Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Early phase clinical trials of anticancer agents in children and adolescents — an ITCC perspective

This article has been updated

Abstract

In the past decade, the landscape of drug development in oncology has evolved dramatically; however, this paradigm shift remains to be adopted in early phase clinical trial designs for studies of molecularly targeted agents and immunotherapeutic agents in paediatric malignancies. In drug development, prioritization of drugs on the basis of knowledge of tumour biology, molecular 'drivers' of disease and a drug's mechanism of action, and therapeutic unmet needs are key elements; these aspects are relevant to early phase paediatric trials, in which molecular profiling is strongly encouraged. Herein, we describe the strategy of the Innovative Therapies for Children with Cancer (ITCC) Consortium, which advocates for the adoption of trial designs that enable uninterrupted patient recruitment, the extrapolation from studies in adults when possible, and the inclusion of expansion cohorts. If a drug has neither serious dose-related toxicities nor a narrow therapeutic index, then studies should generally be started at the adult recommended phase II dose corrected for body surface area, and act as dose-confirmation studies. The use of adaptive trial designs will enable drugs with promising activity to progress rapidly to randomized studies and, therefore, will substantially accelerate drug development for children and adolescents with cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed three-stage (Ensign) design of early phase clinical trials in children.

Similar content being viewed by others

Change history

  • 13 June 2017

    In the version of this Review published online ahead of print, the details of the author contributions were missing. The author contributions arenow included in the HTML and PDF versions of the article.

References

  1. Pritchard-Jones, K. & Sullivan, R. Children with cancer: driving the global agenda. Lancet Oncol. 14, 189–191 (2013).

    PubMed  Google Scholar 

  2. Skinner, R., Wallace, W. H. B., Levitt, G. A. & UK Children's Cancer Study Group (UKCCSG) Late Effects Group (LEG). Long-term follow-up of people who have survived cancer during childhood. Lancet Oncol. 7, 489–498 (2006).

    PubMed  Google Scholar 

  3. Di Martino, S. et al. Overview of FDA-approved anti cancer drugs used for targeted therapy. World Cancer Res. J. 2, e553 (2015).

    Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  5. Smith, M. et al. Conduct of phase I trials in children with cancer. J. Clin. Oncol. 16, 966–978 (1998).

    CAS  PubMed  Google Scholar 

  6. Zwaan, C. M. et al. The role of the 'innovative therapies for children with cancer' (ITCC) European consortium. Cancer Treat. Rev. 36, 328–334 (2010).

    PubMed  Google Scholar 

  7. Pharmaceutical Research and Manufacturers of America. List of 2015 medicines in development for cancer 2015. PhRMA http://phrma-docs.phrma.org/sites/default/files/pdf/2014-cancer-report.pdf (2014).

  8. Vassal, G., Geoerger, B. & Morland, B. Is the European pediatric medicine regulation working for children and adolescents with cancer? Clin. Cancer Res. 19, 1315–1325 (2013).

    CAS  PubMed  Google Scholar 

  9. National Cancer Institute. Targeted cancer therapies. Cancer https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet (2017).

  10. Postel-Vinay, S. et al. Clinical benefit in Phase-I trials of novel molecularly targeted agents: does dose matter? Br. J. Cancer 100, 1373–1378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta, S. et al. Meta-analysis of the relationship between dose and benefit in phase I targeted agent trials. J. Natl Cancer Inst. 104,1860–1866 (2012).

    Google Scholar 

  12. Moreno García, V. et al. Dose-response relationship in phase I clinical trials: a European Drug Development Network (EDDN) Collaboration Study. Clin. Cancer Res. 20, 5663–5671 (2014).

    PubMed  Google Scholar 

  13. Vassal, G. et al. Creating a unique, multi-stakeholder Paediatric Oncology Platform to improve drug development for children and adolescents with cancer. Eur. J. Cancer 51, 218–224 (2015).

    PubMed  Google Scholar 

  14. Vassal, G. et al. New drugs for children and adolescents with cancer: the need for novel development pathways. Lancet Oncol. 14, e117–e124 (2013).

    PubMed  Google Scholar 

  15. Vassal, G. Will children with cancer benefit from the new European Paediatric Medicines Regulation? Eur. J. Cancer 45, 1535–1546 (2009).

    PubMed  Google Scholar 

  16. Rocchi, F. et al. The European paediatric legislation: benefits and perspectives. Ital. J. Pediatr. 36, 56 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Vassal, G., Blanc, P. & Pearson, A. Need for change in implementation of paediatric regulation. Lancet Oncol. 14, 1156–1157 (2013).

