 224–234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ballou, L. M., Lin, R. Z. & Cohen, I. S. Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels. Circ. Res. 16, 127–137 (2015).

    Google Scholar 

  110. Kraushaar, U. et al. Cardiac safety pharmacology: from human ether-a-gogo related gene channel block towards induced pluripotent stem cell based disease models. Expert Opin. Drug Saf. 11, 285–298 (2012).

    CAS  PubMed  Google Scholar 

  111. Scott, C. W., Peters, M. F. & Dragan, Y. P. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol. Lett. 219, 49–58 (2013).

    CAS  PubMed  Google Scholar 

  112. Scheel, O. et al. Action potential characterization of human induced pluripotent stem cell-derived cardiomyocytes using automated patch-clamp technology. Assay Drug Dev. Technol. 12, 457–469 (2014).

    CAS  PubMed  Google Scholar 

  113. Nakamura, Y. et al. Assessment of testing methods for drug-induced repolarization delay and arrhythmias in an iPS cell-derived cardiomyocyte sheet: multi-site validation study. J. Pharmacol. Sci. 124, 494–501 (2014).

    CAS  PubMed  Google Scholar 

  114. Sekino, Y., Sato, K., Kanda, Y. & Ishida, S. Developing and standardizing experimental protocols using human iPS-derived cells to predict adverse drug reactions in pre-clinical safety studies. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 131, 25–34 (in Japanese) (2013).

    CAS  Google Scholar 

  115. Gorospe, G., Younes, L., Tung, L. & Vidal, R. A metamorphosis distance for embryonic cardiac action potential interpolation and classification. Med. Image Comput. Comput. Assist. Interv. 16, 469–476 (2013).

    PubMed  Google Scholar 

  116. Ivashchenko, C. Y. et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am. J. Physiol. Heart Circ. Physiol. 305, H913–H922 (2013).

    CAS  PubMed  Google Scholar 

  117. Sheehy, S. P. et al. Quality metrics for stem cell-derived cardiac myocytes. Stem Cell Reports 2, 282–294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006–H2017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Honda, M., Kiyokawa, J., Tabo, M. & Inoue, T. Electrophysiological characterization of cardiomyocytes derived from human induced pluripotent stem cells. J. Pharmacol. Sci. 117, 149–159 (2011).

    CAS  PubMed  Google Scholar 

  120. Jonsson, M. K. et al. Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol. Cell. Cardiol. 52, 998–1008 (2012).

    CAS  PubMed  Google Scholar 

  121. van den Heuvel, N. H., van Veen, T. A., Lim, B. & Jonsson, M. K. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. J. Mol. Cell. Cardiol. 67, 12–25 (2013).

    PubMed  Google Scholar 

  122. Peng, S., Lacerda, A. E., Kirsch, G. E., Brown, A. M. & Bruening-Wright, A. The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes. J. Pharmacol. Toxicol. Methods 61, 277–286 (2010).

    CAS  PubMed  Google Scholar 

  123. Qu, Y., Gao, B., Fang, M. & Vargas, H. M. Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J. Pharmacol. Toxicol. Methods 68, 74–81 (2013).

    CAS  PubMed  Google Scholar 

  124. Gibson, J. K., Yue, Y., Bronson, J., Palmer, C. & Numann, R. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J. Pharmacol. Toxicol. Methods 70, 255–267 (2014).

    CAS  PubMed  Google Scholar 

  125. Harris, K. et al. Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicol. Sci. 134, 412–426 (2013).

    CAS  PubMed  Google Scholar 

  126. Navarrete, E. G. et al. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128, S3–S13 (2013).

    CAS  PubMed  Google Scholar 

  127. Clements, M. & Thomas, N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol. Sci. 140, 445–461 (2014).

    CAS  PubMed  Google Scholar 

  128. Hirt, M. N. et al. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J. Mol. Cell. Cardiol. 74, 151–161 (2014).

    CAS  PubMed  Google Scholar 

  129. Novakovic, G. V., Eschenhagen, T. & Mummery, C. Myocardial tissue engineering: in vitro models. Cold Spring Harb. Perspect. Med. 4, a014076 (2014).

    Google Scholar 

  130. Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991–2002 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ribeiro, M. C. et al. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro — correlation between contraction force and electrophysiology. Biomaterials 51, 138–150 (2015).

