Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis

Key Points

  • Modalities of cell–cell communication of relevance to angiogenesis, inflammation and fibrosis include paracrine signalling, mechanosignalling, direct signal transduction via gap junctions and tunnelling nanotubes, and communication via the release and uptake of exosomes. Intercellular communication might be targeted by altering gap junctions and nanotubes, and exosomes are potential drug delivery vehicles as well as diagnostic markers.

  • Leukocytes interact with microvascular cells to affect angiogenesis. These interactions are potentially druggable processes for the regulation of angiogenesis.

  • Angiogenesis can occur through three different mechanisms — sprouting, intussusception and looping — which should be taken into account when designing new pharmacological treatments to reduce or increase angiongesis.

  • Different classes of leukocytes are potential targets to reduce uncontrolled fibrosis. Inhibited recruitment of inflammatory leukocytes together with on-site reprogramming of macrophages could promote fibrosis resolution.

  • In response to different signals from the environment, such as interferons, Toll-like receptor ligands or interleukins, macrophages undergo classical (M1) or alternative activation, which results in a continuum of diverse phenotypes depending on activation states. The identification of the underlying regulation of macrophage plasticity and polarized activation provides targets for macrophage-centred therapies.

  • Delineation of the endothelial heterogeneity is important to the development of strategies for the targeted delivery of drugs to organ-specific vascular beds to limit adverse effects.

Abstract

Regulation of vascular permeability, recruitment of leukocytes from blood to tissue and angiogenesis are all processes that occur at the level of the microvasculature during both physiological and pathological conditions. The interplay between microvascular cells and leukocytes during inflammation, together with the emerging roles of leukocytes in the modulation of the angiogenic process, make leukocyte–vascular interactions prime targets for therapeutics to potentially treat a wide range of diseases, including pathological and dysfunctional vessel growth, chronic inflammation and fibrosis. In this Review, we discuss how the different cell types that are present in and around microvessels interact, cooperate and instruct each other, and in this context we highlight drug targets as well as emerging druggable processes that can be exploited to restore tissue homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cells that affect angiogenesis at the level of the microvasculature.
Figure 2: The different mechanisms of angiogenesis — sprouting, splitting and looping.
Figure 3: The different stages of the leukocyte recruitment cascade and the potential drug targets central to leukocyte recruitment.
Figure 4: Processes related to vascular and leukocyte communication that can be targeted to combat inflammation and fibrosis.

Similar content being viewed by others

References

  1. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Christoffersson, G. et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120, 4653–4662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Ehling, J. et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63, 1960–1971 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs. Nat. Immunol. 14, 41–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Hase, K. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11, 1427–1432 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Kristensen, V. N. et al. Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14, 299–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Meth. 11, 163–166 (2014).

    Article  CAS  Google Scholar 

  12. Bentley, K. et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16, 309–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Dejana, E., Tournier-Lasserve, E. & Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Chauhan, V. P., Stylianopoulos, T., Boucher, Y. & Jain, R. K. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2, 281–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Langenkamp, E. & Molema, G. Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res. 335, 205–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Lawson, N. D., Vogel, A. M. & Weinstein, B. M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. D'Onofrio, N. et al. Vascular-homing peptides for targeted drug delivery and molecular imaging: meeting the clinical challenges. Biochim. Biophys. Acta 1846, 1–12 (2014).

    CAS  PubMed  Google Scholar 

  23. Ageirsdottir, S. A. et al. Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium. Mol. Pharmacol. 72, 121–131 (2007). This study demonstrates means to direct drug delivery to specific organs and thereby limit systemic adverse effects by decorating exosomes with relevant adhesion molecules.

    Article  CAS  Google Scholar 

  24. Ageirsdottir, S. A. et al. Inhibition of proinflammatory genes in anti-GB; glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am. J. Renal Physiol. 294, F554–F561 (2008).

    Article  CAS  Google Scholar 

  25. Corada, M. et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4, 2609 (2013).

    Article  PubMed  CAS  Google Scholar 

  26. Fancy, S. P. et al. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat. Neurosci. 17, 506–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, B., Crampton, S. P. & Hughes, C. C. Wnt signaling induces matrix metalloproteinase expression and regulates T cell migration. Immunity 26, 227–239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung, Y. S. et al. Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils. Exp. Mol. Med. 45, e27 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. Maiti, G., Naskar, D. & Sen, M. The Wingless homolog Wnt5a stimulates phagocytosis but not bacterial killing. Proc. Natl Acad. Sci. USA 109, 16600–16605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012). This study shows for the first time that sphingosine 1-phosphate (produced by, for example, platelets) is required for vessel maturation via the inhibition of VEGFA signalling and stabilization of VE-cadherin-based junctions.