    PubMed  Google Scholar 

  18. Regulation (EC) No 1901/2006 of the European Parliament and of the council of 12 December 2006. http://ec.europa.eu/health//sites/health/files/files/eudralex/vol-1/reg_2006_1901/reg_2006_1901_en.pdf (2006).

  19. Committee on Pediatric Studies Conducted Under the Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA), Board on Health Sciences Policy & Institute of Medicine. Safe and Effective Medicines for Children: Pediatric Studies Conducted Under the Best Pharmaceuticals for Children Act and the Pediatric Research Equity Act (eds Field, M. J. & Boat, T. F.) (National Academies Press, 2012).

  20. Food and Drug Administration. Pediatric Research Equity Act of 2003. FDA http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/UCM077853.pdf (2003).

  21. Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Le Tourneau, C., Gan, H. K., Razak, A. R. & Paoletti, X. Efficiency of new dose escalation designs in dose-finding phase I trials of molecularly targeted agents. PLoS ONE 7, e51039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Skolnik, J. M., Barrett, J. S., Jayaraman, B., Patel, D. & Adamson, P. C. Shortening the timeline of pediatric phase I trials: the rolling six design. J. Clin. Oncol. 26, 190–195 (2008).

    PubMed  Google Scholar 

  24. Paoletti, X. et al. A comparative analysis of paediatric dose-finding trials of molecularly targeted agent with adults' trials. Eur. J. Cancer 49, 2392–2402 (2013).

    CAS  PubMed  Google Scholar 

  25. Pearson, A. D. et al. Implementation of mechanism of action biology-driven early drug development for children with cancer. Eur. J. Cancer 62, 124–131 (2016).

    PubMed  Google Scholar 

  26. Le Tourneau, C., Diera, V., Tresca, P., Cacheux, W. & Paoletti, X. Current challenges for the early clinical development of anticancer drugs in the era of molecularly targeted agents. Target. Oncol. 5, 65–72 (2010).

    PubMed  Google Scholar 

  27. Lee, D. P. et al. Pediatric phase I trials in oncology: an analysis of study conduct efficiency. J. Clin. Oncol. 23, 8431–8441 (2005).

    PubMed  Google Scholar 

  28. DuBois, S. G. et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: a Children's Oncology Group study. Clin. Cancer Res. 17, 5113–5122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu, T. F. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370, 2011–2019 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).

  31. Norris, R. E. & Adamson, P. C. Challenges and opportunities in childhood cancer drug development. Nat. Rev. Cancer 12, 776–782 (2012).

    CAS  PubMed  Google Scholar 

  32. Carceller, F. et al. Prognostic factors of overall survival in children and adolescents enrolled in dose-finding trials in Europe: an Innovative Therapies for Children with Cancer (ITCC) study. Eur. J. Cancer 67, 130–140 (2016).

    PubMed  Google Scholar 

  33. Zwaan, C. M. et al. Dasatinib in children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the Innovative Therapies for Children with Cancer Consortium. J. Clin. Oncol. 31, 2460–2468 (2013).

    CAS  PubMed  Google Scholar 

  34. European Medicines Agency. Reflection paper on extrapolation of efficacy and safety in paediatric medicine development. EMA http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2016/04/WC500204187.pdf (2016).

  35. Locatelli, F. et al. Phase 1/2 study in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia receiving blinatumomab treatment. Blood 124, 2292 (2014).

    Google Scholar 

  36. Wayne, A. S. et al. Pediatric phase 1 trial of moxetumomab pasudotox: activity in chemotherapy refractory acute lymphoblastic leukemia (ALL) [abstract]. Cancer Res. 74 (19 Suppl.), CT230 (2014).

    Google Scholar 

  37. Geoerger, B. et al. Innovative therapies for children with cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. Neuro Oncol. 13, 109–118 (2011).

    CAS  PubMed  Google Scholar 

  38. Muller, P. Y. & Milton, M. N. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 11, 751–761 (2012).

    CAS  PubMed  Google Scholar 

  39. Kieran, M. W. et al. Phase 1 study of dabrafenib in pediatric patients with relapsed or refractory BRAF V600E high- and low-grade gliomas, Langerhans cell histiocytosis, and other solid tumors [abstract]. J. Clin. Oncol. 33 (Suppl.), 10004 (2015).

    Google Scholar 

  40. Bland, M. Detecting a single event. University of York https://www-users.york.ac.uk/mb55/bsi_study/single_event.pdf (2013).

    Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01077544 (2015).

  42. Neville, K. et al. Phase I/II study of brentuximab vedotin in pediatric patients with relapsed or refractory Hodgkin lymphoma or systemic anaplastic large-cell lymphoma: interim phase I safety data [abstract]. J. Clin. Oncol. 31 (Suppl.), 10028 (2013).

    Google Scholar 

  43. Locatelli, F. et al. Phase 1/2 study of brentuximab vedotin in pediatric patients with relapsed or refractory Hodgkin lymphoma or systemic anaplastic large-cell lymphoma: preliminary phase 2 data for brentuximab vedotin 1.8 mg/kg in the Hodgkin lymphoma study arm. Blood 122, 4378 (2013).

    Google Scholar 

  44. Olmos, D. et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751, 871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 11, 129–135 (2010).

    CAS  PubMed  Google Scholar 

  45. Juergens, H. et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J. Clin. Oncol. 29, 4534–4540 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Malempati, S. et al. Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children's Oncology Group. J. Clin. Oncol. 30, 256–262 (2012).

    CAS  PubMed  Google Scholar 

  47. Pappo, A. S. et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J. Clin. Oncol. 29, 4541–4547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Frappaz, D. et al. Phase I study of dalotuzumab monotherapy and combination therapy ridaforolimus-dalotuzumab in pediatric patients with advanced solid tumors. Eur. J. Cancer 62, 9–17 (2016).

    CAS  PubMed  Google Scholar 

  49. Neuenschwander, B., Branson, M. & Gsponer, T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat. Med. 15, 2420–2439 (2008).

    Google Scholar 

  50. O'Quigley, J., Pepe, M. & Fisher, L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 46, 33–48 (1990).

    CAS  PubMed  Google Scholar 

  51. Onar-Thomas, A. & Xiong, Z. A simulation-based comparison of the traditional method, rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric phase I oncology trials. Contemp. Clin. Trials 31, 259–270 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Zhao, L., Lee, J., Mody, R. & Braun, T. M. The superiority of the time-to-event continual reassessment method to the rolling six design in pediatric oncology phase I trials. Clin. Trials 8, 361–369 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Doussau, A. et al. Dose-finding designs in pediatric phase I clinical trials: comparison by simulations in a realistic timeline framework. Control. Clin. Trials 33, 657–665 (2012).

    CAS  Google Scholar 

  54. Doussau, A., Geoerger, B., Jiménez, I. & Paoletti, X. Innovations for phase I dose-finding designs in pediatric oncology clinical trials. Contemp. Clin. Trials. 47, 217–227 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Simon, R. et al. Accelerated titration designs for phase I clinical trials in oncology. J. Natl Cancer Inst. 89, 1138–1147 (1997).

    CAS  PubMed  Google Scholar 

  56. Manji, A. et al. Evolution of clinical trial design in early drug development: systematic review of expansion cohort use in single-agent phase I cancer trials. J. Clin. Oncol. 31, 4260–4267 (2013).

    CAS  PubMed  Google Scholar 

  57. Ensign, L. G., Gehan, E. A., Kamen, D. S. & Thall, P. F. An optimal three-stage design for phase II clinical trials. Stat. Med. 13, 1727 (1994).

    CAS  PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02813135 (2016).

  59. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02432274 (2017).

  60. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02124772 (2017).

  61. Moroz, V., Wilson, J. S., Kearns, P. & Wheatley, K. Comparison of anticipated and actual control group outcomes in randomised trials in paediatric oncology provides evidence that historically controlled studies are biased in favour of the novel treatment. Trials 15, 481 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Saad, E. D., Paoletti, X., Burzykowski, T. & Buyse, M. Precision medicine needs randomized clinical trials. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2017.8 (2017).

  63. Billingham, L., Malottki, K. & Steven, N. Research methods to change clinical practice for patients with rare cancers. Lancet Oncol. 17, e70–e80 (2016).

    PubMed  Google Scholar 

  64. Jung, S. H. Randomized phase II trials with a prospective control. Stat. Med. 27, 568–583 (2008).

    PubMed  Google Scholar 

  65. Jakacki, R. et al. Single-agent erlotinib versus oral etoposide in patients with recurrent or refractory pediatric ependymoma: a randomized open-label study. J. Neurooncol. 129, 131–138 (2016).