    CAS  PubMed  Google Scholar 

  132. Kuryshev, Y. A. et al. Pentamidine-induced long QT syndrome and block of hERG trafficking. J Pharmacol Exp Ther. 312, 316–323 (2005).

    CAS  PubMed  Google Scholar 

  133. Tanaka, H. et al. Effect of terfenadine and pentamidine on the HERG channel and its intracellular trafficking: combined analysis with automated voltage clamp and confocal microscopy. Biol. Pharm. Bull. 37, 1826–1830 (2014).

    CAS  PubMed  Google Scholar 

  134. Davis, R. P. et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 125, 3079–3091 (2012).

    PubMed  Google Scholar 

  135. Liang, P. et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677–1691 (2013).

    CAS  PubMed  Google Scholar 

  136. Horackova, M. Excitation−contraction coupling in isolated adult ventricular myocytes from the rat, dog, and rabbit: effects of various inotropic interventions in the presence of ryanodine. Can. J. Physiol. Pharmacol. 64, 1473–1483 (1986).

    CAS  PubMed  Google Scholar 

  137. Bers, D. M., Bassani, J. W. M. & Bassani, R. A. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann. NY Acad. Sci. 779, 430–442 (1996).

    CAS  PubMed  Google Scholar 

  138. Milani-Nejad, N. & Janssen, P. M. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol. Ther. 141, 235–249 (2014).

    CAS  PubMed  Google Scholar 

  139. Lee, Y. K. et al. Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev. 7, 976–986 (2011).

    CAS  PubMed Central  Google Scholar 

  140. Lieu, D. K. et al. Absence of transverse tubules contributes to non-uniform Ca2+ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev. 18, 1493–1500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, G. Q., Wei, H., Lu, J., Wong, P. & Shim, W. Identification and characterization of calcium sparks in cardiomyocytes derived from human induced pluripotent stem cells. PLoS ONE 8, e55266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rodriguez, M. L. et al. Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J. Biomech. Eng. 136, 0510051–0510010 (2014).

    PubMed Central  Google Scholar 

  143. Li, S., Chen, G. & Li, R. A. Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J. Physiol. 591, 5279–5290 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, S., Cheng, H., Tomaselli, G. F. & Li, R. A. Mechanistic basis of excitation−contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: direct evidence of functional Ca2+-induced-Ca2+-release. Heart Rhythm 11, 133–140 (2013).

    PubMed  Google Scholar 

  145. Blazeski, A. et al. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. Prog. Biophys. Mol. Biol. 110, 178–195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sedan, O. K. & Binah, O. in Regenerating the Heart (eds Cohen, I. S. & Gaudette, G. R.) 37–52 (Humana Press, 2011).

    Google Scholar 

  147. Robertson, C., Tran, D. D. & George, S. C. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–837 (2013).

    CAS  PubMed  Google Scholar 

  148. Binah, O. et al. Functional and developmental properties of human embryonic stem cell-derived cardiomyocytes. J. Electrocardiol. 40, S192–S196 (2007).

    PubMed  Google Scholar 

  149. Germanguz, I. et al. Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. J. Cell. Mol. Med. 15, 38–51 (2011).

    CAS  PubMed  Google Scholar 

  150. Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Rao, C. et al. The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 34, 2399–2411 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Xi, J. et al. Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J. 24, 2739–2751 (2010).

    CAS  PubMed  Google Scholar 

  154. Pillekamp, F. et al. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy. Stem Cells Dev. 10, 2111–2121 (2012).

    Google Scholar 

  155. Montaigne, D., Hurt, C. & Neviere, R. Mitochondria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies. Biochem. Res. Int. 951539 (2012).

  156. Mellor, H. R., Bell, A. R., Valentin, J. P. & Roberts, R. R. Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol. Sci. 120, 14–32 (2011).

    CAS  PubMed  Google Scholar 

  157. O'Brien, P. J. et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch. Toxicol. 89, 580–604 (2006).

    Google Scholar 

  158. Towne, D. L. et al. Development of a high-content screening assay panel to accelerate mechanism of action studies for oncology research. J. Biomol. Screen. 17, 1005–1017 (2012).