    Article  CAS  PubMed  Google Scholar 

  32. Krueger, M. & Bechmann, I. CNS pericytes: concepts, misconceptions, and a way out. Glia 58, 1–10 (2010).

    Article  PubMed  Google Scholar 

  33. Sims, D. E. The pericyte — a review. Tissue Cell 18, 153–174 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Sims, D. E. Recent advances in pericyte biology — implications for health and disease. Can. J. Cardiol. 7, 431–443 (1991).

    CAS  PubMed  Google Scholar 

  35. Falcón, B. L. et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am. J. Pathol. 175, 2159–2170 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gerhardt, H., Wolburg, H. & Redies, C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn. 218, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Wernersson, S. & Pejler, G. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. 14, 478–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Pollard, A. J., Perrett, K. P. & Beverley, P. C. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 9, 213–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010). This study demonstrates for the first time the role of tissue resident macrophages in vessel fusion in the developing brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mantovani, A. Molecular pathways linking inflammation and cancer. Curr. Mol. Med. 10, 369–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology and health and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: development, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Wei, X. et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol. Sin. 34, 747–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leeper, N. J., Hunter, A. L. & Cooke, J. P. Stem cell therapy for vascular regeneration. Circulation 122, 517–526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schinköthe, T., Bloch, W. & Schmidt, A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 17, 199–206 (2008).

    Article  PubMed  CAS  Google Scholar 

  50. Hsiao, S. T. et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose tissue, and dermal tissue. Stem Cells Dev. 21, 2189–2203 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Rustad, K. C. & Gurtner, G. C. Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care 1, 147–152 (2012).

    Article  Google Scholar 

  52. Abram, C. L. & Lowell, C. A. The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 27, 339–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fang, J. S., Dai, C., Kurjiaka, D. T., Burt, J. M. & Hirschi, K. K. Connexin45 regulates endothelial-induced mesenchymal cell differentiation toward a mural cell phenotype. Arterioscler. Thromb. Vasc. Biol. 33, 362–368 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Hirschi, K. K., Burt, J. M., Hirschi, K. D. & Dai, C. Gap junction communication mediates transforming growth factor-β activation and endothelial-induced mural cell differentiation. Circ. Res. 93, 429–437 (2003). This study shows that CX43 gap junction communication between endothelial cells and mesenchymal progenitors is necessary for the differentiation of progenitors into mural cells.

    Article  CAS  PubMed  Google Scholar 

  55. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40, 248–261 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Oviedo-Orta, E., Errington, R. J. & Evans, W. H. Gap junction intercellular communication during lymphocyte transendothelial migration. Cell. Biol. Int. 26, 253–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Zahler, S. et al. Gap-junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J. Leuk. Biol. 73, 118–126 (2003).

    Article  CAS  Google Scholar 

  59. Ghatnekar, G. S. et al. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen. Med. 4, 205–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Grek, C. S., Rhett, J. M. & Ghatnekar, G. S. Cardiac to cancer: connecting connexins to clinical opportunity. FEBS Lett. 588, 1349–1364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghatnekar, G. S., Grek, C. L., Armstrong, D. G., Desai, S. C. & Gourdie, R. G. The effect of a connexin43-based peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial. J. Invest. Dermatol. 135, 289–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. van Balkom, B. W. et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121, 3997–4006 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Patzelt, J. & Langer, H. F. Platelets in angiogenesis. Curr. Vasc. Pharmacol. 10, 570–577 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Battinelli, E. M., Markens, B. A. & Italiano, J. E. Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 118, 1359–1369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotech. 29, 341–345 (2011). This study presents evidence that exosomes from self-derived dendritic cells, engineered to express the neuron-specific rabies viral glycoprotein (RVG) peptide, can selectively deliver functional siRNA to distinct cell populations in the brain.

    Article  CAS  Google Scholar 

  68. Zech, D., Sanyukta, R., Büchler, M. W. & Xöller, M. Tumor-crosstalk and leukocyte activation: an ambivalent crosstalk. Cell Comm. Signal. 10, 37 (2012).