    CAS  PubMed  Google Scholar 

  66. Mody, R. et al. Phase II randomized trial of irinotecan/temozolomide (I/T) with temsirolimus (TEM) or dinutuximab plus granulocyte colony stimulating factor (DIN/GMCSF) in children with refractory or relapsed neuroblastoma: a report from the Children's Oncology Group (COG) [abstract]. J. Clin. Oncol. 34 (Suppl.), 10502 (2016).

    Google Scholar 

  67. Moreno, L. et al. A randomised phase IIb trial of bevacizumab added to temozolomide ± irinotecan for children with refractory/relapsed neuroblastoma — BEACON-Neuroblastoma, a European Innovative Therapies for Children with Cancer (ITCC) — International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN) trial [abstract]. J. Clin. Oncol. 33 (Suppl.), TPS10082 (2015).

    Google Scholar 

  68. Corbacioglu, S. et al. The RIST design: a molecularly targeted multimodal approach for the treatment of patients with relapsed and refractory neuroblastoma [abstract]. J. Clin. Oncol. 31 (Suppl.), 10017 (2013).

    Google Scholar 

  69. Kager, L. et al. The ENCCA-WP7/EuroSarc/EEC/PROVABES/EURAMOS 3rd European Bone Sarcoma Networking Meeting/Joint Workshop of EU Bone Sarcoma Translational Research Networks; Vienna, Austria, September 24–25, 2015. Workshop Report. Clin. Sarcoma Res. 6, 3 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Malempati, S. et al. Early results from Children's Oncology Group (COG) ARST08P1: pilot studies of cixutumumab or temozolomide with intensive multiagent chemotherapy for patients with metastatic rhabdomyosarcoma [abstract]. J. Clin. Oncol. 33 (Suppl.), 10015 (2015).

    Google Scholar 

  71. Yap, T. A., Sandhu, S. K., Workman, P. & de Bono, J. S. Envisioning the future of early anticancer drug development. Nat. Rev. Cancer 10, 514–523 (2010).

    CAS  PubMed  Google Scholar 

  72. Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  73. Fouladi, M. et al. A phase I trial of MK-2206 in children with refractory malignancies: a Children's Oncology Group study. Pediatr. Blood Cancer 61, 1246–1251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Moreno, L. et al. Phase I trial of AT9283 (a selective inhibitor of aurora kinases) in children and adolescents with solid tumors: a Cancer Research UK study. Clin. Cancer Res. 21, 267–273 (2015).

    CAS  PubMed  Google Scholar 

  75. Smith, J. R. et al. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol. Oncol. 10, 538–552 (2016).

    CAS  PubMed  Google Scholar 

  76. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies intro the management of cancer. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2017.14 (2017).

  77. Glade Bender, J. L. et al. Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a Children's Oncology Group Phase I Consortium report. J. Clin. Oncol. 31, 3034–3043 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Sedlacik, J. et al. MR imaging assessment of tumor perfusion and 3D segmented volume at baseline, during treatment, and at tumor progression in children with newly diagnosed diffuse intrinsic pontine glioma. AJNR Am. J. Neuroradiol. 34, 1450–1455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schleiermacher, G. et al. Emergence of new ALK mutations at relapse of neuroblastoma. J. Clin. Oncol. 32, 2727–2734 (2014).

    CAS  PubMed  Google Scholar 

  80. Hill, R. M. et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27, 72–84 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Carr-Wilkinson, J. et al. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma. Clin. Cancer Res. 16, 1108–1118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chicard, M. et al. Genomic copy number profiling using circulating free tumor DNA highlights heterogeneity in neuroblastoma. Clin. Cancer Res. 22, 5564–5573 (2016).

    CAS  PubMed  Google Scholar 

  83. Combaret, V. et al. Detection of tumor ALK status in neuroblastoma patients using peripheral blood. Cancer Med. 4, 540–550 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Geoerger, B. et al. Molecular screening for cancer treatment optimization (MOSCATO 01) in pediatric patients: first feasibility results of a prospective molecular stratification trial [abstract]. J. Clin. Oncol. 32 (Suppl.), 10500 (2014).

    Google Scholar 

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02613962 (2017).

  86. Worst, B. C. et al. Next-generation personalised medicine for high-risk paediatric cancer patients — the INFORM pilot study. Eur. J. Cancer 65, 91–101 (2016).

    PubMed  Google Scholar 

  87. Netherlands Trial Register. Towards individualized therapy for patients with pediatric tumors. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5915 (2016).

  88. National Cancer Institute. NCI-MATCH trial (molecular analysis for therapy choice). Cancer https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match (2017).