    PubMed  Google Scholar 

  159. Carlson, C. et al. Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy. J. Biomol. Screen. 18, 1203–1211 (2013).

    PubMed  Google Scholar 

  160. Persson, M., Loye, A. F., Mow, T. & Hornberg, J. J. A high content screening assay to predicte human drug-induced liver injury during drug discovery. J. Pharmacol. Toxicol. Methods 68, 302–313 (2013).

    CAS  PubMed  Google Scholar 

  161. Pointon, A., Abi-Gerges, N., Cross, M. J. & Sidaway, J. E. Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicol. Sci. 132, 317–326 (2013).

    CAS  PubMed  Google Scholar 

  162. Mioulane, M., Foldes, G., Ali, N. N., Schneider, M. D. & Harding, S. E. Development of high content imaging methods for cell death detection in human pluripotent stem cell-derived cardiomyocytes. J. Cardiovasc. Transl. Res. 5, 593–604 (2012).

    PubMed  PubMed Central  Google Scholar 

  163. Doherty, K. R. et al. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol. Appl. Pharmacol. 272, 245 (2013).

    CAS  PubMed  Google Scholar 

  164. Li, J. et al. Profiling of nutrient transporter expression in human stem cell-derived cardiomyocytes exposed to tyrosine kinase inhibitor anticancer drugs using RBD ligands. J. Biomol. Screen. 19, 1185–1192 (2014).

    PubMed  Google Scholar 

  165. Singh, S., Carpenter, A. E. & Genovesio, A. Increasing the content of high-content screening: an overview. J. Biomol. Screen. 19, 640–650 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Guo, L. et al. Refining the human iPSC-cardiomyocyte arrhythmic risk (hCAR) assessment model. Toxicol. Sci. 136, 581–594 (2013).

    CAS  PubMed  Google Scholar 

  167. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 193–200 (2012).

    Google Scholar 

  168. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    CAS  PubMed  Google Scholar 

  169. Lee, J. A. & Berg, E. L. Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches. J. Biomol. Screen. 10, 1143–1155 (2013).

    Google Scholar 

  170. Hardy, M. E., Lawrence, C. L., Standen, N. B. & Rodrigo, G. C. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes? J. Pharmacol. Toxicol. Methods 54, 173–182 (2006).

    CAS  PubMed  Google Scholar 

  171. Kaestner, L. & Lipp, P. Screening action potentials: the power of light. Front. Pharmacol. 2, 42 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Meyer, T., Boven, K. H., Günther, E. & Fejtl, M. Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf. 27, 763–772 (2004).

    CAS  PubMed  Google Scholar 

  173. Braam, S. R. et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 4, 107–116 (2010).

    CAS  PubMed  Google Scholar 

  174. Grilo, L. S., Carrupt, P. A. & Abriel, H. Stereoselective inhibition of the hERG1 potassium channel. Front. Pharmacol. 1, 137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank N. Thomas for helpful discussions and insights regarding high-content screening approaches with human stem cell-derived cardiomyocytes and for reviewing the manuscript. The authors also acknowledge multiple discussions with numerous individuals regarding new in vitro approaches that led to the development of the Comprehensive in vitro Proarrhythmia Assay (CiPA) and J. Green and J. Sutherland for their support with in silico reconstructions. AbbVie participated in the review and approval of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Gintant.

Ethics declarations

Competing interests

P.T.S. is a cardiac safety consultant (a member of the Data Safety and Monitoring Board, a member of the cardiovascular end-point committee, a consultant or an advisory board member) to Chemo, Milestone Pharmaceuticals, Medtronic, Cellceutix, Halozyme, NeuroVia, Trevi, S. K. Science, Viamet, Shin Nippon Biomedical Laboratories (SNBL), Biomedical Systems, iCardiac, Dart, Cancer Prevention, AbbVie, Heart Metabolics, Acadia, MyoKardia, Biogen, Theravance, Charles River, Acesion, Vivus and NDA Partners. Finally, P.T.S. is also a member of the Board of Directors of Anthera, Inc. He has no financial stake in any of the technologies discussed in the manuscript.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gintant, G., Sager, P. & Stockbridge, N. Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov 15, 457–471 (2016). https://doi.org/10.1038/nrd.2015.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.34

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research