    Article  CAS  Google Scholar 

  69. Marleau, A. M., Chen, C. S., Joyce, J. A. & Tullis, R. H. Exosome removal as a therapeutic adjuvant in cancer. J. Transl. Med. 10, 134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, H. et al. Exo70 isoform switching upon epithelial–mesenchymal transition mediates cancer cell invasion. Dev. Cell 27, 560–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, Y. et al. Exo70 generates membrane curvature for morphogenesis and cell migration. Dev. Cell 26, 266–278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chacon-Heszele, M. F. et al. The exocyst and regulatory GTPases in urinary exosomes. Physiol. Rep. 2, e12116 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lou, E. et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE 7, e33093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahmad, T. et al. Miro1 regulates intercellular mitochondrial transport and enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994–1010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, L., Yang, S., Jakoncic, J., Zhang, J. J. & Huang, X. Y. Migrastatin analogues target fascin to block tumour metastasis. Nature 464, 1062–1066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pasquier, J. et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11, 94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rainy, N. et al. H-Ras transfers from B to T cells via tunneling nanotubes. Cell Death Dis. 4, e726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yasuda, K. et al. Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 3, 597–608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, K. et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92, 10–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Claesson-Welsh, L. & Welsh, M. VEGFA and tumour angiogenesis. J. Intern. Med. 273, 114–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell. Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Styp-Rekowska, B., Hlushchuk, R., Pries, A. R. & Djonov, V. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol. (Oxf.) 202, 213–223 (2011).

    Article  CAS  Google Scholar 

  84. Adams, R. H. & Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Jakobsson, L., Kreuger, J. & Claesson-Welsh, L. Building blood vessels-stem cell models in vascular biology. J. Cell Biol. 177, 751–755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lander, A. D. How cells know where they are. Science 339, 923–927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Benest, A. V. & Augustin, H. G. Tension in the vasculature. Nat. Med. 15, 608–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Boerckel, J. D., Uhrig, B. A., Willett, N. J., Huebsch, N. & Guldberg, R. E. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc. Natl Acad. Sci. USA 108, E674–E680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kilarski, W. W., Samolov, B., Petersson, L., Kvanta, A. & Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nat. Med. 15, 657–664 (2009). This study demonstrates that during wound healing activated myofibroblasts generate mechanical forces that rapidly pull and elongate vessels from intact vascular beds into the wounded area. The vascular network is thereafter modulated by sprouting, splitting and regression.

    Article  CAS  PubMed  Google Scholar 

  90. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tabe, Y. et al. TGF-β-neutralizing antibody 1D11 enhances cytarabine-induced apoptosis in AML cells in the bone marrow microenvironment. PLoS ONE 8, e62785 (2011).

    Article  CAS  Google Scholar 

  92. Dituri, F. et al. Differential inhibition of the TGF-β signaling pathway in HCC cells using the small molecule inhibitor LY2157299 and the D10 monoclonal antibody against TGF-β receptor type II. PLoS ONE 8, e67109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Santiago, B. et al. Topical application of a peptide inhibitor of transforming growth factor-β1 ameliorates bleomycin-induced skin fibrosis. J. Invest. Dermatol. 125, 450–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Khalil, N., Bereznay, O., Sporn, M. & Greenberg, A. H. Macrophage production of transforming growth factor β and fibroblast collagen synthesis in chronic pulmonary inflammation. J. Exp. Med. 170, 727–737 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Nacu, N. et al. Macrophages produce TGF-β-induced (β-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J. Immunol. 180, 5036–5044 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Taichman, N. S., Young, S., Cruchley, A. T., Taylor, P. & Paleoplog, E. Human neutrophils secrete vascular endothelial growth factor. J. Leuk. Biol. 62, 397–400 (1997).

    Article  CAS  Google Scholar 

  97. Auffray, C. et al. Monitoring of blood vessels and tissue by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Awojoodu, A. O. et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl Acad. Sci. USA 110, 13785–13790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carlin, L. M. et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ganju, R. K. et al. The α-chemokine, stromal cell-derived factor-1α, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J. Biol. Chem. 273, 23169–23175 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Grunewald, M. et al. VEGF-induced adult neovascuarisation, recruitment, retention and role of accessory cells. Cell 124, 175–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Avraham-Davidi, I. et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenesis and arteriogenic accessory cells. J. Exp. Med. 210, 2611–2625 (2013). This study demonstrates that local VEGF 're-educates' monocytes to attain a pro-angiogenic phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Christoffersson, G. et al. Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets. Diabetes 59, 2569–2578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Massena, S. et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1 and CXCR4 in mice and humans. Blood 126, 2016–2026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kerbel, R. S. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays 13, 31–36 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Lim, L. S., Mitchell, P., Seddon, J. M., Holz, F. G. & Wong, T. Y. Age-related macular degeneration. Lancet 379, 1728–1738 (2012).

    Article  PubMed  Google Scholar 

  107. Reck, M. et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J. Clin. Oncol. 27, 1227–1234 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized Phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Sandler, A. et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human renal cancer. Nat. Med. 10, 145–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Batchelor, T. T. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl Acad. Sci. USA 47, 19059–19064 (2013).

    Article  CAS  Google Scholar 

  112. Armstrong, T. S., Wen, P. Y., Gilbert, M. R. & Schiff, D. Management of treatment-associated toxicites of anti-angiogenic therapy in patients with brain tumors. Neuro. Oncol. 14, 1203–1214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu, J. M. & Staton, C. A. Anti-angiogenic drug discovery: lessons from the past and thoughts for the future. Expert Opin. Drug Discov. 7, 723–743 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barone, A. et al. Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma. Oncotarget 5, 9811–9822 (2014). In a mouse model of glioblastoma, this study shows that angiogenesis, tumour growth and metastasis are reduced by treatment with the CXCR4 inhibitor CTCE-9908 in combination with docetaxel or a VEGF-specific antibody.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hassan, S. et al. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int. J. Cancer 129, 225–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Pan, Q. et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11, 53–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Ruan, G.-X. & Kazlauskas, A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288, 21161–21172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013). This study demonstrates that loss of the glycolytic activator PFKFB3 in endothelial cells results in impaired angiogenesis. PFKFB3 is required for proliferation but also regulates filopodia formation and chemotaxis.

    Article  CAS  PubMed  Google Scholar 

  120. Leopold, J. A. et al. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J. Biol. Chem. 278, 32100–32106 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Schoors, S. et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell. Metab. 19, 37–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Leite de Oliveira, R. et al. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 22, 263–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takeda, Y. et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479, 122–126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hamm, A. et al. PHD2 regulates arteriogenic macrophages through TIE2 signalling. EMBO Mol. Med. 5, 843–857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Flagg, S. C., Martin, C. B., Taabazuing, C. Y., Holmes, B. E. & Knapp, M. J. Screening chelating inhibitors of HIF–prolyl hydroxylase domain 2 (PHD2) and factor inhibiting HIF (FIH). J. Inorg. Biochem. 113, 25–30 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  128. Phng, L. K. et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell 16, 70–82 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dimova, I. et al. Inhibition of Notch signaling induces extensive intussusceptive neo-angiogenesis by recruitment of mononuclear cells. Angiogenesis 16, 921–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Outtz, H. H., Tattersall, I. W., Kofler, N. M., Steinbach, N. & Kitajewski, J. Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118, 3436–3439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Camelo, S. et al. Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages. Angiogenesis 15, 609–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Haj Zen, A. A. et al. Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ. Res. 107, 283–293 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wang, Y. C. et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70, 4840–4849 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Xu, H. et al. Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 13, 642–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Stefater, J. A. 3rd et al. Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature 474, 511–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stefater, J. A. 3rd et al. Macrophage Wnt–Calcineurin–Flt1 signaling regulates mouse wound angiogenesis and repair. Blood 121, 2574–2578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ross, K. For organ transplant recipients, cancer threatens long-term survival. J. Nat. Cancer Inst. 99, 421–422 (2007).

    Article  PubMed  Google Scholar 

  142. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Nourshargh, S., Hordijk, P. L. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell. Biol. 11, 366–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Phillipson, M. & Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 17, 1381–1390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Massena, S. et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 116, 1924–1931 (2010). This study demonstrates that an intravascular chemokine gradient on endothelial heparan sulfate directs crawling neutrophils towards the site of chemokine origin and accelerates their transmigration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203, 2569–2575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schenkel, A. R., Mamdouh, Z. & Muller, W. A. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat. Immunol. 5, 393–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Voisin, M. B., Pröbstl, D. & Nourshargh, S. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol. 176, 482–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Petri, B. et al. Endothelial LSP1 is involved in endothelial dome formation, minimizing vascular permeability changes during neutrophil transmigration in vivo. Blood 117, 942–952 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Phillipson, M., Kaur, J., Colarusso, P., Ballantyne, C. M. & Kubes, P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS ONE 3, e1649 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Liu, L. et al. LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J. Exp. Med. 201, 409–418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Broermann, A. et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J. Exp. Med. 208, 2393–2401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Finsterbusch, M., Voisin, M. B., Beyrau, M., Williams, T. J. & Nourshargh, S. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J. Exp. Med. 211, 1307–1314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Proebstl, D. et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209, 1219–1234 (2012). This study demonstrates that pericytes support neutrophil migration to inflamed tissue by providing a surface for neutrophil crawling and by enlarging the inter-pericyte spaces by contraction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Abtin, A. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15, 45–53 (2014). This study shows that perivascular macrophages guide neutrophil extravasation and comprise targets during bacterial immune evasion.

    Article  CAS  PubMed  Google Scholar 

  159. Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fox, D. A. Kinase inhibition — a new approach to the treatment of rheumatoid arthritis. N. Engl. J. Med. 367, 565–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Hoepner, R., Faissner, S., Salmen, A., Gold, R. & Chan, A. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J. Cent. Nerv. Syst. Dis. 6, 41–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kothary, N. et al. Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J. Am. Acad. Dermatol. 65, 546–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Schwab, N. et al. Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control. Neurology 78, 458–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Eng. J. Med. 369, 699–710 (2013). In this clinical study, the beneficial effect of integrin-specific antibody therapy targeting α4β7 in patients with ulcerative colitis is demonstrated.

    Article  CAS  Google Scholar 

  166. Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn's disease. N. Eng. J. Med. 369, 711–721 (2013).

    Article  CAS  Google Scholar 

  167. Briskin, M. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 151, 97–110 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Danese, S. & Panés, J. Development of drugs to target interactions between leukocytes and endothelial cells and treatment algorithms for inflammatory bowel diseases. Gastroenterology 147, 981–989 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Fedyk, E. R. et al. Exclusive antagonism of the α4β7 integrin by vedolizumab confirms the gut-selectivity of this pathway in primates. Inflamm. Bowel. Dis. 18, 2107–2119 (2012).

    Article  PubMed  Google Scholar 

  170. Haanstra, K. G. et al. Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. J. Immunol. 190, 1961–1973 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Milch, C. et al. Vedolizumab, a monoclonal antibody to the gut homing α4β7 integrin, does not affect cerebrospinal fluid T-lymphocyte immunophenotype. J. Neuroimmunol. 264, 123–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Watanabe, M. et al. 370 AJM300, an oral α4 integrin antagonist, for active ulcerative colitis: a multicenter, randomized, double-blind, placebo-controlled Phase 2A study. Gastroenterology 146, S-82 (2014).

    Article  Google Scholar 

  173. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat. Med. 9, 47–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Blanchetot, C. et al. Neutralizing nanobodies targeting diverse chemokines effectively inhibit chemokine function. J. Biol. Chem. 288, 25173–25182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Berghmans, N. et al. Rescue from acute neuroinflammation by pharmacological chemokine-mediated deviation of leukocytes. J. Neuroinfl. 9, 243 (2012).

    Article  CAS  Google Scholar 

  176. Li, S. et al. Interference with glycosaminoglycan-chemokine interactions with a probe to alter leukocyte recruitment and inflammation in vivo. PLoS ONE 9, e104107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Klarenbeek, A. et al. Targeting chemokines and chemokine receptors with antibodies. Drug Discov. Today Tech. 9, 237–244 (2012).

    Article  CAS  Google Scholar 

  178. Perry, C. M. Maraviroc: a review of its use in the management of CCR5-tropic HIV-1 infection. Drugs 70, 1189–1213 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. De Clercq, E. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol. 77, 1655–1664 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Moelants, E. A. et al. Citrullination of TNF-α by peptidylarginine deiminases reduces its capacity to stimulate the production of inflammatory chemokines. Cytokine 61, 161–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Proost, P. et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J. Exp. Med. 205, 2085–2097 (2008). This study demonstrates that inflammation can be regulated by post-translational modifications of chemokines to greatly affect chemokine activity and stability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Moelants, E. A. et al. Citrullination and proteolytic processing of chemokines by Porphyromonas gingivalis. Infect. Immun. 82, 2511–2519 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Korns, D., Frasch, S. C., Fernandez-Boyanapalli, R., Henson, P. M. & Bratton, D. L. Modulation of macrophage efferocytosis in inflammation. Front. Immunol. 2, 57 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Markworth, J. F. et al. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1281–R1296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Colas, R. A., Shinohara, M., Dalli, J., Chiang, N. & Serhan, C. N. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am. J. Physiol. Cell Physiol. 307, C39–C54 (2014). This study identifies the mediators involved in resolution of acute inflammation, including lipoxins, resolvins, protectins and maresins in human plasma and lymphoid organs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jin, Y. et al. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Invest. Ophthalmol. Vis. Sci. 50, 4743–4752 (2009).

    Article  PubMed  Google Scholar 

  189. Rajasagi, N. K. et al. Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J. Immunol. 186, 1735–1746 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Tang, Y. et al. Proresolution therapy for the treatment of delayed healing of diabetic wounds. Diabetes 62, 618–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wu, S. H., Chen, X. Q., Liu, B., Wu, H. J. & Dong, L. Efficacy and safety of 15(R/S)-methyl-lipoxin A4 in topical treatment of infantile eczema. Br. J. Dermatol. 168, 172–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Robertson, A. L. et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci. Transl. Med. 6, 225ra29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound heling in solid organs. Nat. Rev. Immunol. 14, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Moustakas, A. & Heldin, P. TGFβ and matrix regulated epithelial to mesenchymal transition. Biochim. Biophys. Acta 1840, 2621–2634 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Brenner, D. A. et al. Origin of myofibroblasts in liver fibrosis. Fibrogen. Tissue Repair 5, S17 (2012).

    Article  Google Scholar 

  196. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Henderson, N. C. et al. Targeting of αV integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013). Depletion of αV integrin in mouse hepatic stellate cells was shown to protect against fibrosis in several organs. The authors suggest that pharmacological targeting of αV integrin may be of broad clinical utility.

    Article  CAS  PubMed  Google Scholar 

  198. Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Cenik, B. K., Ostapoff, K. T., Gerber, D. E. & Brekken, R. A. BIBF 1120 (nintedanib), a triple angiokinase inhibitor, induces hypoxia but not EMT and blocks progression of preclinical models of lung and pancreatic cancer. Mol. Cancer Ther. 12, 992–1001 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  200. Mehal, W. Z., Iredale, J. & Friedman, S. L. Scraping fibrosis: expressway to the core of fibrosis. Nat. Med. 17, 552–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Subramaniam, N. et al. Metformin-mediated BAMBI expression in hepatic stellate cells induces prosurvival Wnt/β catenin signaling. Cancer Prev. Res. 5, 553–561 (2012).

    Article  CAS  Google Scholar 

  203. Ogawa, S. et al. Anti-PDGF-B monoclonal antibody reduces liver fibrosis development. Hepatol. Res. 40, 1128–1141 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Coulon, S. et al. Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models. Hepatology 57, 1793–19805 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I. & Quigley, J. P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 104, 20262–20267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Purcell, B. P. et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13, 653–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bystrom, J. et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112, 4117–4127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012). This paper describes the first identification and characterization of the 'restorative macrophage', which can promote tissue remodelling and resolution of fibrosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Hellström, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell. Biol. 153, 543–553 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lindahl, P., Johansson, B. R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  212. Kelly-Goss, M. R., Sweat, R. S., Stapor, P. C., Peirce, S. M. & Murfee, W. L. Targeting pericytes for angiogenic therapies. Microcirculation 21, 345–357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ayres-Sander, C. E. et al. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS ONE 8, e60025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ren, S. et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc. Natl Acad. Sci. USA 110, 1440–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lee, W. Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chintalgattu, V. et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci. Transl. Med. 5, 187ra69 (2013).

    Article  PubMed  CAS  Google Scholar 

  218. Ehnman, M. et al. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res. 73, 2139–2149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ruan, J. et al. Imatinin disrupts lymphoma angiogenesis by targeting vascular pericytes. Blood 121, 5192–5202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Reck, M. et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 15, 143–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Purow, B. Notch inhibition as a promising new approach to cancer therapy. Adv. Exp. Med. Biol. 727, 305–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sun, L. et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl- 1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 46, 1116–1119 (2003).

    Article  CAS  PubMed  Google Scholar 

  223. Roberts, W. G. et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res. 65, 957–966 (2005).

    CAS  PubMed  Google Scholar 

  224. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  225. Laird, A. D. et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 60, 4152–4160 (2000).

    CAS  PubMed  Google Scholar 

  226. Pan, B. S. et al. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res. 70, 1524–1533 (2010).

    Article  CAS  PubMed  Google Scholar 

  227. Albert, D. H. et al. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol. Can. Therap. 5, 995–1006 (2006).

    Article  CAS  Google Scholar 

  228. Hu-Lowe, D. D. et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin. Cancer Res. 14, 7272–7283 (2008).

    Article  CAS  PubMed  Google Scholar 

  229. Buchdunger, E. et al. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc. Natl Acad. Sci. USA 92, 2558–2562 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Heinrich, M. C. et al. Inhibition of c-KIT receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925–932 (2000).

    Article  CAS  PubMed  Google Scholar 

  231. Heinrich, M. C. et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin. Cancer Res. 18, 4375–4384 (2012).

    Article  CAS  PubMed  Google Scholar 

  232. Trudel, S. et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 105, 2941–2948 (2005).

    Article  CAS  PubMed  Google Scholar 

  233. Hilberg, F. et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 68, 4774–4782 (2008).

    Article  CAS  PubMed  Google Scholar 

  234. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Allavena, P. et al. Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells. Cancer Res. 50, 7318–7323 (1990).

    CAS  PubMed  Google Scholar 

  237. Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. Sun, Z., Yao, Z., Liu, S., Tang, H. & Yan, X. An oligonucleotide decoy for Stat3 activates the immune response of macrophages to breast cancer. Immunobiology 211, 199–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  239. Hemmi, H. et al. Small anti-viral compounds activate the immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  240. Rolny, C. et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  241. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lutgens, E. et al. Deficient CD40–TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med. 207, 391–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6499 (2009).

    Article  CAS  PubMed  Google Scholar 

  246. Germano, G. et al. Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res. 70, 2235–2244 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of their laboratories and many of their colleagues, especially L. Claesson-Welsh, A. Moustakas and M. Welsh for sharing their insights and for stimulating discussions. The authors apologize to all colleagues whose relevant work has not been cited owing to space limitations. The authors are supported by the Swedish Medical Research Council, the Swedish Cancer Society, the Royal Swedish Academy of Sciences, the Swedish Diabetes Foundation, the Swedish Foundation for Strategic Research, the Novo Nordisk Foundation, the Ragnar Söderberg foundation, the Knut and Alice Wallenberg Foundation, the Ruth and Nils-Erik Stenbäcks Foundation, the Foundations for Proteoglycan Research, the Marie Sklodowska-Curie Innovative Training Network InCeM (Integrated Component Cycling in Epithelial Cell Motility) and Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia Phillipson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Leukocytes

White blood cells of the immune system. Different classes of leukocytes may fight infections or modulate processes such as angiogenesis, inflammation and fibrosis.

Mural cells

The vascular smooth muscle cells and pericytes that surround and support endothelial cells.

Tunnelling nanotubes

Very thin cytoplasmic extensions containing actin that connect various cell types to allow direct exchange of intracellular components.

Intravital microscopy

A microscopy technique that enables direct observations of biological processes in vivo.

Extravasation

Emigration of immune cells from the vasculature into the surrounding tissue.

Immunoliposomes

Antibody-conjugated spheres of phospholipids that can be used to deliver drugs to tissues.

Alternatively activated macrophages

These macrophages are less efficient at killing bacteria and are activated by different cytokines than are the classic M1 inflammatory macrophages. Alternatively activated macrophages are involved in tissue remodelling, wound healing, angiogenesis and tumour progression.

Inside-out signalling

Leukocyte integrin inside-out signalling occurs following chemokine receptor ligation and activates the ligand-binding function of the integrins.

Outside-in signalling

Integrin outside-in signalling occurs following the binding of leukocyte integrins to their counter-receptors on the endothelium and results in cytoskeletal rearrangements, strengthening of adhesion, cell spreading and migration.

Epithelial–mesenchymal transition

A process in which normally stationary epithelial cells lose cell–cell adhesions and cell polarity, thus becoming migratory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuger, J., Phillipson, M. Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 15, 125–142 (2016). https://doi.org/10.1038/nrd.2015.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research