  89. Harris, M. H. et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: the Individualized Cancer Therapy (iCat) study. JAMA Oncol. 2, 608–615 (2016).

    PubMed  Google Scholar 

  90. Kearns, G. L. et al. Developmental pharmacology — drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 349, 1157–1167 (2003).

    CAS  PubMed  Google Scholar 

  91. Veal, G. J. et al. Adaptive dosing of anticancer drugs in neonates: facilitating evidence-based dosing regimens. Cancer Chemother. Pharmacol. 77, 685–692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Food and Drug Administration, HHS. International Conference on Harmonisation; guidance on E11 clinical investigation of medicinal products in the pediatric population; availability. Notice. Fed. Regist. 65, 78493–78494 (2000).

  93. Momper, J. D. et al. Adolescent dosing and labeling since the Food and Drug Administration Amendments Act of 2007. JAMA Pediatr. 167, 926–932 (2013).

    PubMed  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01353625 (2016).

  95. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02304458 (2017).

  96. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01524926 (2016).

  97. Voss, S. D. et al. Growth plate abnormalities in pediatric cancer patients undergoing phase 1 anti-angiogenic therapy: a report from the Children's Oncology Group Phase I Consortium. Pediatr. Blood Cancer 62, 45–51 (2015).

    CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01390948 (2016).

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01956669 (2017).

  100. Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13, 249–260 (2008).

    CAS  PubMed  Google Scholar 

  101. Geoerger, B. et al. A phase I/II study of LDE225, a smoothened antagonist, in pediatric patients with recurrent medulloblastoma or other solid tumors [abstract]. J. Clin. Oncol. 30 (Suppl.), 9519 (2012).

    Google Scholar 

  102. Gajjar, A. et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a Pediatric Brain Tumor Consortium study. Clin. Cancer Res. 19, 6305–6312 (2013).

    CAS  PubMed  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01125800 (2017).

  104. Goteke, V. K. R. et al. An anthropometric study in children with chronic myeloid leukemia on imatinib [abstract]. J. Clin. Oncol. 30 (Suppl.), 6554 (2012).

    Google Scholar 

  105. Shima, H. et al. Distinct impact of imatinib on growth at prepubertal and pubertal ages of children with chronic myeloid leukemia. J. Pediatr. 159, 676–681 (2011).

    CAS  PubMed  Google Scholar 

  106. PanCare. Pan-European network for care of survivors after childhood and adolescent cancer. PanCare http://www.pancare.eu (2017).

  107. Dupont, J. C., Pritchard-Jones, K. & Doz, F. Ethical issues of clinical trials in paediatric oncology from 2003 to 2013: a systematic review. Lancet Oncol. 17, e187–e197 (2016).

    PubMed  Google Scholar 

  108. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A. Jr & Kinzler, K.W. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Trippett, T. M. et al. Phase I and pharmacokinetic study of cetuximab and irinotecan in children with refractory solid tumors: a study of the Pediatric Oncology Experimental Therapeutic Investigators' Consortium. J. Clin. Oncol. 27, 5102–5108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Glade Bender, J. L. et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group study. J. Clin. Oncol. 26, 399–405 (2008).

    PubMed  Google Scholar 

  111. Daw, N. C. et al. Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: a Children's Oncology Group study. J. Clin. Oncol. 23, 6172–6180 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.M. has received funding support from the Oak Foundation. The work of A.D.J.P. has been funded through a Cancer Research UK Life Chair and Programme Grant included within a Cancer Research UK ICR Core Award (C347/A15403), and is supported by the NIHR RM/ICR Biomedical Research Centre. C.M.Z. receives support from a KiKa-foundation (project 113) grant. We thank M. White (freelance editor and medical writer) for editorial support in the preparation of this article and G. Cook for administrative assistance. Editorial support costs have been funded by institutional funds from CNIO–HNJ Clinical Research Unit at Hospital Niño Jesus

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors discussed the content, researched data for the article, reviewed and edited the manuscript before submission. L. M., A.D.J.P, X.P, B.G., and G.V. wrote the manuscript.

Corresponding author

Correspondence to Andrew D. J. Pearson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information tables S1–S2

Dose-finding designs (DOC 57 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, L., Pearson, A., Paoletti, X. et al. Early phase clinical trials of anticancer agents in children and adolescents — an ITCC perspective. Nat Rev Clin Oncol 14, 497–507 (2017). https://doi.org/10.1038/nrclinonc.2017.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.59

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer